mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 06:53:47 +00:00
Merge branch 'main' into eval_task_register
This commit is contained in:
commit
00869799a1
6 changed files with 83 additions and 47 deletions
|
@ -28,21 +28,21 @@ We have the following orthogonal parametrizations (pytest "marks") for inference
|
|||
|
||||
If you want to run a test with the llama_8b model with fireworks, you can use:
|
||||
```bash
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_inference.py \
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py \
|
||||
-m "fireworks and llama_8b" \
|
||||
--env FIREWORKS_API_KEY=<...>
|
||||
```
|
||||
|
||||
You can make it more complex to run both llama_8b and llama_3b on Fireworks, but only llama_3b with Ollama:
|
||||
```bash
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_inference.py \
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py \
|
||||
-m "fireworks or (ollama and llama_3b)" \
|
||||
--env FIREWORKS_API_KEY=<...>
|
||||
```
|
||||
|
||||
Finally, you can override the model completely by doing:
|
||||
```bash
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_inference.py \
|
||||
pytest -s -v llama_stack/providers/tests/inference/test_text_inference.py \
|
||||
-m fireworks \
|
||||
--inference-model "Llama3.1-70B-Instruct" \
|
||||
--env FIREWORKS_API_KEY=<...>
|
||||
|
|
|
@ -19,7 +19,7 @@ from .utils import group_chunks
|
|||
|
||||
# How to run this test:
|
||||
#
|
||||
# pytest -v -s llama_stack/providers/tests/inference/test_inference.py
|
||||
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
|
||||
# -m "(fireworks or ollama) and llama_3b"
|
||||
# --env FIREWORKS_API_KEY=<your_api_key>
|
||||
|
|
@ -20,8 +20,25 @@ THIS_DIR = Path(__file__).parent
|
|||
|
||||
class TestVisionModelInference:
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize(
|
||||
"image, expected_strings",
|
||||
[
|
||||
(
|
||||
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
||||
["spaghetti"],
|
||||
),
|
||||
(
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
["puppy"],
|
||||
),
|
||||
],
|
||||
)
|
||||
async def test_vision_chat_completion_non_streaming(
|
||||
self, inference_model, inference_stack
|
||||
self, inference_model, inference_stack, image, expected_strings
|
||||
):
|
||||
inference_impl, _ = inference_stack
|
||||
|
||||
|
@ -31,42 +48,27 @@ class TestVisionModelInference:
|
|||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
"remote::vllm",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
)
|
||||
|
||||
images = [
|
||||
ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")),
|
||||
ImageMedia(
|
||||
image=URL(
|
||||
uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
||||
)
|
||||
),
|
||||
]
|
||||
response = await inference_impl.chat_completion(
|
||||
model=inference_model,
|
||||
messages=[
|
||||
UserMessage(content="You are a helpful assistant."),
|
||||
UserMessage(content=[image, "Describe this image in two sentences."]),
|
||||
],
|
||||
stream=False,
|
||||
sampling_params=SamplingParams(max_tokens=100),
|
||||
)
|
||||
|
||||
# These are a bit hit-and-miss, need to be careful
|
||||
expected_strings_to_check = [
|
||||
["spaghetti"],
|
||||
["puppy"],
|
||||
]
|
||||
for image, expected_strings in zip(images, expected_strings_to_check):
|
||||
response = await inference_impl.chat_completion(
|
||||
model=inference_model,
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
UserMessage(
|
||||
content=[image, "Describe this image in two sentences."]
|
||||
),
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert isinstance(response, ChatCompletionResponse)
|
||||
assert response.completion_message.role == "assistant"
|
||||
assert isinstance(response.completion_message.content, str)
|
||||
for expected_string in expected_strings:
|
||||
assert expected_string in response.completion_message.content
|
||||
assert isinstance(response, ChatCompletionResponse)
|
||||
assert response.completion_message.role == "assistant"
|
||||
assert isinstance(response.completion_message.content, str)
|
||||
for expected_string in expected_strings:
|
||||
assert expected_string in response.completion_message.content
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vision_chat_completion_streaming(
|
||||
|
@ -80,6 +82,7 @@ class TestVisionModelInference:
|
|||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
"remote::vllm",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
|
@ -101,12 +104,13 @@ class TestVisionModelInference:
|
|||
async for r in await inference_impl.chat_completion(
|
||||
model=inference_model,
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
UserMessage(content="You are a helpful assistant."),
|
||||
UserMessage(
|
||||
content=[image, "Describe this image in two sentences."]
|
||||
),
|
||||
],
|
||||
stream=True,
|
||||
sampling_params=SamplingParams(max_tokens=100),
|
||||
)
|
||||
]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue