mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-09 05:08:37 +00:00
test
# What does this PR do? ## Test Plan
This commit is contained in:
parent
96886afaca
commit
001bf15bf8
12 changed files with 69 additions and 1 deletions
|
@ -278,6 +278,11 @@ def get_endpoint_operations(
|
|||
if param_name == "self" and param_type is inspect.Parameter.empty:
|
||||
continue
|
||||
|
||||
# skip **kwargs parameters - they should not appear in OpenAPI spec
|
||||
# these are used for forwarding arbitrary extra parameters to underlying APIs
|
||||
if parameter.kind == inspect.Parameter.VAR_KEYWORD:
|
||||
continue
|
||||
|
||||
# check if all parameters have explicit type
|
||||
if parameter.annotation is inspect.Parameter.empty:
|
||||
raise ValidationError(
|
||||
|
|
|
@ -1106,6 +1106,7 @@ class InferenceProvider(Protocol):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Create chat completions.
|
||||
|
||||
|
@ -1134,6 +1135,7 @@ class InferenceProvider(Protocol):
|
|||
:param top_logprobs: (Optional) The top log probabilities to use.
|
||||
:param top_p: (Optional) The top p to use.
|
||||
:param user: (Optional) The user to use.
|
||||
:param kwargs: (Optional) Additional provider-specific parameters to pass through as extra_body (e.g., chat_template_kwargs for vLLM).
|
||||
:returns: An OpenAIChatCompletion.
|
||||
"""
|
||||
...
|
||||
|
|
|
@ -277,6 +277,7 @@ class InferenceRouter(Inference):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
|
||||
|
@ -323,6 +324,7 @@ class InferenceRouter(Inference):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
|
||||
if stream:
|
||||
|
|
|
@ -173,5 +173,6 @@ class MetaReferenceInferenceImpl(
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")
|
||||
|
|
|
@ -124,5 +124,6 @@ class SentenceTransformersInferenceImpl(
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by sentence transformers provider")
|
||||
|
|
|
@ -186,5 +186,6 @@ class BedrockInferenceAdapter(
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")
|
||||
|
|
|
@ -153,6 +153,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
client = self._get_client()
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
@ -181,6 +182,7 @@ class PassthroughInferenceAdapter(Inference):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return await client.inference.openai_chat_completion(**params)
|
||||
|
|
|
@ -57,6 +57,7 @@ class RunpodInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Override to add RunPod-specific stream_options requirement."""
|
||||
if stream and not stream_options:
|
||||
|
@ -86,4 +87,5 @@ class RunpodInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
|
@ -102,6 +102,7 @@ class VLLMInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
max_tokens = max_tokens or self.config.max_tokens
|
||||
|
||||
|
@ -136,4 +137,5 @@ class VLLMInferenceAdapter(OpenAIMixin):
|
|||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
|
@ -299,6 +299,7 @@ class LiteLLMOpenAIMixin(
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
# Add usage tracking for streaming when telemetry is active
|
||||
from llama_stack.providers.utils.telemetry.tracing import get_current_span
|
||||
|
@ -335,6 +336,7 @@ class LiteLLMOpenAIMixin(
|
|||
user=user,
|
||||
api_key=self.get_api_key(),
|
||||
api_base=self.api_base,
|
||||
**kwargs,
|
||||
)
|
||||
return await litellm.acompletion(**params)
|
||||
|
||||
|
|
|
@ -313,6 +313,7 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
top_logprobs: int | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
|
@ -361,7 +362,10 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
user=user,
|
||||
)
|
||||
|
||||
resp = await self.client.chat.completions.create(**params)
|
||||
# Pass any additional provider-specific parameters as extra_body
|
||||
extra_body = kwargs if kwargs else {}
|
||||
|
||||
resp = await self.client.chat.completions.create(**params, extra_body=extra_body)
|
||||
|
||||
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
||||
|
||||
|
|
|
@ -186,3 +186,47 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
|
|||
|
||||
assert mock_create_client.call_count == 4 # no cheating
|
||||
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
|
||||
|
||||
|
||||
async def test_extra_body_forwarding(vllm_inference_adapter):
|
||||
"""
|
||||
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
|
||||
forwarded to the underlying OpenAI client.
|
||||
"""
|
||||
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
|
||||
vllm_inference_adapter.model_store.get_model.return_value = mock_model
|
||||
|
||||
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(
|
||||
return_value=OpenAIChatCompletion(
|
||||
id="chatcmpl-abc123",
|
||||
created=1,
|
||||
model="mock-model",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(
|
||||
content="test response",
|
||||
),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
)
|
||||
)
|
||||
mock_client_property.return_value = mock_client
|
||||
|
||||
# Test with chat_template_kwargs for Granite thinking mode
|
||||
await vllm_inference_adapter.openai_chat_completion(
|
||||
"mock-model",
|
||||
messages=[],
|
||||
stream=False,
|
||||
chat_template_kwargs={"thinking": True},
|
||||
)
|
||||
|
||||
# Verify that the client was called with extra_body containing chat_template_kwargs
|
||||
mock_client.chat.completions.create.assert_called_once()
|
||||
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
|
||||
assert "extra_body" in call_kwargs
|
||||
assert "chat_template_kwargs" in call_kwargs["extra_body"]
|
||||
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue