mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-18 14:19:48 +00:00
Merge branch 'main' into post_training_v4
This commit is contained in:
commit
018dce89ca
287 changed files with 13743 additions and 4540 deletions
|
|
@ -54,8 +54,6 @@ class ShieldsProtocolPrivate(Protocol):
|
|||
|
||||
|
||||
class MemoryBanksProtocolPrivate(Protocol):
|
||||
async def list_memory_banks(self) -> List[MemoryBank]: ...
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None: ...
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...
|
||||
|
|
@ -64,6 +62,8 @@ class MemoryBanksProtocolPrivate(Protocol):
|
|||
class DatasetsProtocolPrivate(Protocol):
|
||||
async def register_dataset(self, dataset: Dataset) -> None: ...
|
||||
|
||||
async def unregister_dataset(self, dataset_id: str) -> None: ...
|
||||
|
||||
|
||||
class ScoringFunctionsProtocolPrivate(Protocol):
|
||||
async def list_scoring_functions(self) -> List[ScoringFn]: ...
|
||||
|
|
@ -201,10 +201,13 @@ API responses, specify the adapter here.
|
|||
return self.adapter.provider_data_validator
|
||||
|
||||
|
||||
def remote_provider_spec(api: Api, adapter: AdapterSpec) -> RemoteProviderSpec:
|
||||
def remote_provider_spec(
|
||||
api: Api, adapter: AdapterSpec, api_dependencies: Optional[List[Api]] = None
|
||||
) -> RemoteProviderSpec:
|
||||
return RemoteProviderSpec(
|
||||
api=api,
|
||||
provider_type=f"remote::{adapter.adapter_type}",
|
||||
config_class=adapter.config_class,
|
||||
adapter=adapter,
|
||||
api_dependencies=api_dependencies or [],
|
||||
)
|
||||
|
|
|
|||
|
|
@ -10,9 +10,7 @@ import logging
|
|||
import os
|
||||
import re
|
||||
import secrets
|
||||
import shutil
|
||||
import string
|
||||
import tempfile
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from typing import AsyncGenerator, List, Tuple
|
||||
|
|
@ -57,6 +55,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
self,
|
||||
agent_id: str,
|
||||
agent_config: AgentConfig,
|
||||
tempdir: str,
|
||||
inference_api: Inference,
|
||||
memory_api: Memory,
|
||||
memory_banks_api: MemoryBanks,
|
||||
|
|
@ -65,14 +64,13 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
):
|
||||
self.agent_id = agent_id
|
||||
self.agent_config = agent_config
|
||||
self.tempdir = tempdir
|
||||
self.inference_api = inference_api
|
||||
self.memory_api = memory_api
|
||||
self.memory_banks_api = memory_banks_api
|
||||
self.safety_api = safety_api
|
||||
self.storage = AgentPersistence(agent_id, persistence_store)
|
||||
|
||||
self.tempdir = tempfile.mkdtemp()
|
||||
|
||||
builtin_tools = []
|
||||
for tool_defn in agent_config.tools:
|
||||
if isinstance(tool_defn, WolframAlphaToolDefinition):
|
||||
|
|
@ -103,9 +101,6 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
output_shields=agent_config.output_shields,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
shutil.rmtree(self.tempdir)
|
||||
|
||||
def turn_to_messages(self, turn: Turn) -> List[Message]:
|
||||
messages = []
|
||||
|
||||
|
|
@ -113,7 +108,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
# May be this should be a parameter of the agentic instance
|
||||
# that can define its behavior in a custom way
|
||||
for m in turn.input_messages:
|
||||
msg = m.copy()
|
||||
msg = m.model_copy()
|
||||
if isinstance(msg, UserMessage):
|
||||
msg.context = None
|
||||
messages.append(msg)
|
||||
|
|
@ -144,87 +139,91 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
async def create_session(self, name: str) -> str:
|
||||
return await self.storage.create_session(name)
|
||||
|
||||
@tracing.span("create_and_execute_turn")
|
||||
async def create_and_execute_turn(
|
||||
self, request: AgentTurnCreateRequest
|
||||
) -> AsyncGenerator:
|
||||
assert request.stream is True, "Non-streaming not supported"
|
||||
with tracing.span("create_and_execute_turn") as span:
|
||||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("agent_id", self.agent_id)
|
||||
span.set_attribute("request", request.model_dump_json())
|
||||
assert request.stream is True, "Non-streaming not supported"
|
||||
|
||||
session_info = await self.storage.get_session_info(request.session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {request.session_id} not found")
|
||||
session_info = await self.storage.get_session_info(request.session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {request.session_id} not found")
|
||||
|
||||
turns = await self.storage.get_session_turns(request.session_id)
|
||||
turns = await self.storage.get_session_turns(request.session_id)
|
||||
|
||||
messages = []
|
||||
if self.agent_config.instructions != "":
|
||||
messages.append(SystemMessage(content=self.agent_config.instructions))
|
||||
messages = []
|
||||
if self.agent_config.instructions != "":
|
||||
messages.append(SystemMessage(content=self.agent_config.instructions))
|
||||
|
||||
for i, turn in enumerate(turns):
|
||||
messages.extend(self.turn_to_messages(turn))
|
||||
for i, turn in enumerate(turns):
|
||||
messages.extend(self.turn_to_messages(turn))
|
||||
|
||||
messages.extend(request.messages)
|
||||
messages.extend(request.messages)
|
||||
|
||||
turn_id = str(uuid.uuid4())
|
||||
start_time = datetime.now()
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseTurnStartPayload(
|
||||
turn_id=turn_id,
|
||||
turn_id = str(uuid.uuid4())
|
||||
span.set_attribute("turn_id", turn_id)
|
||||
start_time = datetime.now()
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseTurnStartPayload(
|
||||
turn_id=turn_id,
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
steps = []
|
||||
output_message = None
|
||||
async for chunk in self.run(
|
||||
session_id=request.session_id,
|
||||
turn_id=turn_id,
|
||||
input_messages=messages,
|
||||
attachments=request.attachments or [],
|
||||
sampling_params=self.agent_config.sampling_params,
|
||||
stream=request.stream,
|
||||
):
|
||||
if isinstance(chunk, CompletionMessage):
|
||||
log.info(
|
||||
f"{chunk.role.capitalize()}: {chunk.content}",
|
||||
)
|
||||
output_message = chunk
|
||||
continue
|
||||
|
||||
assert isinstance(
|
||||
chunk, AgentTurnResponseStreamChunk
|
||||
), f"Unexpected type {type(chunk)}"
|
||||
event = chunk.event
|
||||
if (
|
||||
event.payload.event_type
|
||||
== AgentTurnResponseEventType.step_complete.value
|
||||
steps = []
|
||||
output_message = None
|
||||
async for chunk in self.run(
|
||||
session_id=request.session_id,
|
||||
turn_id=turn_id,
|
||||
input_messages=messages,
|
||||
attachments=request.attachments or [],
|
||||
sampling_params=self.agent_config.sampling_params,
|
||||
stream=request.stream,
|
||||
):
|
||||
steps.append(event.payload.step_details)
|
||||
if isinstance(chunk, CompletionMessage):
|
||||
log.info(
|
||||
f"{chunk.role.capitalize()}: {chunk.content}",
|
||||
)
|
||||
output_message = chunk
|
||||
continue
|
||||
|
||||
yield chunk
|
||||
assert isinstance(
|
||||
chunk, AgentTurnResponseStreamChunk
|
||||
), f"Unexpected type {type(chunk)}"
|
||||
event = chunk.event
|
||||
if (
|
||||
event.payload.event_type
|
||||
== AgentTurnResponseEventType.step_complete.value
|
||||
):
|
||||
steps.append(event.payload.step_details)
|
||||
|
||||
assert output_message is not None
|
||||
yield chunk
|
||||
|
||||
turn = Turn(
|
||||
turn_id=turn_id,
|
||||
session_id=request.session_id,
|
||||
input_messages=request.messages,
|
||||
output_message=output_message,
|
||||
started_at=start_time,
|
||||
completed_at=datetime.now(),
|
||||
steps=steps,
|
||||
)
|
||||
await self.storage.add_turn_to_session(request.session_id, turn)
|
||||
assert output_message is not None
|
||||
|
||||
chunk = AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseTurnCompletePayload(
|
||||
turn=turn,
|
||||
turn = Turn(
|
||||
turn_id=turn_id,
|
||||
session_id=request.session_id,
|
||||
input_messages=request.messages,
|
||||
output_message=output_message,
|
||||
started_at=start_time,
|
||||
completed_at=datetime.now(),
|
||||
steps=steps,
|
||||
)
|
||||
await self.storage.add_turn_to_session(request.session_id, turn)
|
||||
|
||||
chunk = AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseTurnCompletePayload(
|
||||
turn=turn,
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
yield chunk
|
||||
yield chunk
|
||||
|
||||
async def run(
|
||||
self,
|
||||
|
|
@ -273,7 +272,6 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
yield final_response
|
||||
|
||||
@tracing.span("run_shields")
|
||||
async def run_multiple_shields_wrapper(
|
||||
self,
|
||||
turn_id: str,
|
||||
|
|
@ -281,23 +279,46 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
shields: List[str],
|
||||
touchpoint: str,
|
||||
) -> AsyncGenerator:
|
||||
if len(shields) == 0:
|
||||
return
|
||||
with tracing.span("run_shields") as span:
|
||||
span.set_attribute("input", [m.model_dump_json() for m in messages])
|
||||
if len(shields) == 0:
|
||||
span.set_attribute("output", "no shields")
|
||||
return
|
||||
|
||||
step_id = str(uuid.uuid4())
|
||||
try:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepStartPayload(
|
||||
step_type=StepType.shield_call.value,
|
||||
step_id=step_id,
|
||||
metadata=dict(touchpoint=touchpoint),
|
||||
step_id = str(uuid.uuid4())
|
||||
try:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepStartPayload(
|
||||
step_type=StepType.shield_call.value,
|
||||
step_id=step_id,
|
||||
metadata=dict(touchpoint=touchpoint),
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
await self.run_multiple_shields(messages, shields)
|
||||
await self.run_multiple_shields(messages, shields)
|
||||
|
||||
except SafetyException as e:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepCompletePayload(
|
||||
step_type=StepType.shield_call.value,
|
||||
step_details=ShieldCallStep(
|
||||
step_id=step_id,
|
||||
turn_id=turn_id,
|
||||
violation=e.violation,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
span.set_attribute("output", e.violation.model_dump_json())
|
||||
|
||||
yield CompletionMessage(
|
||||
content=str(e),
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
yield False
|
||||
|
||||
except SafetyException as e:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepCompletePayload(
|
||||
|
|
@ -305,30 +326,12 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
step_details=ShieldCallStep(
|
||||
step_id=step_id,
|
||||
turn_id=turn_id,
|
||||
violation=e.violation,
|
||||
violation=None,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
yield CompletionMessage(
|
||||
content=str(e),
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
yield False
|
||||
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepCompletePayload(
|
||||
step_type=StepType.shield_call.value,
|
||||
step_details=ShieldCallStep(
|
||||
step_id=step_id,
|
||||
turn_id=turn_id,
|
||||
violation=None,
|
||||
),
|
||||
)
|
||||
)
|
||||
)
|
||||
span.set_attribute("output", "no violations")
|
||||
|
||||
async def _run(
|
||||
self,
|
||||
|
|
@ -356,10 +359,15 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
# TODO: find older context from the session and either replace it
|
||||
# or append with a sliding window. this is really a very simplistic implementation
|
||||
with tracing.span("retrieve_rag_context"):
|
||||
with tracing.span("retrieve_rag_context") as span:
|
||||
rag_context, bank_ids = await self._retrieve_context(
|
||||
session_id, input_messages, attachments
|
||||
)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute("output", rag_context)
|
||||
span.set_attribute("bank_ids", bank_ids)
|
||||
|
||||
step_id = str(uuid.uuid4())
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
|
|
@ -396,11 +404,6 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
n_iter = 0
|
||||
while True:
|
||||
msg = input_messages[-1]
|
||||
if len(str(msg)) > 1000:
|
||||
msg_str = f"{str(msg)[:500]}...<more>...{str(msg)[-500:]}"
|
||||
else:
|
||||
msg_str = str(msg)
|
||||
log.info(f"{msg_str}")
|
||||
|
||||
step_id = str(uuid.uuid4())
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
|
|
@ -416,7 +419,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
content = ""
|
||||
stop_reason = None
|
||||
|
||||
with tracing.span("inference"):
|
||||
with tracing.span("inference") as span:
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
|
|
@ -436,14 +439,13 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
if isinstance(delta, ToolCallDelta):
|
||||
if delta.parse_status == ToolCallParseStatus.success:
|
||||
tool_calls.append(delta.content)
|
||||
|
||||
if stream:
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
payload=AgentTurnResponseStepProgressPayload(
|
||||
step_type=StepType.inference.value,
|
||||
step_id=step_id,
|
||||
model_response_text_delta="",
|
||||
text_delta="",
|
||||
tool_call_delta=delta,
|
||||
)
|
||||
)
|
||||
|
|
@ -457,7 +459,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
payload=AgentTurnResponseStepProgressPayload(
|
||||
step_type=StepType.inference.value,
|
||||
step_id=step_id,
|
||||
model_response_text_delta=event.delta,
|
||||
text_delta=event.delta,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
|
@ -466,6 +468,13 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
|
||||
if event.stop_reason is not None:
|
||||
stop_reason = event.stop_reason
|
||||
span.set_attribute("stop_reason", stop_reason)
|
||||
span.set_attribute(
|
||||
"input", [m.model_dump_json() for m in input_messages]
|
||||
)
|
||||
span.set_attribute(
|
||||
"output", f"content: {content} tool_calls: {tool_calls}"
|
||||
)
|
||||
|
||||
stop_reason = stop_reason or StopReason.out_of_tokens
|
||||
|
||||
|
|
@ -549,7 +558,13 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
)
|
||||
|
||||
with tracing.span("tool_execution"):
|
||||
with tracing.span(
|
||||
"tool_execution",
|
||||
{
|
||||
"tool_name": tool_call.tool_name,
|
||||
"input": message.model_dump_json(),
|
||||
},
|
||||
) as span:
|
||||
result_messages = await execute_tool_call_maybe(
|
||||
self.tools_dict,
|
||||
[message],
|
||||
|
|
@ -558,6 +573,7 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
len(result_messages) == 1
|
||||
), "Currently not supporting multiple messages"
|
||||
result_message = result_messages[0]
|
||||
span.set_attribute("output", result_message.model_dump_json())
|
||||
|
||||
yield AgentTurnResponseStreamChunk(
|
||||
event=AgentTurnResponseEvent(
|
||||
|
|
|
|||
|
|
@ -6,9 +6,13 @@
|
|||
|
||||
import json
|
||||
import logging
|
||||
import shutil
|
||||
import tempfile
|
||||
import uuid
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from termcolor import colored
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBanks
|
||||
|
|
@ -40,10 +44,20 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
self.memory_banks_api = memory_banks_api
|
||||
|
||||
self.in_memory_store = InmemoryKVStoreImpl()
|
||||
self.tempdir = tempfile.mkdtemp()
|
||||
|
||||
async def initialize(self) -> None:
|
||||
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
||||
|
||||
# check if "bwrap" is available
|
||||
if not shutil.which("bwrap"):
|
||||
print(
|
||||
colored(
|
||||
"Warning: `bwrap` is not available. Code interpreter tool will not work correctly.",
|
||||
"yellow",
|
||||
)
|
||||
)
|
||||
|
||||
async def create_agent(
|
||||
self,
|
||||
agent_config: AgentConfig,
|
||||
|
|
@ -52,7 +66,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
|
||||
await self.persistence_store.set(
|
||||
key=f"agent:{agent_id}",
|
||||
value=agent_config.json(),
|
||||
value=agent_config.model_dump_json(),
|
||||
)
|
||||
return AgentCreateResponse(
|
||||
agent_id=agent_id,
|
||||
|
|
@ -82,6 +96,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
return ChatAgent(
|
||||
agent_id=agent_id,
|
||||
agent_config=agent_config,
|
||||
tempdir=self.tempdir,
|
||||
inference_api=self.inference_api,
|
||||
safety_api=self.safety_api,
|
||||
memory_api=self.memory_api,
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ class AgentPersistence:
|
|||
)
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}",
|
||||
value=session_info.json(),
|
||||
value=session_info.model_dump_json(),
|
||||
)
|
||||
return session_id
|
||||
|
||||
|
|
@ -60,13 +60,13 @@ class AgentPersistence:
|
|||
session_info.memory_bank_id = bank_id
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}",
|
||||
value=session_info.json(),
|
||||
value=session_info.model_dump_json(),
|
||||
)
|
||||
|
||||
async def add_turn_to_session(self, session_id: str, turn: Turn):
|
||||
await self.kvstore.set(
|
||||
key=f"session:{self.agent_id}:{session_id}:{turn.turn_id}",
|
||||
value=turn.json(),
|
||||
value=turn.model_dump_json(),
|
||||
)
|
||||
|
||||
async def get_session_turns(self, session_id: str) -> List[Turn]:
|
||||
|
|
|
|||
|
|
@ -3,14 +3,17 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import pandas
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
import base64
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||
|
|
@ -97,6 +100,9 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
dataset_impl=dataset_impl,
|
||||
)
|
||||
|
||||
async def unregister_dataset(self, dataset_id: str) -> None:
|
||||
del self.dataset_infos[dataset_id]
|
||||
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
@ -128,3 +134,41 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
total_count=len(rows),
|
||||
next_page_token=str(end),
|
||||
)
|
||||
|
||||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
||||
dataset_info = self.dataset_infos.get(dataset_id)
|
||||
if dataset_info is None:
|
||||
raise ValueError(f"Dataset with id {dataset_id} not found")
|
||||
|
||||
dataset_impl = dataset_info.dataset_impl
|
||||
dataset_impl.load()
|
||||
|
||||
new_rows_df = pandas.DataFrame(rows)
|
||||
new_rows_df = dataset_impl._validate_dataset_schema(new_rows_df)
|
||||
dataset_impl.df = pandas.concat(
|
||||
[dataset_impl.df, new_rows_df], ignore_index=True
|
||||
)
|
||||
|
||||
url = str(dataset_info.dataset_def.url)
|
||||
parsed_url = urlparse(url)
|
||||
|
||||
if parsed_url.scheme == "file" or not parsed_url.scheme:
|
||||
file_path = parsed_url.path
|
||||
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
||||
dataset_impl.df.to_csv(file_path, index=False)
|
||||
elif parsed_url.scheme == "data":
|
||||
# For data URLs, we need to update the base64-encoded content
|
||||
if not parsed_url.path.startswith("text/csv;base64,"):
|
||||
raise ValueError("Data URL must be a base64-encoded CSV")
|
||||
|
||||
csv_buffer = dataset_impl.df.to_csv(index=False)
|
||||
base64_content = base64.b64encode(csv_buffer.encode("utf-8")).decode(
|
||||
"utf-8"
|
||||
)
|
||||
dataset_info.dataset_def.url = URL(
|
||||
uri=f"data:text/csv;base64,{base64_content}"
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported URL scheme: {parsed_url.scheme}. Only file:// and data: URLs are supported for writing."
|
||||
)
|
||||
|
|
|
|||
|
|
@ -3,10 +3,3 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class OpenTelemetryConfig(BaseModel):
|
||||
jaeger_host: str = "localhost"
|
||||
jaeger_port: int = 6831
|
||||
|
|
@ -3,12 +3,13 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class MetaReferenceEvalConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -4,7 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Optional
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from tqdm import tqdm
|
||||
|
||||
from .....apis.common.job_types import Job
|
||||
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
|
||||
|
|
@ -17,7 +19,6 @@ from llama_stack.apis.inference import Inference
|
|||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.providers.datatypes import EvalTasksProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
from tqdm import tqdm
|
||||
|
||||
from .config import MetaReferenceEvalConfig
|
||||
|
||||
|
|
@ -72,7 +73,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
|
|||
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
|
||||
await self.kvstore.set(
|
||||
key=key,
|
||||
value=task_def.json(),
|
||||
value=task_def.model_dump_json(),
|
||||
)
|
||||
self.eval_tasks[task_def.identifier] = task_def
|
||||
|
||||
|
|
|
|||
|
|
@ -16,12 +16,14 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
|
|||
from llama_stack.providers.utils.inference.model_registry import build_model_alias
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_media_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
from .generation import Llama
|
||||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
|
@ -32,12 +34,17 @@ log = logging.getLogger(__name__)
|
|||
SEMAPHORE = asyncio.Semaphore(1)
|
||||
|
||||
|
||||
class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolPrivate):
|
||||
class MetaReferenceInferenceImpl(
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
Inference,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
||||
self.config = config
|
||||
model = resolve_model(config.model)
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
if model is None:
|
||||
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
|
||||
self.model_registry_helper = ModelRegistryHelper(
|
||||
[
|
||||
build_model_alias(
|
||||
model.descriptor(),
|
||||
|
|
@ -45,8 +52,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
|
|||
)
|
||||
],
|
||||
)
|
||||
if model is None:
|
||||
raise RuntimeError(f"Unknown model: {config.model}, Run `llama model list`")
|
||||
self.model = model
|
||||
# verify that the checkpoint actually is for this model lol
|
||||
|
||||
|
|
@ -76,6 +81,12 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
|
|||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
model = await self.model_registry_helper.register_model(model)
|
||||
if model.model_type == ModelType.embedding:
|
||||
self._load_sentence_transformer_model(model.provider_resource_id)
|
||||
return model
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -394,13 +405,6 @@ class MetaReferenceInferenceImpl(Inference, ModelRegistryHelper, ModelsProtocolP
|
|||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
async def request_with_localized_media(
|
||||
request: Union[ChatCompletionRequest, CompletionRequest],
|
||||
|
|
|
|||
|
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.inline.inference.sentence_transformers.config import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: SentenceTransformersInferenceConfig,
|
||||
_deps,
|
||||
):
|
||||
from .sentence_transformers import SentenceTransformersInferenceImpl
|
||||
|
||||
impl = SentenceTransformersInferenceImpl(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -4,18 +4,13 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class LogFormat(Enum):
|
||||
TEXT = "text"
|
||||
JSON = "json"
|
||||
class SentenceTransformersInferenceConfig(BaseModel):
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ConsoleConfig(BaseModel):
|
||||
log_format: LogFormat = LogFormat.TEXT
|
||||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
|
@ -0,0 +1,74 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
CompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
SamplingParams,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
)
|
||||
from .config import SentenceTransformersInferenceConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SentenceTransformersInferenceImpl(
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
Inference,
|
||||
ModelsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_model(self, model: Model) -> None:
|
||||
_ = self._load_sentence_transformer_model(model.provider_resource_id)
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: str,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, AsyncGenerator]:
|
||||
raise ValueError("Sentence transformers don't support completion")
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise ValueError("Sentence transformers don't support chat completion")
|
||||
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import ConsoleConfig
|
||||
from .config import ChromaInlineImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: ConsoleConfig, _deps):
|
||||
from .console import ConsoleTelemetryImpl
|
||||
async def get_provider_impl(config: ChromaInlineImplConfig, _deps):
|
||||
from llama_stack.providers.remote.memory.chroma.chroma import ChromaMemoryAdapter
|
||||
|
||||
impl = ConsoleTelemetryImpl(config)
|
||||
impl = ChromaMemoryAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
17
llama_stack/providers/inline/memory/chroma/config.py
Normal file
17
llama_stack/providers/inline/memory/chroma/config.py
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ChromaInlineImplConfig(BaseModel):
|
||||
db_path: str
|
||||
|
||||
@classmethod
|
||||
def sample_config(cls) -> Dict[str, Any]:
|
||||
return {"db_path": "{env.CHROMADB_PATH}"}
|
||||
|
|
@ -4,16 +4,19 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
from .config import FaissImplConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: FaissImplConfig, _deps):
|
||||
async def get_provider_impl(config: FaissImplConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .faiss import FaissMemoryImpl
|
||||
|
||||
assert isinstance(
|
||||
config, FaissImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = FaissMemoryImpl(config)
|
||||
impl = FaissMemoryImpl(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -19,21 +19,20 @@ from numpy.typing import NDArray
|
|||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ALL_MINILM_L6_V2_DIMENSION,
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry import tracing
|
||||
|
||||
from .config import FaissImplConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MEMORY_BANKS_PREFIX = "memory_banks:v1::"
|
||||
MEMORY_BANKS_PREFIX = "memory_banks:v2::"
|
||||
FAISS_INDEX_PREFIX = "faiss_index:v2::"
|
||||
|
||||
|
||||
class FaissIndex(EmbeddingIndex):
|
||||
|
|
@ -57,7 +56,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
if not self.kvstore:
|
||||
return
|
||||
|
||||
index_key = f"faiss_index:v1::{self.bank_id}"
|
||||
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
|
||||
stored_data = await self.kvstore.get(index_key)
|
||||
|
||||
if stored_data:
|
||||
|
|
@ -80,21 +79,31 @@ class FaissIndex(EmbeddingIndex):
|
|||
np.savetxt(buffer, np_index)
|
||||
data = {
|
||||
"id_by_index": self.id_by_index,
|
||||
"chunk_by_index": {k: v.json() for k, v in self.chunk_by_index.items()},
|
||||
"chunk_by_index": {
|
||||
k: v.model_dump_json() for k, v in self.chunk_by_index.items()
|
||||
},
|
||||
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
|
||||
}
|
||||
|
||||
index_key = f"faiss_index:v1::{self.bank_id}"
|
||||
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
|
||||
await self.kvstore.set(key=index_key, value=json.dumps(data))
|
||||
|
||||
async def delete(self):
|
||||
if not self.kvstore or not self.bank_id:
|
||||
return
|
||||
|
||||
await self.kvstore.delete(f"faiss_index:v1::{self.bank_id}")
|
||||
await self.kvstore.delete(f"{FAISS_INDEX_PREFIX}{self.bank_id}")
|
||||
|
||||
@tracing.span(name="add_chunks")
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
# Add dimension check
|
||||
embedding_dim = (
|
||||
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
||||
)
|
||||
if embedding_dim != self.index.d:
|
||||
raise ValueError(
|
||||
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
|
||||
)
|
||||
|
||||
indexlen = len(self.id_by_index)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = chunk
|
||||
|
|
@ -124,8 +133,9 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: FaissImplConfig) -> None:
|
||||
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cache = {}
|
||||
self.kvstore = None
|
||||
|
||||
|
|
@ -139,10 +149,11 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
|||
for bank_data in stored_banks:
|
||||
bank = VectorMemoryBank.model_validate_json(bank_data)
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=await FaissIndex.create(
|
||||
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, bank.identifier
|
||||
bank,
|
||||
await FaissIndex.create(
|
||||
bank.embedding_dimension, self.kvstore, bank.identifier
|
||||
),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
|
|
@ -162,17 +173,17 @@ class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
|||
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
|
||||
await self.kvstore.set(
|
||||
key=key,
|
||||
value=memory_bank.json(),
|
||||
value=memory_bank.model_dump_json(),
|
||||
)
|
||||
|
||||
# Store in cache
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=await FaissIndex.create(
|
||||
ALL_MINILM_L6_V2_DIMENSION, self.kvstore, memory_bank.identifier
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank,
|
||||
await FaissIndex.create(
|
||||
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier
|
||||
),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import Optional
|
||||
from typing import List, Optional
|
||||
|
||||
from .config import LogFormat
|
||||
|
||||
|
|
@ -49,8 +49,27 @@ class ConsoleTelemetryImpl(Telemetry):
|
|||
if formatted:
|
||||
print(formatted)
|
||||
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
raise NotImplementedError()
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_conditions: Optional[List[QueryCondition]] = None,
|
||||
attribute_keys_to_return: Optional[List[str]] = None,
|
||||
limit: Optional[int] = 100,
|
||||
offset: Optional[int] = 0,
|
||||
order_by: Optional[List[str]] = None,
|
||||
) -> List[Trace]:
|
||||
raise NotImplementedError("Console telemetry does not support trace querying")
|
||||
|
||||
async def get_spans(
|
||||
self,
|
||||
span_id: str,
|
||||
attribute_conditions: Optional[List[QueryCondition]] = None,
|
||||
attribute_keys_to_return: Optional[List[str]] = None,
|
||||
max_depth: Optional[int] = None,
|
||||
limit: Optional[int] = 100,
|
||||
offset: Optional[int] = 0,
|
||||
order_by: Optional[List[str]] = None,
|
||||
) -> SpanWithChildren:
|
||||
raise NotImplementedError("Console telemetry does not support span querying")
|
||||
|
||||
|
||||
COLORS = {
|
||||
|
|
|
|||
|
|
@ -22,5 +22,6 @@ async def get_provider_impl(
|
|||
impl = TorchtunePostTrainingImpl(
|
||||
config,
|
||||
deps[Api.datasetio],
|
||||
deps[Api.datasets],
|
||||
)
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -10,49 +10,130 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Callable, Dict
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import torch
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.common.type_system import * # noqa
|
||||
from llama_models.datatypes import Model
|
||||
from llama_models.sku_list import resolve_model
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
|
||||
from torchtune.models.llama3 import llama3_tokenizer, lora_llama3_8b
|
||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
||||
|
||||
LORA_MODEL_TYPES: Dict[str, Any] = {
|
||||
"Llama3.2-3B-Instruct": lora_llama3_2_3b,
|
||||
"Llama-3-8B-Instruct": lora_llama3_8b,
|
||||
|
||||
class ColumnName(Enum):
|
||||
instruction = "instruction"
|
||||
input = "input"
|
||||
output = "output"
|
||||
text = "text"
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
model_definition: Any
|
||||
tokenizer_type: Any
|
||||
checkpoint_type: str
|
||||
|
||||
|
||||
class DatasetSchema(BaseModel):
|
||||
alpaca: List[Dict[str, ParamType]]
|
||||
|
||||
|
||||
MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||
"Llama3.2-3B-Instruct": ModelConfig(
|
||||
model_definition=lora_llama3_2_3b,
|
||||
tokenizer_type=llama3_tokenizer,
|
||||
checkpoint_type="LLAMA3_2",
|
||||
),
|
||||
"Llama-3-8B-Instruct": ModelConfig(
|
||||
model_definition=lora_llama3_8b,
|
||||
tokenizer_type=llama3_tokenizer,
|
||||
checkpoint_type="LLAMA3",
|
||||
),
|
||||
}
|
||||
|
||||
TOKENIZER_TYPES: Dict[str, Any] = {
|
||||
"Llama3.2-3B-Instruct": llama3_tokenizer,
|
||||
"Llama-3-8B-Instruct": llama3_tokenizer,
|
||||
}
|
||||
|
||||
CHECKPOINT_MODEL_TYPES: Dict[str, str] = {
|
||||
"Llama3.2-3B-Instruct": "LLAMA3_2",
|
||||
}
|
||||
EXPECTED_DATASET_SCHEMA = DatasetSchema(
|
||||
alpaca=[
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
ColumnName.text.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
||||
|
||||
def get_model_type(
|
||||
def _validate_model_id(model_id: str) -> Model:
|
||||
model = resolve_model(model_id)
|
||||
if model is None or model.core_model_id.value not in MODEL_CONFIGS:
|
||||
raise ValueError(f"Model {model_id} is not supported.")
|
||||
return model
|
||||
|
||||
|
||||
async def get_model_definition(
|
||||
model_id: str,
|
||||
) -> BuildLoraModelCallable:
|
||||
model = resolve_model(model_id)
|
||||
return LORA_MODEL_TYPES[model.core_model_id.value]
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "model_definition"):
|
||||
raise ValueError(f"Model {model_id} does not have model definition.")
|
||||
return model_config.model_definition
|
||||
|
||||
|
||||
def get_tokenizer_type(
|
||||
async def get_tokenizer_type(
|
||||
model_id: str,
|
||||
) -> BuildTokenizerCallable:
|
||||
model = resolve_model(model_id)
|
||||
return TOKENIZER_TYPES[model.core_model_id.value]
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "tokenizer_type"):
|
||||
raise ValueError(f"Model {model_id} does not have tokenizer_type.")
|
||||
return model_config.tokenizer_type
|
||||
|
||||
|
||||
def get_checkpointer_model_type(
|
||||
async def get_checkpointer_model_type(
|
||||
model_id: str,
|
||||
) -> str:
|
||||
model = resolve_model(model_id)
|
||||
return CHECKPOINT_MODEL_TYPES[model.core_model_id.value]
|
||||
"""
|
||||
checkpointer model type is used in checkpointer for some special treatment on some specific model types
|
||||
For example, llama3.2 model tied weights (https://github.com/pytorch/torchtune/blob/main/torchtune/training/checkpointing/_checkpointer.py#L1041)
|
||||
"""
|
||||
model = _validate_model_id(model_id)
|
||||
model_config = MODEL_CONFIGS[model.core_model_id.value]
|
||||
if not hasattr(model_config, "checkpoint_type"):
|
||||
raise ValueError(f"Model {model_id} does not have checkpoint_type.")
|
||||
return model_config.checkpoint_type
|
||||
|
||||
|
||||
async def validate_input_dataset_schema(
|
||||
datasets_api: Datasets,
|
||||
dataset_id: str,
|
||||
dataset_type: str,
|
||||
) -> None:
|
||||
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
||||
|
||||
if not hasattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||
|
||||
if dataset_def.dataset_schema not in getattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(
|
||||
f"Dataset {dataset_id} does not have a correct input schema in {getattr(EXPECTED_DATASET_SCHEMA, dataset_type)}"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -15,10 +15,14 @@ from llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetunin
|
|||
|
||||
class TorchtunePostTrainingImpl:
|
||||
def __init__(
|
||||
self, config: TorchtunePostTrainingConfig, datasetio_api: DatasetIO
|
||||
self,
|
||||
config: TorchtunePostTrainingConfig,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets: Datasets,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets
|
||||
|
||||
# TODO: assume sync job, will need jobs API for async scheduling
|
||||
self.jobs_status = {}
|
||||
|
|
@ -33,10 +37,11 @@ class TorchtunePostTrainingImpl:
|
|||
logger_config: Dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[Union[LoraFinetuningConfig, QATFinetuningConfig]],
|
||||
algorithm_config: Optional[AlgorithmConfig],
|
||||
) -> PostTrainingJob:
|
||||
if job_uuid in self.jobs_list:
|
||||
raise ValueError(f"Job {job_uuid} already exists")
|
||||
for job in self.jobs_list:
|
||||
if job_uuid == job.job_uuid:
|
||||
raise ValueError(f"Job {job_uuid} already exists")
|
||||
|
||||
post_training_job = PostTrainingJob(job_uuid=job_uuid)
|
||||
|
||||
|
|
@ -59,6 +64,7 @@ class TorchtunePostTrainingImpl:
|
|||
checkpoint_dir,
|
||||
algorithm_config,
|
||||
self.datasetio_api,
|
||||
self.datasets_api,
|
||||
)
|
||||
|
||||
job_status_response.status = JobStatus.in_progress
|
||||
|
|
|
|||
|
|
@ -75,11 +75,16 @@ class LoraFinetuningSingleDevice:
|
|||
logger_config: Dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[Union[LoraFinetuningConfig, QATFinetuningConfig]],
|
||||
algorithm_config: Optional[AlgorithmConfig],
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
) -> None:
|
||||
self.job_uuid = job_uuid
|
||||
self.training_config = training_config
|
||||
if not isinstance(algorithm_config, LoraFinetuningConfig):
|
||||
raise ValueError(
|
||||
"You need to speicifc LoraFinetuningConfig for LoRA finetuning"
|
||||
)
|
||||
self.algorithm_config = algorithm_config
|
||||
self._device = torchtune_utils.get_device(device="cuda")
|
||||
self._dtype = training.get_dtype(training_config.dtype, device=self._device)
|
||||
|
|
@ -107,7 +112,6 @@ class LoraFinetuningSingleDevice:
|
|||
model = resolve_model(self.model_id)
|
||||
self.checkpoint_dir = model_checkpoint_dir(model)
|
||||
|
||||
# TODO @markchen1015 make it work with get_training_job_artifacts
|
||||
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
|
||||
|
||||
self.seed = training.set_seed(seed=config.torch_seed)
|
||||
|
|
@ -135,6 +139,7 @@ class LoraFinetuningSingleDevice:
|
|||
)
|
||||
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
|
||||
async def load_checkpoint(self):
|
||||
def get_checkpoint_files(checkpoint_dir: str) -> List[str]:
|
||||
|
|
@ -153,7 +158,7 @@ class LoraFinetuningSingleDevice:
|
|||
checkpoint_dir=self.checkpoint_dir,
|
||||
checkpoint_files=get_checkpoint_files(self.checkpoint_dir),
|
||||
output_dir=self._output_dir,
|
||||
model_type=utils.get_checkpointer_model_type(self.model_id),
|
||||
model_type=await utils.get_checkpointer_model_type(self.model_id),
|
||||
)
|
||||
checkpoint_dict = self._checkpointer.load_checkpoint()
|
||||
return checkpoint_dict
|
||||
|
|
@ -241,7 +246,7 @@ class LoraFinetuningSingleDevice:
|
|||
self._use_dora = self.algorithm_config.use_dora or False
|
||||
|
||||
with training.set_default_dtype(self._dtype), self._device:
|
||||
model_type = utils.get_model_type(self.model_id)
|
||||
model_type = await utils.get_model_definition(self.model_id)
|
||||
model = model_type(
|
||||
lora_attn_modules=self._lora_attn_modules,
|
||||
apply_lora_to_mlp=self._apply_lora_to_mlp,
|
||||
|
|
@ -308,7 +313,7 @@ class LoraFinetuningSingleDevice:
|
|||
self,
|
||||
) -> Llama3Tokenizer:
|
||||
tokenizer_path = self.checkpoint_dir + "/tokenizer.model"
|
||||
tokenizer_type = utils.get_tokenizer_type(self.model_id)
|
||||
tokenizer_type = await utils.get_tokenizer_type(self.model_id)
|
||||
return tokenizer_type(path=tokenizer_path)
|
||||
|
||||
async def _setup_optimizer(self, optimizer_config: OptimizerConfig) -> Optimizer:
|
||||
|
|
@ -338,7 +343,13 @@ class LoraFinetuningSingleDevice:
|
|||
rows = all_rows.rows
|
||||
|
||||
# Curretly only support alpaca instruct dataset
|
||||
# TODO @markchen1015 make the message_transform swappable and support more dataset types
|
||||
# TODO @SLR722 make the message_transform swappable and support more dataset types
|
||||
# TODO @SLR722 make the input dataset schema more flexible by exposing column_map
|
||||
await utils.validate_input_dataset_schema(
|
||||
datasets_api=self.datasets_api,
|
||||
dataset_id=dataset_id,
|
||||
dataset_type="alpaca",
|
||||
)
|
||||
ds = SFTDataset(
|
||||
rows,
|
||||
message_transform=AlpacaToMessages(train_on_input=False),
|
||||
|
|
|
|||
5
llama_stack/providers/inline/scoring/__init__.py
Normal file
5
llama_stack/providers/inline/scoring/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -113,7 +113,9 @@ class BasicScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(score_results)
|
||||
agg_results = await scoring_fn.aggregate(
|
||||
score_results, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
|||
|
|
@ -4,12 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
|
||||
from .fn_defs.equality import equality
|
||||
|
||||
|
|
@ -42,8 +42,3 @@ class EqualityScoringFn(BaseScoringFn):
|
|||
return {
|
||||
"score": score,
|
||||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
|
|
|
|||
|
|
@ -5,14 +5,20 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
|
||||
equality = ScoringFn(
|
||||
identifier="basic::equality",
|
||||
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
|
||||
params=None,
|
||||
provider_id="basic",
|
||||
provider_resource_id="equality",
|
||||
return_type=NumberType(),
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -4,9 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
RegexParserScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
MULTILINGUAL_ANSWER_REGEXES = [
|
||||
r"Answer\s*:",
|
||||
|
|
@ -67,5 +70,6 @@ regex_parser_multiple_choice_answer = ScoringFn(
|
|||
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
|
||||
for x in MULTILINGUAL_ANSWER_REGEXES
|
||||
],
|
||||
aggregation_functions=[AggregationFunctionType.accuracy],
|
||||
),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,7 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
ScoringFn,
|
||||
)
|
||||
|
||||
|
||||
subset_of = ScoringFn(
|
||||
|
|
@ -14,4 +18,7 @@ subset_of = ScoringFn(
|
|||
return_type=NumberType(),
|
||||
provider_id="basic",
|
||||
provider_resource_id="subset-of",
|
||||
params=BasicScoringFnParams(
|
||||
aggregation_functions=[AggregationFunctionType.accuracy]
|
||||
),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,11 +5,11 @@
|
|||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams, ScoringFnParamsType
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
|
||||
from .fn_defs.regex_parser_multiple_choice_answer import (
|
||||
regex_parser_multiple_choice_answer,
|
||||
|
|
@ -60,8 +60,3 @@ class RegexParserScoringFn(BaseScoringFn):
|
|||
return {
|
||||
"score": score,
|
||||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
|
|
|
|||
|
|
@ -4,11 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_accuracy
|
||||
|
||||
from .fn_defs.subset_of import subset_of
|
||||
|
||||
|
|
@ -36,8 +36,3 @@ class SubsetOfScoringFn(BaseScoringFn):
|
|||
return {
|
||||
"score": score,
|
||||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
) -> Dict[str, Any]:
|
||||
return aggregate_accuracy(scoring_results)
|
||||
|
|
|
|||
|
|
@ -5,11 +5,17 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import BraintrustScoringConfig
|
||||
|
||||
|
||||
class BraintrustProviderDataValidator(BaseModel):
|
||||
openai_api_key: str
|
||||
|
||||
|
||||
async def get_provider_impl(
|
||||
config: BraintrustScoringConfig,
|
||||
deps: Dict[Api, ProviderSpec],
|
||||
|
|
|
|||
|
|
@ -12,9 +12,12 @@ from llama_stack.apis.common.type_system import * # noqa: F403
|
|||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
from llama_stack.apis.datasets import * # noqa: F403
|
||||
|
||||
# from .scoring_fn.braintrust_scoring_fn import BraintrustScoringFn
|
||||
import os
|
||||
|
||||
from autoevals.llm import Factuality
|
||||
from autoevals.ragas import AnswerCorrectness
|
||||
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_average
|
||||
|
|
@ -24,7 +27,9 @@ from .scoring_fn.fn_defs.answer_correctness import answer_correctness_fn_def
|
|||
from .scoring_fn.fn_defs.factuality import factuality_fn_def
|
||||
|
||||
|
||||
class BraintrustScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
||||
class BraintrustScoringImpl(
|
||||
Scoring, ScoringFunctionsProtocolPrivate, NeedsRequestProviderData
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
config: BraintrustScoringConfig,
|
||||
|
|
@ -79,12 +84,25 @@ class BraintrustScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
f"Dataset {dataset_id} does not have a '{required_column}' column of type 'string'."
|
||||
)
|
||||
|
||||
async def set_api_key(self) -> None:
|
||||
# api key is in the request headers
|
||||
if not self.config.openai_api_key:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.openai_api_key:
|
||||
raise ValueError(
|
||||
'Pass OpenAI API Key in the header X-LlamaStack-ProviderData as { "openai_api_key": <your api key>}'
|
||||
)
|
||||
self.config.openai_api_key = provider_data.openai_api_key
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = self.config.openai_api_key
|
||||
|
||||
async def score_batch(
|
||||
self,
|
||||
dataset_id: str,
|
||||
scoring_functions: List[str],
|
||||
save_results_dataset: bool = False,
|
||||
) -> ScoreBatchResponse:
|
||||
await self.set_api_key()
|
||||
await self.validate_scoring_input_dataset_schema(dataset_id=dataset_id)
|
||||
all_rows = await self.datasetio_api.get_rows_paginated(
|
||||
dataset_id=dataset_id,
|
||||
|
|
@ -105,6 +123,7 @@ class BraintrustScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
async def score_row(
|
||||
self, input_row: Dict[str, Any], scoring_fn_identifier: Optional[str] = None
|
||||
) -> ScoringResultRow:
|
||||
await self.set_api_key()
|
||||
assert scoring_fn_identifier is not None, "scoring_fn_identifier cannot be None"
|
||||
expected_answer = input_row["expected_answer"]
|
||||
generated_answer = input_row["generated_answer"]
|
||||
|
|
@ -118,6 +137,7 @@ class BraintrustScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
async def score(
|
||||
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
||||
) -> ScoreResponse:
|
||||
await self.set_api_key()
|
||||
res = {}
|
||||
for scoring_fn_id in scoring_functions:
|
||||
if scoring_fn_id not in self.supported_fn_defs_registry:
|
||||
|
|
@ -127,7 +147,7 @@ class BraintrustScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
await self.score_row(input_row, scoring_fn_id)
|
||||
for input_row in input_rows
|
||||
]
|
||||
|
||||
aggregation_functions = [AggregationFunctionType.average]
|
||||
agg_results = aggregate_average(score_results)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
|
|
|
|||
|
|
@ -6,4 +6,14 @@
|
|||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
|
||||
|
||||
class BraintrustScoringConfig(BaseModel): ...
|
||||
class BraintrustScoringConfig(BaseModel):
|
||||
openai_api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The OpenAI API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"openai_api_key": "${env.OPENAI_API_KEY:}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ from llama_stack.apis.scoring_functions import ScoringFn
|
|||
|
||||
answer_correctness_fn_def = ScoringFn(
|
||||
identifier="braintrust::answer-correctness",
|
||||
description="Test whether an output is factual, compared to an original (`expected`) value. One of Braintrust LLM basd scorer https://github.com/braintrustdata/autoevals/blob/main/py/autoevals/llm.py",
|
||||
description="Scores the correctness of the answer based on the ground truth.. One of Braintrust LLM basd scorer https://github.com/braintrustdata/autoevals/blob/main/py/autoevals/llm.py",
|
||||
params=None,
|
||||
provider_id="braintrust",
|
||||
provider_resource_id="answer-correctness",
|
||||
|
|
|
|||
|
|
@ -120,7 +120,9 @@ class LlmAsJudgeScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
|
|||
score_results = await scoring_fn.score(
|
||||
input_rows, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
agg_results = await scoring_fn.aggregate(score_results)
|
||||
agg_results = await scoring_fn.aggregate(
|
||||
score_results, scoring_fn_id, scoring_fn_params
|
||||
)
|
||||
res[scoring_fn_id] = ScoringResult(
|
||||
score_rows=score_results,
|
||||
aggregated_results=agg_results,
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.common.type_system import NumberType
|
||||
from llama_stack.apis.scoring_functions import ScoringFn
|
||||
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams, ScoringFn
|
||||
|
||||
|
||||
llm_as_judge_base = ScoringFn(
|
||||
|
|
@ -14,4 +14,8 @@ llm_as_judge_base = ScoringFn(
|
|||
return_type=NumberType(),
|
||||
provider_id="llm-as-judge",
|
||||
provider_resource_id="llm-as-judge-base",
|
||||
params=LLMAsJudgeScoringFnParams(
|
||||
judge_model="meta-llama/Llama-3.1-405B-Instruct",
|
||||
prompt_template="Enter custom LLM as Judge Prompt Template",
|
||||
),
|
||||
)
|
||||
|
|
|
|||
|
|
@ -3,13 +3,16 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import re
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_stack.apis.inference.inference import Inference
|
||||
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
|
||||
from llama_stack.apis.scoring import * # noqa: F401, F403
|
||||
from llama_stack.apis.common.type_system import * # noqa: F403
|
||||
import re
|
||||
|
||||
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
|
||||
|
||||
|
|
@ -85,9 +88,3 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
|
|||
"score": judge_rating,
|
||||
"judge_feedback": content,
|
||||
}
|
||||
|
||||
async def aggregate(
|
||||
self, scoring_results: List[ScoringResultRow]
|
||||
) -> Dict[str, Any]:
|
||||
# TODO: this needs to be config based aggregation, and only useful w/ Jobs API
|
||||
return {}
|
||||
|
|
|
|||
5
llama_stack/providers/inline/telemetry/__init__.py
Normal file
5
llama_stack/providers/inline/telemetry/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from .config import TelemetryConfig, TelemetrySink
|
||||
|
||||
__all__ = ["TelemetryConfig", "TelemetrySink"]
|
||||
|
||||
|
||||
async def get_provider_impl(config: TelemetryConfig, deps: Dict[str, Any]):
|
||||
from .telemetry import TelemetryAdapter
|
||||
|
||||
impl = TelemetryAdapter(config, deps)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
|
||||
|
||||
class TelemetrySink(str, Enum):
|
||||
OTEL = "otel"
|
||||
SQLITE = "sqlite"
|
||||
CONSOLE = "console"
|
||||
|
||||
|
||||
class TelemetryConfig(BaseModel):
|
||||
otel_endpoint: str = Field(
|
||||
default="http://localhost:4318/v1/traces",
|
||||
description="The OpenTelemetry collector endpoint URL",
|
||||
)
|
||||
service_name: str = Field(
|
||||
default="llama-stack",
|
||||
description="The service name to use for telemetry",
|
||||
)
|
||||
sinks: List[TelemetrySink] = Field(
|
||||
default=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
|
||||
description="List of telemetry sinks to enable (possible values: otel, sqlite, console)",
|
||||
)
|
||||
sqlite_db_path: str = Field(
|
||||
default=(RUNTIME_BASE_DIR / "trace_store.db").as_posix(),
|
||||
description="The path to the SQLite database to use for storing traces",
|
||||
)
|
||||
|
||||
@field_validator("sinks", mode="before")
|
||||
@classmethod
|
||||
def validate_sinks(cls, v):
|
||||
if isinstance(v, str):
|
||||
return [TelemetrySink(sink.strip()) for sink in v.split(",")]
|
||||
return v
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls, __distro_dir__: str = "runtime", db_name: str = "trace_store.db"
|
||||
) -> Dict[str, Any]:
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:llama-stack}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:console,sqlite}",
|
||||
"sqlite_db_path": "${env.SQLITE_DB_PATH:~/.llama/"
|
||||
+ __distro_dir__
|
||||
+ "/"
|
||||
+ db_name
|
||||
+ "}",
|
||||
}
|
||||
|
|
@ -0,0 +1,117 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from datetime import datetime
|
||||
|
||||
from opentelemetry.sdk.trace import ReadableSpan
|
||||
from opentelemetry.sdk.trace.export import SpanProcessor
|
||||
from opentelemetry.trace.status import StatusCode
|
||||
|
||||
# Colors for console output
|
||||
COLORS = {
|
||||
"reset": "\033[0m",
|
||||
"bold": "\033[1m",
|
||||
"dim": "\033[2m",
|
||||
"red": "\033[31m",
|
||||
"green": "\033[32m",
|
||||
"yellow": "\033[33m",
|
||||
"blue": "\033[34m",
|
||||
"magenta": "\033[35m",
|
||||
"cyan": "\033[36m",
|
||||
"white": "\033[37m",
|
||||
}
|
||||
|
||||
|
||||
class ConsoleSpanProcessor(SpanProcessor):
|
||||
|
||||
def __init__(self, print_attributes: bool = False):
|
||||
self.print_attributes = print_attributes
|
||||
|
||||
def on_start(self, span: ReadableSpan, parent_context=None) -> None:
|
||||
if span.attributes and span.attributes.get("__autotraced__"):
|
||||
return
|
||||
|
||||
timestamp = datetime.utcfromtimestamp(span.start_time / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
|
||||
print(
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
f"{COLORS['magenta']}[START]{COLORS['reset']} "
|
||||
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
|
||||
)
|
||||
|
||||
def on_end(self, span: ReadableSpan) -> None:
|
||||
if span.attributes and span.attributes.get("__autotraced__"):
|
||||
return
|
||||
|
||||
timestamp = datetime.utcfromtimestamp(span.end_time / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
|
||||
span_context = (
|
||||
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
|
||||
f"{COLORS['magenta']}[END]{COLORS['reset']} "
|
||||
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
|
||||
)
|
||||
|
||||
if span.status.status_code == StatusCode.ERROR:
|
||||
span_context += f"{COLORS['reset']} {COLORS['red']}[ERROR]{COLORS['reset']}"
|
||||
elif span.status.status_code != StatusCode.UNSET:
|
||||
span_context += f"{COLORS['reset']} [{span.status.status_code}]"
|
||||
|
||||
duration_ms = (span.end_time - span.start_time) / 1e6
|
||||
span_context += f"{COLORS['reset']} ({duration_ms:.2f}ms)"
|
||||
|
||||
print(span_context)
|
||||
|
||||
if self.print_attributes and span.attributes:
|
||||
for key, value in span.attributes.items():
|
||||
if key.startswith("__"):
|
||||
continue
|
||||
str_value = str(value)
|
||||
if len(str_value) > 1000:
|
||||
str_value = str_value[:997] + "..."
|
||||
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
|
||||
|
||||
for event in span.events:
|
||||
event_time = datetime.utcfromtimestamp(event.timestamp / 1e9).strftime(
|
||||
"%H:%M:%S.%f"
|
||||
)[:-3]
|
||||
|
||||
severity = event.attributes.get("severity", "info")
|
||||
message = event.attributes.get("message", event.name)
|
||||
if isinstance(message, (dict, list)):
|
||||
message = json.dumps(message, indent=2)
|
||||
|
||||
severity_colors = {
|
||||
"error": f"{COLORS['bold']}{COLORS['red']}",
|
||||
"warn": f"{COLORS['bold']}{COLORS['yellow']}",
|
||||
"info": COLORS["white"],
|
||||
"debug": COLORS["dim"],
|
||||
}
|
||||
msg_color = severity_colors.get(severity, COLORS["white"])
|
||||
|
||||
print(
|
||||
f" {event_time} "
|
||||
f"{msg_color}[{severity.upper()}] "
|
||||
f"{message}{COLORS['reset']}"
|
||||
)
|
||||
|
||||
if event.attributes:
|
||||
for key, value in event.attributes.items():
|
||||
if key.startswith("__") or key in ["message", "severity"]:
|
||||
continue
|
||||
print(f" {COLORS['dim']}{key}: {value}{COLORS['reset']}")
|
||||
|
||||
def shutdown(self) -> None:
|
||||
"""Shutdown the processor."""
|
||||
pass
|
||||
|
||||
def force_flush(self, timeout_millis: float = None) -> bool:
|
||||
"""Force flush any pending spans."""
|
||||
return True
|
||||
|
|
@ -0,0 +1,177 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sqlite3
|
||||
from datetime import datetime
|
||||
|
||||
from opentelemetry.sdk.trace import SpanProcessor
|
||||
from opentelemetry.trace import Span
|
||||
|
||||
|
||||
class SQLiteSpanProcessor(SpanProcessor):
|
||||
def __init__(self, conn_string):
|
||||
"""Initialize the SQLite span processor with a connection string."""
|
||||
self.conn_string = conn_string
|
||||
self.conn = None
|
||||
self.setup_database()
|
||||
|
||||
def _get_connection(self) -> sqlite3.Connection:
|
||||
"""Get the database connection."""
|
||||
if self.conn is None:
|
||||
self.conn = sqlite3.connect(self.conn_string, check_same_thread=False)
|
||||
return self.conn
|
||||
|
||||
def setup_database(self):
|
||||
"""Create the necessary tables if they don't exist."""
|
||||
# Create directory if it doesn't exist
|
||||
os.makedirs(os.path.dirname(self.conn_string), exist_ok=True)
|
||||
|
||||
conn = self._get_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS traces (
|
||||
trace_id TEXT PRIMARY KEY,
|
||||
service_name TEXT,
|
||||
root_span_id TEXT,
|
||||
start_time TIMESTAMP,
|
||||
end_time TIMESTAMP,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS spans (
|
||||
span_id TEXT PRIMARY KEY,
|
||||
trace_id TEXT REFERENCES traces(trace_id),
|
||||
parent_span_id TEXT,
|
||||
name TEXT,
|
||||
start_time TIMESTAMP,
|
||||
end_time TIMESTAMP,
|
||||
attributes TEXT,
|
||||
status TEXT,
|
||||
kind TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS span_events (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
span_id TEXT REFERENCES spans(span_id),
|
||||
name TEXT,
|
||||
timestamp TIMESTAMP,
|
||||
attributes TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE INDEX IF NOT EXISTS idx_traces_created_at
|
||||
ON traces(created_at)
|
||||
"""
|
||||
)
|
||||
|
||||
conn.commit()
|
||||
cursor.close()
|
||||
|
||||
def on_start(self, span: Span, parent_context=None):
|
||||
"""Called when a span starts."""
|
||||
pass
|
||||
|
||||
def on_end(self, span: Span):
|
||||
"""Called when a span ends. Export the span data to SQLite."""
|
||||
try:
|
||||
conn = self._get_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
trace_id = format(span.get_span_context().trace_id, "032x")
|
||||
span_id = format(span.get_span_context().span_id, "016x")
|
||||
service_name = span.resource.attributes.get("service.name", "unknown")
|
||||
|
||||
parent_span_id = None
|
||||
parent_context = span.parent
|
||||
if parent_context:
|
||||
parent_span_id = format(parent_context.span_id, "016x")
|
||||
|
||||
# Insert into traces
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO traces (
|
||||
trace_id, service_name, root_span_id, start_time, end_time
|
||||
) VALUES (?, ?, ?, ?, ?)
|
||||
ON CONFLICT(trace_id) DO UPDATE SET
|
||||
root_span_id = COALESCE(root_span_id, excluded.root_span_id),
|
||||
start_time = MIN(excluded.start_time, start_time),
|
||||
end_time = MAX(excluded.end_time, end_time)
|
||||
""",
|
||||
(
|
||||
trace_id,
|
||||
service_name,
|
||||
(span_id if not parent_span_id else None),
|
||||
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
|
||||
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
|
||||
),
|
||||
)
|
||||
|
||||
# Insert into spans
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO spans (
|
||||
span_id, trace_id, parent_span_id, name,
|
||||
start_time, end_time, attributes, status,
|
||||
kind
|
||||
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||
""",
|
||||
(
|
||||
span_id,
|
||||
trace_id,
|
||||
parent_span_id,
|
||||
span.name,
|
||||
datetime.fromtimestamp(span.start_time / 1e9).isoformat(),
|
||||
datetime.fromtimestamp(span.end_time / 1e9).isoformat(),
|
||||
json.dumps(dict(span.attributes)),
|
||||
span.status.status_code.name,
|
||||
span.kind.name,
|
||||
),
|
||||
)
|
||||
|
||||
for event in span.events:
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO span_events (
|
||||
span_id, name, timestamp, attributes
|
||||
) VALUES (?, ?, ?, ?)
|
||||
""",
|
||||
(
|
||||
span_id,
|
||||
event.name,
|
||||
datetime.fromtimestamp(event.timestamp / 1e9).isoformat(),
|
||||
json.dumps(dict(event.attributes)),
|
||||
),
|
||||
)
|
||||
|
||||
conn.commit()
|
||||
cursor.close()
|
||||
except Exception as e:
|
||||
print(f"Error exporting span to SQLite: {e}")
|
||||
|
||||
def shutdown(self):
|
||||
"""Cleanup any resources."""
|
||||
if self.conn:
|
||||
self.conn.close()
|
||||
self.conn = None
|
||||
|
||||
def force_flush(self, timeout_millis=30000):
|
||||
"""Force export of spans."""
|
||||
pass
|
||||
|
|
@ -0,0 +1,251 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import threading
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from opentelemetry import metrics, trace
|
||||
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
from opentelemetry.semconv.resource import ResourceAttributes
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.console_span_processor import (
|
||||
ConsoleSpanProcessor,
|
||||
)
|
||||
|
||||
from llama_stack.providers.inline.telemetry.meta_reference.sqlite_span_processor import (
|
||||
SQLiteSpanProcessor,
|
||||
)
|
||||
from llama_stack.providers.utils.telemetry.dataset_mixin import TelemetryDatasetMixin
|
||||
from llama_stack.providers.utils.telemetry.sqlite_trace_store import SQLiteTraceStore
|
||||
|
||||
from llama_stack.apis.telemetry import * # noqa: F403
|
||||
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
|
||||
from .config import TelemetryConfig, TelemetrySink
|
||||
|
||||
_GLOBAL_STORAGE = {
|
||||
"active_spans": {},
|
||||
"counters": {},
|
||||
"gauges": {},
|
||||
"up_down_counters": {},
|
||||
}
|
||||
_global_lock = threading.Lock()
|
||||
|
||||
|
||||
def string_to_trace_id(s: str) -> int:
|
||||
# Convert the string to bytes and then to an integer
|
||||
return int.from_bytes(s.encode(), byteorder="big", signed=False)
|
||||
|
||||
|
||||
def string_to_span_id(s: str) -> int:
|
||||
# Use only the first 8 bytes (64 bits) for span ID
|
||||
return int.from_bytes(s.encode()[:8], byteorder="big", signed=False)
|
||||
|
||||
|
||||
def is_tracing_enabled(tracer):
|
||||
with tracer.start_as_current_span("check_tracing") as span:
|
||||
return span.is_recording()
|
||||
|
||||
|
||||
class TelemetryAdapter(TelemetryDatasetMixin, Telemetry):
|
||||
def __init__(self, config: TelemetryConfig, deps: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
self.datasetio_api = deps[Api.datasetio]
|
||||
|
||||
resource = Resource.create(
|
||||
{
|
||||
ResourceAttributes.SERVICE_NAME: self.config.service_name,
|
||||
}
|
||||
)
|
||||
|
||||
provider = TracerProvider(resource=resource)
|
||||
trace.set_tracer_provider(provider)
|
||||
if TelemetrySink.OTEL in self.config.sinks:
|
||||
otlp_exporter = OTLPSpanExporter(
|
||||
endpoint=self.config.otel_endpoint,
|
||||
)
|
||||
span_processor = BatchSpanProcessor(otlp_exporter)
|
||||
trace.get_tracer_provider().add_span_processor(span_processor)
|
||||
metric_reader = PeriodicExportingMetricReader(
|
||||
OTLPMetricExporter(
|
||||
endpoint=self.config.otel_endpoint,
|
||||
)
|
||||
)
|
||||
metric_provider = MeterProvider(
|
||||
resource=resource, metric_readers=[metric_reader]
|
||||
)
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
if TelemetrySink.SQLITE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(
|
||||
SQLiteSpanProcessor(self.config.sqlite_db_path)
|
||||
)
|
||||
self.trace_store = SQLiteTraceStore(self.config.sqlite_db_path)
|
||||
if TelemetrySink.CONSOLE in self.config.sinks:
|
||||
trace.get_tracer_provider().add_span_processor(ConsoleSpanProcessor())
|
||||
self._lock = _global_lock
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
trace.get_tracer_provider().force_flush()
|
||||
trace.get_tracer_provider().shutdown()
|
||||
metrics.get_meter_provider().shutdown()
|
||||
|
||||
async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None:
|
||||
if isinstance(event, UnstructuredLogEvent):
|
||||
self._log_unstructured(event, ttl_seconds)
|
||||
elif isinstance(event, MetricEvent):
|
||||
self._log_metric(event)
|
||||
elif isinstance(event, StructuredLogEvent):
|
||||
self._log_structured(event, ttl_seconds)
|
||||
else:
|
||||
raise ValueError(f"Unknown event type: {event}")
|
||||
|
||||
def _log_unstructured(self, event: UnstructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
# Use global storage instead of instance storage
|
||||
span_id = string_to_span_id(event.span_id)
|
||||
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
|
||||
|
||||
if span:
|
||||
timestamp_ns = int(event.timestamp.timestamp() * 1e9)
|
||||
span.add_event(
|
||||
name=event.type,
|
||||
attributes={
|
||||
"message": event.message,
|
||||
"severity": event.severity.value,
|
||||
"__ttl__": ttl_seconds,
|
||||
**event.attributes,
|
||||
},
|
||||
timestamp=timestamp_ns,
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"Warning: No active span found for span_id {span_id}. Dropping event: {event}"
|
||||
)
|
||||
|
||||
def _get_or_create_counter(self, name: str, unit: str) -> metrics.Counter:
|
||||
if name not in _GLOBAL_STORAGE["counters"]:
|
||||
_GLOBAL_STORAGE["counters"][name] = self.meter.create_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"Counter for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["counters"][name]
|
||||
|
||||
def _get_or_create_gauge(self, name: str, unit: str) -> metrics.ObservableGauge:
|
||||
if name not in _GLOBAL_STORAGE["gauges"]:
|
||||
_GLOBAL_STORAGE["gauges"][name] = self.meter.create_gauge(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"Gauge for {name}",
|
||||
)
|
||||
return _GLOBAL_STORAGE["gauges"][name]
|
||||
|
||||
def _log_metric(self, event: MetricEvent) -> None:
|
||||
if isinstance(event.value, int):
|
||||
counter = self._get_or_create_counter(event.metric, event.unit)
|
||||
counter.add(event.value, attributes=event.attributes)
|
||||
elif isinstance(event.value, float):
|
||||
up_down_counter = self._get_or_create_up_down_counter(
|
||||
event.metric, event.unit
|
||||
)
|
||||
up_down_counter.add(event.value, attributes=event.attributes)
|
||||
|
||||
def _get_or_create_up_down_counter(
|
||||
self, name: str, unit: str
|
||||
) -> metrics.UpDownCounter:
|
||||
if name not in _GLOBAL_STORAGE["up_down_counters"]:
|
||||
_GLOBAL_STORAGE["up_down_counters"][name] = (
|
||||
self.meter.create_up_down_counter(
|
||||
name=name,
|
||||
unit=unit,
|
||||
description=f"UpDownCounter for {name}",
|
||||
)
|
||||
)
|
||||
return _GLOBAL_STORAGE["up_down_counters"][name]
|
||||
|
||||
def _log_structured(self, event: StructuredLogEvent, ttl_seconds: int) -> None:
|
||||
with self._lock:
|
||||
span_id = string_to_span_id(event.span_id)
|
||||
trace_id = string_to_trace_id(event.trace_id)
|
||||
tracer = trace.get_tracer(__name__)
|
||||
if event.attributes is None:
|
||||
event.attributes = {}
|
||||
event.attributes["__ttl__"] = ttl_seconds
|
||||
|
||||
if isinstance(event.payload, SpanStartPayload):
|
||||
# Check if span already exists to prevent duplicates
|
||||
if span_id in _GLOBAL_STORAGE["active_spans"]:
|
||||
return
|
||||
|
||||
parent_span = None
|
||||
if event.payload.parent_span_id:
|
||||
parent_span_id = string_to_span_id(event.payload.parent_span_id)
|
||||
parent_span = _GLOBAL_STORAGE["active_spans"].get(parent_span_id)
|
||||
|
||||
context = trace.Context(trace_id=trace_id)
|
||||
if parent_span:
|
||||
context = trace.set_span_in_context(parent_span, context)
|
||||
|
||||
span = tracer.start_span(
|
||||
name=event.payload.name,
|
||||
context=context,
|
||||
attributes=event.attributes or {},
|
||||
)
|
||||
_GLOBAL_STORAGE["active_spans"][span_id] = span
|
||||
|
||||
elif isinstance(event.payload, SpanEndPayload):
|
||||
span = _GLOBAL_STORAGE["active_spans"].get(span_id)
|
||||
if span:
|
||||
if event.attributes:
|
||||
span.set_attributes(event.attributes)
|
||||
|
||||
status = (
|
||||
trace.Status(status_code=trace.StatusCode.OK)
|
||||
if event.payload.status == SpanStatus.OK
|
||||
else trace.Status(status_code=trace.StatusCode.ERROR)
|
||||
)
|
||||
span.set_status(status)
|
||||
span.end()
|
||||
_GLOBAL_STORAGE["active_spans"].pop(span_id, None)
|
||||
else:
|
||||
raise ValueError(f"Unknown structured log event: {event}")
|
||||
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_filters: Optional[List[QueryCondition]] = None,
|
||||
limit: Optional[int] = 100,
|
||||
offset: Optional[int] = 0,
|
||||
order_by: Optional[List[str]] = None,
|
||||
) -> List[Trace]:
|
||||
return await self.trace_store.query_traces(
|
||||
attribute_filters=attribute_filters,
|
||||
limit=limit,
|
||||
offset=offset,
|
||||
order_by=order_by,
|
||||
)
|
||||
|
||||
async def get_span_tree(
|
||||
self,
|
||||
span_id: str,
|
||||
attributes_to_return: Optional[List[str]] = None,
|
||||
max_depth: Optional[int] = None,
|
||||
) -> SpanWithChildren:
|
||||
return await self.trace_store.get_span_tree(
|
||||
span_id=span_id,
|
||||
attributes_to_return=attributes_to_return,
|
||||
max_depth=max_depth,
|
||||
)
|
||||
|
|
@ -18,6 +18,7 @@ META_REFERENCE_DEPS = [
|
|||
"transformers",
|
||||
"zmq",
|
||||
"lm-format-enforcer",
|
||||
"sentence-transformers",
|
||||
]
|
||||
|
||||
|
||||
|
|
@ -52,6 +53,13 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.inline.inference.vllm",
|
||||
config_class="llama_stack.providers.inline.inference.vllm.VLLMConfig",
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="inline::sentence-transformers",
|
||||
pip_packages=["sentence-transformers"],
|
||||
module="llama_stack.providers.inline.inference.sentence_transformers",
|
||||
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
@ -61,6 +69,17 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.remote.inference.sample.SampleConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="cerebras",
|
||||
pip_packages=[
|
||||
"cerebras_cloud_sdk",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.cerebras",
|
||||
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
|
|
@ -150,4 +169,15 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.nvidia",
|
||||
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -39,6 +39,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.inline.memory.faiss",
|
||||
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
|
||||
deprecation_warning="Please use the `inline::faiss` provider instead.",
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.memory,
|
||||
|
|
@ -46,6 +47,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
pip_packages=EMBEDDING_DEPS + ["faiss-cpu"],
|
||||
module="llama_stack.providers.inline.memory.faiss",
|
||||
config_class="llama_stack.providers.inline.memory.faiss.FaissImplConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.memory,
|
||||
|
|
@ -53,8 +55,16 @@ def available_providers() -> List[ProviderSpec]:
|
|||
adapter_type="chromadb",
|
||||
pip_packages=EMBEDDING_DEPS + ["chromadb-client"],
|
||||
module="llama_stack.providers.remote.memory.chroma",
|
||||
config_class="llama_stack.distribution.datatypes.RemoteProviderConfig",
|
||||
config_class="llama_stack.providers.remote.memory.chroma.ChromaRemoteImplConfig",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.memory,
|
||||
provider_type="inline::chromadb",
|
||||
pip_packages=EMBEDDING_DEPS + ["chromadb"],
|
||||
module="llama_stack.providers.inline.memory.chroma",
|
||||
config_class="llama_stack.providers.inline.memory.chroma.ChromaInlineImplConfig",
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.memory,
|
||||
|
|
@ -64,6 +74,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.remote.memory.pgvector",
|
||||
config_class="llama_stack.providers.remote.memory.pgvector.PGVectorConfig",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.memory,
|
||||
|
|
@ -74,6 +85,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.remote.memory.weaviate.WeaviateConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.memory.weaviate.WeaviateRequestProviderData",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.memory,
|
||||
|
|
@ -83,6 +95,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.remote.memory.sample",
|
||||
config_class="llama_stack.providers.remote.memory.sample.SampleConfig",
|
||||
),
|
||||
api_dependencies=[],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.memory,
|
||||
|
|
@ -92,5 +105,6 @@ def available_providers() -> List[ProviderSpec]:
|
|||
module="llama_stack.providers.remote.memory.qdrant",
|
||||
config_class="llama_stack.providers.remote.memory.qdrant.QdrantConfig",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.inline.post_training.torchtune.TorchtunePostTrainingConfig",
|
||||
api_dependencies=[
|
||||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -44,5 +44,6 @@ def available_providers() -> List[ProviderSpec]:
|
|||
Api.datasetio,
|
||||
Api.datasets,
|
||||
],
|
||||
provider_data_validator="llama_stack.providers.inline.scoring.braintrust.BraintrustProviderDataValidator",
|
||||
),
|
||||
]
|
||||
|
|
|
|||
|
|
@ -14,9 +14,13 @@ def available_providers() -> List[ProviderSpec]:
|
|||
InlineProviderSpec(
|
||||
api=Api.telemetry,
|
||||
provider_type="inline::meta-reference",
|
||||
pip_packages=[],
|
||||
module="llama_stack.providers.inline.meta_reference.telemetry",
|
||||
config_class="llama_stack.providers.inline.meta_reference.telemetry.ConsoleConfig",
|
||||
pip_packages=[
|
||||
"opentelemetry-sdk",
|
||||
"opentelemetry-exporter-otlp-proto-http",
|
||||
],
|
||||
api_dependencies=[Api.datasetio],
|
||||
module="llama_stack.providers.inline.telemetry.meta_reference",
|
||||
config_class="llama_stack.providers.inline.telemetry.meta_reference.config.TelemetryConfig",
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.telemetry,
|
||||
|
|
@ -27,18 +31,4 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.remote.telemetry.sample.SampleConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.telemetry,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="opentelemetry-jaeger",
|
||||
pip_packages=[
|
||||
"opentelemetry-api",
|
||||
"opentelemetry-sdk",
|
||||
"opentelemetry-exporter-jaeger",
|
||||
"opentelemetry-semantic-conventions",
|
||||
],
|
||||
module="llama_stack.providers.remote.telemetry.opentelemetry",
|
||||
config_class="llama_stack.providers.remote.telemetry.opentelemetry.OpenTelemetryConfig",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
|||
5
llama_stack/providers/remote/datasetio/__init__.py
Normal file
5
llama_stack/providers/remote/datasetio/__init__.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
|
@ -3,12 +3,13 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.utils.config_dirs import RUNTIME_BASE_DIR
|
||||
from llama_stack.providers.utils.kvstore.config import (
|
||||
KVStoreConfig,
|
||||
SqliteKVStoreConfig,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class HuggingfaceDatasetIOConfig(BaseModel):
|
||||
|
|
|
|||
|
|
@ -3,12 +3,13 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
|
||||
|
||||
import datasets as hf_datasets
|
||||
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||
|
|
@ -20,14 +21,19 @@ DATASETS_PREFIX = "datasets:"
|
|||
|
||||
def load_hf_dataset(dataset_def: Dataset):
|
||||
if dataset_def.metadata.get("path", None):
|
||||
return hf_datasets.load_dataset(**dataset_def.metadata)
|
||||
dataset = hf_datasets.load_dataset(**dataset_def.metadata)
|
||||
else:
|
||||
df = get_dataframe_from_url(dataset_def.url)
|
||||
|
||||
df = get_dataframe_from_url(dataset_def.url)
|
||||
if df is None:
|
||||
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
|
||||
|
||||
if df is None:
|
||||
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
|
||||
dataset = hf_datasets.Dataset.from_pandas(df)
|
||||
|
||||
# drop columns not specified by schema
|
||||
if dataset_def.dataset_schema:
|
||||
dataset = dataset.select_columns(list(dataset_def.dataset_schema.keys()))
|
||||
|
||||
dataset = hf_datasets.Dataset.from_pandas(df)
|
||||
return dataset
|
||||
|
||||
|
||||
|
|
@ -63,6 +69,11 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
)
|
||||
self.dataset_infos[dataset_def.identifier] = dataset_def
|
||||
|
||||
async def unregister_dataset(self, dataset_id: str) -> None:
|
||||
key = f"{DATASETS_PREFIX}{dataset_id}"
|
||||
await self.kvstore.delete(key=key)
|
||||
del self.dataset_infos[dataset_id]
|
||||
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
@ -94,3 +105,22 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
total_count=len(rows),
|
||||
next_page_token=str(end),
|
||||
)
|
||||
|
||||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
loaded_dataset = load_hf_dataset(dataset_def)
|
||||
|
||||
# Convert rows to HF Dataset format
|
||||
new_dataset = hf_datasets.Dataset.from_list(rows)
|
||||
|
||||
# Concatenate the new rows with existing dataset
|
||||
updated_dataset = hf_datasets.concatenate_datasets(
|
||||
[loaded_dataset, new_dataset]
|
||||
)
|
||||
|
||||
if dataset_def.metadata.get("path", None):
|
||||
updated_dataset.push_to_hub(dataset_def.metadata["path"])
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Uploading to URL-based datasets is not supported yet"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from typing import * # noqa: F403
|
||||
import json
|
||||
|
||||
from botocore.client import BaseClient
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
|
@ -19,8 +20,10 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
||||
|
||||
|
||||
model_aliases = [
|
||||
|
|
@ -448,4 +451,21 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embeddings = []
|
||||
for content in contents:
|
||||
assert not content_has_media(
|
||||
content
|
||||
), "Bedrock does not support media for embeddings"
|
||||
input_text = interleaved_text_media_as_str(content)
|
||||
input_body = {"inputText": input_text}
|
||||
body = json.dumps(input_body)
|
||||
response = self.client.invoke_model(
|
||||
body=body,
|
||||
modelId=model.provider_resource_id,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
response_body = json.loads(response.get("body").read())
|
||||
embeddings.append(response_body.get("embedding"))
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
21
llama_stack/providers/remote/inference/cerebras/__init__.py
Normal file
21
llama_stack/providers/remote/inference/cerebras/__init__.py
Normal file
|
|
@ -0,0 +1,21 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import CerebrasImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: CerebrasImplConfig, _deps):
|
||||
from .cerebras import CerebrasInferenceAdapter
|
||||
|
||||
assert isinstance(
|
||||
config, CerebrasImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = CerebrasInferenceAdapter(config)
|
||||
|
||||
await impl.initialize()
|
||||
|
||||
return impl
|
||||
191
llama_stack/providers/remote/inference/cerebras/cerebras.py
Normal file
191
llama_stack/providers/remote/inference/cerebras/cerebras.py
Normal file
|
|
@ -0,0 +1,191 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
)
|
||||
|
||||
from .config import CerebrasImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
build_model_alias(
|
||||
"llama3.1-8b",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.1-70b",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
def __init__(self, config: CerebrasImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=model_aliases,
|
||||
)
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
self.client = AsyncCerebras(
|
||||
base_url=self.config.base_url, api_key=self.config.api_key
|
||||
)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(
|
||||
request,
|
||||
)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
params = self._get_params(request)
|
||||
|
||||
r = await self.client.completions.create(**params)
|
||||
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
params = self._get_params(request)
|
||||
|
||||
r = await self.client.completions.create(**params)
|
||||
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
def _get_params(
|
||||
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
||||
) -> dict:
|
||||
if request.sampling_params and request.sampling_params.top_k:
|
||||
raise ValueError("`top_k` not supported by Cerebras")
|
||||
|
||||
prompt = ""
|
||||
if type(request) == ChatCompletionRequest:
|
||||
prompt = chat_completion_request_to_prompt(
|
||||
request, self.get_llama_model(request.model), self.formatter
|
||||
)
|
||||
elif type(request) == CompletionRequest:
|
||||
prompt = completion_request_to_prompt(request, self.formatter)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"prompt": prompt,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
32
llama_stack/providers/remote/inference/cerebras/config.py
Normal file
32
llama_stack/providers/remote/inference/cerebras/config.py
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
DEFAULT_BASE_URL = "https://api.cerebras.ai"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CerebrasImplConfig(BaseModel):
|
||||
base_url: str = Field(
|
||||
default=os.environ.get("CEREBRAS_BASE_URL", DEFAULT_BASE_URL),
|
||||
description="Base URL for the Cerebras API",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=os.environ.get("CEREBRAS_API_KEY"),
|
||||
description="Cerebras API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"base_url": DEFAULT_BASE_URL,
|
||||
"api_key": "${env.CEREBRAS_API_KEY}",
|
||||
}
|
||||
|
|
@ -13,7 +13,7 @@ from pydantic import BaseModel, Field
|
|||
@json_schema_type
|
||||
class FireworksImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.fireworks.ai/inference",
|
||||
default="https://api.fireworks.ai/inference/v1",
|
||||
description="The URL for the Fireworks server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
|
|
@ -24,6 +24,6 @@ class FireworksImplConfig(BaseModel):
|
|||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.fireworks.ai/inference",
|
||||
"url": "https://api.fireworks.ai/inference/v1",
|
||||
"api_key": "${env.FIREWORKS_API_KEY}",
|
||||
}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from fireworks.client import Fireworks
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
|
@ -28,6 +28,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
convert_message_to_dict,
|
||||
request_has_media,
|
||||
)
|
||||
|
|
@ -89,17 +90,19 @@ class FireworksInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = None
|
||||
def _get_api_key(self) -> str:
|
||||
if self.config.api_key is not None:
|
||||
fireworks_api_key = self.config.api_key
|
||||
return self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.fireworks_api_key:
|
||||
raise ValueError(
|
||||
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
|
||||
)
|
||||
fireworks_api_key = provider_data.fireworks_api_key
|
||||
return provider_data.fireworks_api_key
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = self._get_api_key()
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
async def completion(
|
||||
|
|
@ -264,4 +267,19 @@ class FireworksInferenceAdapter(
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
if model.metadata.get("embedding_dimensions"):
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
||||
assert all(
|
||||
not content_has_media(content) for content in contents
|
||||
), "Fireworks does not support media for embeddings"
|
||||
response = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_text_media_as_str(content) for content in contents],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
22
llama_stack/providers/remote/inference/nvidia/__init__.py
Normal file
22
llama_stack/providers/remote/inference/nvidia/__init__.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import NVIDIAConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: NVIDIAConfig, _deps) -> Inference:
|
||||
# import dynamically so `llama stack build` does not fail due to missing dependencies
|
||||
from .nvidia import NVIDIAInferenceAdapter
|
||||
|
||||
if not isinstance(config, NVIDIAConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = NVIDIAInferenceAdapter(config)
|
||||
return adapter
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NVIDIAConfig"]
|
||||
50
llama_stack/providers/remote/inference/nvidia/config.py
Normal file
50
llama_stack/providers/remote/inference/nvidia/config.py
Normal file
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class NVIDIAConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the NVIDIA NIM inference endpoint.
|
||||
|
||||
Attributes:
|
||||
url (str): A base url for accessing the NVIDIA NIM, e.g. http://localhost:8000
|
||||
api_key (str): The access key for the hosted NIM endpoints
|
||||
|
||||
There are two ways to access NVIDIA NIMs -
|
||||
0. Hosted: Preview APIs hosted at https://integrate.api.nvidia.com
|
||||
1. Self-hosted: You can run NVIDIA NIMs on your own infrastructure
|
||||
|
||||
By default the configuration is set to use the hosted APIs. This requires
|
||||
an API key which can be obtained from https://ngc.nvidia.com/.
|
||||
|
||||
By default the configuration will attempt to read the NVIDIA_API_KEY environment
|
||||
variable to set the api_key. Please do not put your API key in code.
|
||||
|
||||
If you are using a self-hosted NVIDIA NIM, you can set the url to the
|
||||
URL of your running NVIDIA NIM and do not need to set the api_key.
|
||||
"""
|
||||
|
||||
url: str = Field(
|
||||
default_factory=lambda: os.getenv(
|
||||
"NVIDIA_BASE_URL", "https://integrate.api.nvidia.com"
|
||||
),
|
||||
description="A base url for accessing the NVIDIA NIM",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
||||
219
llama_stack/providers/remote/inference/nvidia/nvidia.py
Normal file
219
llama_stack/providers/remote/inference/nvidia/nvidia.py
Normal file
|
|
@ -0,0 +1,219 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from typing import AsyncIterator, List, Optional, Union
|
||||
|
||||
from llama_models.datatypes import SamplingParams
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
ImageMedia,
|
||||
InterleavedTextMedia,
|
||||
Message,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_models.sku_list import CoreModelId
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
ResponseFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
from . import NVIDIAConfig
|
||||
from .openai_utils import (
|
||||
convert_chat_completion_request,
|
||||
convert_completion_request,
|
||||
convert_openai_chat_completion_choice,
|
||||
convert_openai_chat_completion_stream,
|
||||
convert_openai_completion_choice,
|
||||
convert_openai_completion_stream,
|
||||
)
|
||||
from .utils import _is_nvidia_hosted, check_health
|
||||
|
||||
_MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"meta/llama3-8b-instruct",
|
||||
CoreModelId.llama3_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama3-70b-instruct",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-405b-instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
# TODO(mf): how do we handle Nemotron models?
|
||||
# "Llama3.1-Nemotron-51B-Instruct" -> "meta/llama-3.1-nemotron-51b-instruct",
|
||||
]
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: NVIDIAConfig) -> None:
|
||||
# TODO(mf): filter by available models
|
||||
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
|
||||
|
||||
print(f"Initializing NVIDIAInferenceAdapter({config.url})...")
|
||||
|
||||
if _is_nvidia_hosted(config):
|
||||
if not config.api_key:
|
||||
raise RuntimeError(
|
||||
"API key is required for hosted NVIDIA NIM. "
|
||||
"Either provide an API key or use a self-hosted NIM."
|
||||
)
|
||||
# elif self._config.api_key:
|
||||
#
|
||||
# we don't raise this warning because a user may have deployed their
|
||||
# self-hosted NIM with an API key requirement.
|
||||
#
|
||||
# warnings.warn(
|
||||
# "API key is not required for self-hosted NVIDIA NIM. "
|
||||
# "Consider removing the api_key from the configuration."
|
||||
# )
|
||||
|
||||
self._config = config
|
||||
# make sure the client lives longer than any async calls
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=f"{self._config.url}/v1",
|
||||
api_key=self._config.api_key or "NO KEY",
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
||||
if isinstance(content, ImageMedia) or (
|
||||
isinstance(content, list)
|
||||
and any(isinstance(c, ImageMedia) for c in content)
|
||||
):
|
||||
raise NotImplementedError("ImageMedia is not supported")
|
||||
|
||||
await check_health(self._config) # this raises errors
|
||||
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
),
|
||||
n=1,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self._client.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(
|
||||
f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}"
|
||||
) from e
|
||||
|
||||
if stream:
|
||||
return convert_openai_completion_stream(response)
|
||||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_completion_choice(response.choices[0])
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[
|
||||
ToolPromptFormat
|
||||
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
if tool_prompt_format:
|
||||
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
|
||||
|
||||
await check_health(self._config) # this raises errors
|
||||
|
||||
request = convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
),
|
||||
n=1,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self._client.chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(
|
||||
f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}"
|
||||
) from e
|
||||
|
||||
if stream:
|
||||
return convert_openai_chat_completion_stream(response)
|
||||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_chat_completion_choice(response.choices[0])
|
||||
746
llama_stack/providers/remote/inference/nvidia/openai_utils.py
Normal file
746
llama_stack/providers/remote/inference/nvidia/openai_utils.py
Normal file
|
|
@ -0,0 +1,746 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from typing import Any, AsyncGenerator, Dict, Generator, List, Optional
|
||||
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
BuiltinTool,
|
||||
CompletionMessage,
|
||||
StopReason,
|
||||
TokenLogProbs,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
)
|
||||
from openai import AsyncStream
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
|
||||
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
||||
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
|
||||
ChatCompletionMessageToolCallParam as OpenAIChatCompletionMessageToolCall,
|
||||
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
|
||||
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
|
||||
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
|
||||
)
|
||||
from openai.types.chat.chat_completion import (
|
||||
Choice as OpenAIChoice,
|
||||
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
Function as OpenAIFunction,
|
||||
)
|
||||
from openai.types.completion import Completion as OpenAICompletion
|
||||
from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
SystemMessage,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
|
||||
def _convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
||||
"""
|
||||
Convert a ToolDefinition to an OpenAI API-compatible dictionary.
|
||||
|
||||
ToolDefinition:
|
||||
tool_name: str | BuiltinTool
|
||||
description: Optional[str]
|
||||
parameters: Optional[Dict[str, ToolParamDefinition]]
|
||||
|
||||
ToolParamDefinition:
|
||||
param_type: str
|
||||
description: Optional[str]
|
||||
required: Optional[bool]
|
||||
default: Optional[Any]
|
||||
|
||||
|
||||
OpenAI spec -
|
||||
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"description": description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param_name: {
|
||||
"type": param_type,
|
||||
"description": description,
|
||||
"default": default,
|
||||
},
|
||||
...
|
||||
},
|
||||
"required": [param_name, ...],
|
||||
},
|
||||
},
|
||||
}
|
||||
"""
|
||||
out = {
|
||||
"type": "function",
|
||||
"function": {},
|
||||
}
|
||||
function = out["function"]
|
||||
|
||||
if isinstance(tool.tool_name, BuiltinTool):
|
||||
function.update(name=tool.tool_name.value) # TODO(mf): is this sufficient?
|
||||
else:
|
||||
function.update(name=tool.tool_name)
|
||||
|
||||
if tool.description:
|
||||
function.update(description=tool.description)
|
||||
|
||||
if tool.parameters:
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
}
|
||||
properties = parameters["properties"]
|
||||
required = []
|
||||
for param_name, param in tool.parameters.items():
|
||||
properties[param_name] = {"type": param.param_type}
|
||||
if param.description:
|
||||
properties[param_name].update(description=param.description)
|
||||
if param.default:
|
||||
properties[param_name].update(default=param.default)
|
||||
if param.required:
|
||||
required.append(param_name)
|
||||
|
||||
if required:
|
||||
parameters.update(required=required)
|
||||
|
||||
function.update(parameters=parameters)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
|
||||
"""
|
||||
Convert a Message to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# users can supply a dict instead of a Message object, we'll
|
||||
# convert it to a Message object and proceed with some type safety.
|
||||
if isinstance(message, dict):
|
||||
if "role" not in message:
|
||||
raise ValueError("role is required in message")
|
||||
if message["role"] == "user":
|
||||
message = UserMessage(**message)
|
||||
elif message["role"] == "assistant":
|
||||
message = CompletionMessage(**message)
|
||||
elif message["role"] == "ipython":
|
||||
message = ToolResponseMessage(**message)
|
||||
elif message["role"] == "system":
|
||||
message = SystemMessage(**message)
|
||||
else:
|
||||
raise ValueError(f"Unsupported message role: {message['role']}")
|
||||
|
||||
out: OpenAIChatCompletionMessage = None
|
||||
if isinstance(message, UserMessage):
|
||||
out = OpenAIChatCompletionUserMessage(
|
||||
role="user",
|
||||
content=message.content, # TODO(mf): handle image content
|
||||
)
|
||||
elif isinstance(message, CompletionMessage):
|
||||
out = OpenAIChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content=message.content,
|
||||
tool_calls=[
|
||||
OpenAIChatCompletionMessageToolCall(
|
||||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=tool.tool_name,
|
||||
arguments=json.dumps(tool.arguments),
|
||||
),
|
||||
type="function",
|
||||
)
|
||||
for tool in message.tool_calls
|
||||
],
|
||||
)
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
out = OpenAIChatCompletionToolMessage(
|
||||
role="tool",
|
||||
tool_call_id=message.call_id,
|
||||
content=message.content,
|
||||
)
|
||||
elif isinstance(message, SystemMessage):
|
||||
out = OpenAIChatCompletionSystemMessage(
|
||||
role="system",
|
||||
content=message.content,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported message type: {type(message)}")
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def convert_chat_completion_request(
|
||||
request: ChatCompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# messages -> messages
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> GrammarResponseFormat TODO(mf)
|
||||
# response_format -> JsonSchemaResponseFormat: response_format = "json_object" & nvext["guided_json"] = json_schema
|
||||
# tools -> tools
|
||||
# tool_choice ("auto", "required") -> tool_choice
|
||||
# tool_prompt_format -> TBD
|
||||
# stream -> stream
|
||||
# logprobs -> logprobs
|
||||
|
||||
if request.response_format and not isinstance(
|
||||
request.response_format, JsonSchemaResponseFormat
|
||||
):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {request.response_format}. "
|
||||
"Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[_convert_message(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
n=n,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# server bug - setting guided_json changes the behavior of response_format resulting in an error
|
||||
# payload.update(response_format="json_object")
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.tools:
|
||||
payload.update(
|
||||
tools=[_convert_tooldef_to_openai_tool(tool) for tool in request.tools]
|
||||
)
|
||||
if request.tool_choice:
|
||||
payload.update(
|
||||
tool_choice=request.tool_choice.value
|
||||
) # we cannot include tool_choice w/o tools, server will complain
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=True)
|
||||
payload.update(top_logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if (
|
||||
request.sampling_params.top_k != -1
|
||||
and request.sampling_params.top_k < 1
|
||||
):
|
||||
warnings.warn("top_k must be -1 or >= 1")
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
|
||||
"""
|
||||
Convert an OpenAI chat completion finish_reason to a StopReason.
