# What does this PR do?


## Test Plan
This commit is contained in:
Eric Huang 2025-10-08 13:38:52 -07:00
parent 96886afaca
commit 001bf15bf8
12 changed files with 69 additions and 1 deletions

View file

@ -278,6 +278,11 @@ def get_endpoint_operations(
if param_name == "self" and param_type is inspect.Parameter.empty:
continue
# skip **kwargs parameters - they should not appear in OpenAPI spec
# these are used for forwarding arbitrary extra parameters to underlying APIs
if parameter.kind == inspect.Parameter.VAR_KEYWORD:
continue
# check if all parameters have explicit type
if parameter.annotation is inspect.Parameter.empty:
raise ValidationError(

View file

@ -1106,6 +1106,7 @@ class InferenceProvider(Protocol):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""Create chat completions.
@ -1134,6 +1135,7 @@ class InferenceProvider(Protocol):
:param top_logprobs: (Optional) The top log probabilities to use.
:param top_p: (Optional) The top p to use.
:param user: (Optional) The user to use.
:param kwargs: (Optional) Additional provider-specific parameters to pass through as extra_body (e.g., chat_template_kwargs for vLLM).
:returns: An OpenAIChatCompletion.
"""
...

View file

@ -277,6 +277,7 @@ class InferenceRouter(Inference):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
logger.debug(
f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}",
@ -323,6 +324,7 @@ class InferenceRouter(Inference):
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
**kwargs,
)
provider = await self.routing_table.get_provider_impl(model_obj.identifier)
if stream:

View file

@ -173,5 +173,6 @@ class MetaReferenceInferenceImpl(
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")

View file

@ -124,5 +124,6 @@ class SentenceTransformersInferenceImpl(
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by sentence transformers provider")

View file

@ -186,5 +186,6 @@ class BedrockInferenceAdapter(
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
raise NotImplementedError("OpenAI chat completion not supported by the Bedrock provider")

View file

@ -153,6 +153,7 @@ class PassthroughInferenceAdapter(Inference):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
client = self._get_client()
model_obj = await self.model_store.get_model(model)
@ -181,6 +182,7 @@ class PassthroughInferenceAdapter(Inference):
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
**kwargs,
)
return await client.inference.openai_chat_completion(**params)

View file

@ -57,6 +57,7 @@ class RunpodInferenceAdapter(OpenAIMixin):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
):
"""Override to add RunPod-specific stream_options requirement."""
if stream and not stream_options:
@ -86,4 +87,5 @@ class RunpodInferenceAdapter(OpenAIMixin):
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
**kwargs,
)

View file

@ -102,6 +102,7 @@ class VLLMInferenceAdapter(OpenAIMixin):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
max_tokens = max_tokens or self.config.max_tokens
@ -136,4 +137,5 @@ class VLLMInferenceAdapter(OpenAIMixin):
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
**kwargs,
)

View file

@ -299,6 +299,7 @@ class LiteLLMOpenAIMixin(
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
# Add usage tracking for streaming when telemetry is active
from llama_stack.providers.utils.telemetry.tracing import get_current_span
@ -335,6 +336,7 @@ class LiteLLMOpenAIMixin(
user=user,
api_key=self.get_api_key(),
api_base=self.api_base,
**kwargs,
)
return await litellm.acompletion(**params)

View file

@ -313,6 +313,7 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
**kwargs: Any,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
"""
Direct OpenAI chat completion API call.
@ -361,7 +362,10 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
user=user,
)
resp = await self.client.chat.completions.create(**params)
# Pass any additional provider-specific parameters as extra_body
extra_body = kwargs if kwargs else {}
resp = await self.client.chat.completions.create(**params, extra_body=extra_body)
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]

View file

@ -186,3 +186,47 @@ async def test_openai_chat_completion_is_async(vllm_inference_adapter):
assert mock_create_client.call_count == 4 # no cheating
assert total_time < (sleep_time * 2), f"Total time taken: {total_time}s exceeded expected max"
async def test_extra_body_forwarding(vllm_inference_adapter):
"""
Test that extra_body parameters (e.g., chat_template_kwargs) are correctly
forwarded to the underlying OpenAI client.
"""
mock_model = Model(identifier="mock-model", provider_resource_id="mock-model", provider_id="vllm-inference")
vllm_inference_adapter.model_store.get_model.return_value = mock_model
with patch.object(VLLMInferenceAdapter, "client", new_callable=PropertyMock) as mock_client_property:
mock_client = MagicMock()
mock_client.chat.completions.create = AsyncMock(
return_value=OpenAIChatCompletion(
id="chatcmpl-abc123",
created=1,
model="mock-model",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(
content="test response",
),
finish_reason="stop",
index=0,
)
],
)
)
mock_client_property.return_value = mock_client
# Test with chat_template_kwargs for Granite thinking mode
await vllm_inference_adapter.openai_chat_completion(
"mock-model",
messages=[],
stream=False,
chat_template_kwargs={"thinking": True},
)
# Verify that the client was called with extra_body containing chat_template_kwargs
mock_client.chat.completions.create.assert_called_once()
call_kwargs = mock_client.chat.completions.create.call_args.kwargs
assert "extra_body" in call_kwargs
assert "chat_template_kwargs" in call_kwargs["extra_body"]
assert call_kwargs["extra_body"]["chat_template_kwargs"] == {"thinking": True}