|
||||
|
||||
finish_reason: Literal["stop", "length", "tool_calls", ...]
|
||||
- stop: model hit a natural stop point or a provided stop sequence
|
||||
- length: maximum number of tokens specified in the request was reached
|
||||
- tool_calls: model called a tool
|
||||
|
||||
->
|
||||
|
||||
class StopReason(Enum):
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
|
||||
# TODO(mf): are end_of_turn and end_of_message semantics correct?
|
||||
return {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(finish_reason, StopReason.end_of_turn)
|
||||
|
||||
|
||||
def _convert_openai_tool_calls(
|
||||
tool_calls: List[OpenAIChatCompletionMessageToolCall],
|
||||
) -> List[ToolCall]:
|
||||
"""
|
||||
Convert an OpenAI ChatCompletionMessageToolCall list into a list of ToolCall.
|
||||
|
||||
OpenAI ChatCompletionMessageToolCall:
|
||||
id: str
|
||||
function: Function
|
||||
type: Literal["function"]
|
||||
|
||||
OpenAI Function:
|
||||
arguments: str
|
||||
name: str
|
||||
|
||||
->
|
||||
|
||||
ToolCall:
|
||||
call_id: str
|
||||
tool_name: str
|
||||
arguments: Dict[str, ...]
|
||||
"""
|
||||
if not tool_calls:
|
||||
return [] # CompletionMessage tool_calls is not optional
|
||||
|
||||
return [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
||||
|
||||
def _convert_openai_logprobs(
|
||||
logprobs: OpenAIChoiceLogprobs,
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Convert an OpenAI ChoiceLogprobs into a list of TokenLogProbs.
|
||||
|
||||
OpenAI ChoiceLogprobs:
|
||||
content: Optional[List[ChatCompletionTokenLogprob]]
|
||||
|
||||
OpenAI ChatCompletionTokenLogprob:
|
||||
token: str
|
||||
logprob: float
|
||||
top_logprobs: List[TopLogprob]
|
||||
|
||||
OpenAI TopLogprob:
|
||||
token: str
|
||||
logprob: float
|
||||
|
||||
->
|
||||
|
||||
TokenLogProbs:
|
||||
logprobs_by_token: Dict[str, float]
|
||||
- token, logprob
|
||||
|
||||
"""
|
||||
if not logprobs:
|
||||
return None
|
||||
|
||||
return [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
logprobs.token: logprobs.logprob for logprobs in content.top_logprobs
|
||||
}
|
||||
)
|
||||
for content in logprobs.content
|
||||
]
|
||||
|
||||
|
||||
def convert_openai_chat_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> ChatCompletionResponse:
|
||||
"""
|
||||
Convert an OpenAI Choice into a ChatCompletionResponse.
|
||||
|
||||
OpenAI Choice:
|
||||
message: ChatCompletionMessage
|
||||
finish_reason: str
|
||||
logprobs: Optional[ChoiceLogprobs]
|
||||
|
||||
OpenAI ChatCompletionMessage:
|
||||
role: Literal["assistant"]
|
||||
content: Optional[str]
|
||||
tool_calls: Optional[List[ChatCompletionMessageToolCall]]
|
||||
|
||||
->
|
||||
|
||||
ChatCompletionResponse:
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
|
||||
CompletionMessage:
|
||||
role: Literal["assistant"]
|
||||
content: str | ImageMedia | List[str | ImageMedia]
|
||||
stop_reason: StopReason
|
||||
tool_calls: List[ToolCall]
|
||||
|
||||
class StopReason(Enum):
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
assert (
|
||||
hasattr(choice, "message") and choice.message
|
||||
), "error in server response: message not found"
|
||||
assert (
|
||||
hasattr(choice, "finish_reason") and choice.finish_reason
|
||||
), "error in server response: finish_reason not found"
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=choice.message.content
|
||||
or "", # CompletionMessage content is not optional
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
tool_calls=_convert_openai_tool_calls(choice.message.tool_calls),
|
||||
),
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
async def convert_openai_chat_completion_stream(
|
||||
stream: AsyncStream[OpenAIChatCompletionChunk],
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
"""
|
||||
Convert a stream of OpenAI chat completion chunks into a stream
|
||||
of ChatCompletionResponseStreamChunk.
|
||||
|
||||
OpenAI ChatCompletionChunk:
|
||||
choices: List[Choice]
|
||||
|
||||
OpenAI Choice: # different from the non-streamed Choice
|
||||
delta: ChoiceDelta
|
||||
finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]]
|
||||
logprobs: Optional[ChoiceLogprobs]
|
||||
|
||||
OpenAI ChoiceDelta:
|
||||
content: Optional[str]
|
||||
role: Optional[Literal["system", "user", "assistant", "tool"]]
|
||||
tool_calls: Optional[List[ChoiceDeltaToolCall]]
|
||||
|
||||
OpenAI ChoiceDeltaToolCall:
|
||||
index: int
|
||||
id: Optional[str]
|
||||
function: Optional[ChoiceDeltaToolCallFunction]
|
||||
type: Optional[Literal["function"]]
|
||||
|
||||
OpenAI ChoiceDeltaToolCallFunction:
|
||||
name: Optional[str]
|
||||
arguments: Optional[str]
|
||||
|
||||
->
|
||||
|
||||
ChatCompletionResponseStreamChunk:
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
ChatCompletionResponseEvent:
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: Union[str, ToolCallDelta]
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
stop_reason: Optional[StopReason]
|
||||
|
||||
ChatCompletionResponseEventType:
|
||||
start = "start"
|
||||
progress = "progress"
|
||||
complete = "complete"
|
||||
|
||||
ToolCallDelta:
|
||||
content: Union[str, ToolCall]
|
||||
parse_status: ToolCallParseStatus
|
||||
|
||||
ToolCall:
|
||||
call_id: str
|
||||
tool_name: str
|
||||
arguments: str
|
||||
|
||||
ToolCallParseStatus:
|
||||
started = "started"
|
||||
in_progress = "in_progress"
|
||||
failure = "failure"
|
||||
success = "success"
|
||||
|
||||
TokenLogProbs:
|
||||
logprobs_by_token: Dict[str, float]
|
||||
- token, logprob
|
||||
|
||||
StopReason:
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
|
||||
# generate a stream of ChatCompletionResponseEventType: start -> progress -> progress -> ...
|
||||
def _event_type_generator() -> (
|
||||
Generator[ChatCompletionResponseEventType, None, None]
|
||||
):
|
||||
yield ChatCompletionResponseEventType.start
|
||||
while True:
|
||||
yield ChatCompletionResponseEventType.progress
|
||||
|
||||
event_type = _event_type_generator()
|
||||
|
||||
# we implement NIM specific semantics, the main difference from OpenAI
|
||||
# is that tool_calls are always produced as a complete call. there is no
|
||||
# intermediate / partial tool call streamed. because of this, we can
|
||||
# simplify the logic and not concern outselves with parse_status of
|
||||
# started/in_progress/failed. we can always assume success.
|
||||
#
|
||||
# a stream of ChatCompletionResponseStreamChunk consists of
|
||||
# 0. a start event
|
||||
# 1. zero or more progress events
|
||||
# - each progress event has a delta
|
||||
# - each progress event may have a stop_reason
|
||||
# - each progress event may have logprobs
|
||||
# - each progress event may have tool_calls
|
||||
# if a progress event has tool_calls,
|
||||
# it is fully formed and
|
||||
# can be emitted with a parse_status of success
|
||||
# 2. a complete event
|
||||
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0] # assuming only one choice per chunk
|
||||
|
||||
# we assume there's only one finish_reason in the stream
|
||||
stop_reason = _convert_openai_finish_reason(choice.finish_reason) or stop_reason
|
||||
|
||||
# if there's a tool call, emit an event for each tool in the list
|
||||
# if tool call and content, emit both separately
|
||||
|
||||
if choice.delta.tool_calls:
|
||||
# the call may have content and a tool call. ChatCompletionResponseEvent
|
||||
# does not support both, so we emit the content first
|
||||
if choice.delta.content:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=choice.delta.content,
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
|
||||
# it is possible to have parallel tool calls in stream, but
|
||||
# ChatCompletionResponseEvent only supports one per stream
|
||||
if len(choice.delta.tool_calls) > 1:
|
||||
warnings.warn(
|
||||
"multiple tool calls found in a single delta, using the first, ignoring the rest"
|
||||
)
|
||||
|
||||
# NIM only produces fully formed tool calls, so we can assume success
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=ToolCallDelta(
|
||||
content=_convert_openai_tool_calls(choice.delta.tool_calls)[0],
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=choice.delta.content or "", # content is not optional
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def convert_completion_request(
|
||||
request: CompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# prompt -> prompt
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> nvext.guided_json
|
||||
# stream -> stream
|
||||
# logprobs.top_k -> logprobs
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
prompt=request.content,
|
||||
stream=request.stream,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
n=n,
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# this is not openai compliant, it is a nim extension
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if (
|
||||
request.sampling_params.top_k != -1
|
||||
and request.sampling_params.top_k < 1
|
||||
):
|
||||
warnings.warn("top_k must be -1 or >= 1")
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _convert_openai_completion_logprobs(
|
||||
logprobs: Optional[OpenAICompletionLogprobs],
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs.
|
||||
|
||||
OpenAI CompletionLogprobs:
|
||||
text_offset: Optional[List[int]]
|
||||
token_logprobs: Optional[List[float]]
|
||||
tokens: Optional[List[str]]
|
||||
top_logprobs: Optional[List[Dict[str, float]]]
|
||||
|
||||
->
|
||||
|
||||
TokenLogProbs:
|
||||
logprobs_by_token: Dict[str, float]
|
||||
- token, logprob
|
||||
"""
|
||||
if not logprobs:
|
||||
return None
|
||||
|
||||
return [
|
||||
TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs
|
||||
]
|
||||
|
||||
|
||||
def convert_openai_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> CompletionResponse:
|
||||
"""
|
||||
Convert an OpenAI Completion Choice into a CompletionResponse.
|
||||
|
||||
OpenAI Completion Choice:
|
||||
text: str
|
||||
finish_reason: str
|
||||
logprobs: Optional[ChoiceLogprobs]
|
||||
|
||||
->
|
||||
|
||||
CompletionResponse:
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
|
||||
CompletionMessage:
|
||||
role: Literal["assistant"]
|
||||
content: str | ImageMedia | List[str | ImageMedia]
|
||||
stop_reason: StopReason
|
||||
tool_calls: List[ToolCall]
|
||||
|
||||
class StopReason(Enum):
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
return CompletionResponse(
|
||||
content=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
async def convert_openai_completion_stream(
|
||||
stream: AsyncStream[OpenAICompletion],
|
||||
) -> AsyncGenerator[CompletionResponse, None]:
|
||||
"""
|
||||
Convert a stream of OpenAI Completions into a stream
|
||||
of ChatCompletionResponseStreamChunks.
|
||||
|
||||
OpenAI Completion:
|
||||
id: str
|
||||
choices: List[OpenAICompletionChoice]
|
||||
created: int
|
||||
model: str
|
||||
system_fingerprint: Optional[str]
|
||||
usage: Optional[OpenAICompletionUsage]
|
||||
|
||||
OpenAI CompletionChoice:
|
||||
finish_reason: str
|
||||
index: int
|
||||
logprobs: Optional[OpenAILogprobs]
|
||||
text: str
|
||||
|
||||
->
|
||||
|
||||
CompletionResponseStreamChunk:
|
||||
delta: str
|
||||
stop_reason: Optional[StopReason]
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
"""
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0]
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=choice.text,
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
logprobs=_convert_openai_completion_logprobs(choice.logprobs),
|
||||
)
|
||||
54
llama_stack/providers/remote/inference/nvidia/utils.py
Normal file
54
llama_stack/providers/remote/inference/nvidia/utils.py
Normal file
|
|
@ -0,0 +1,54 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from . import NVIDIAConfig
|
||||
|
||||
|
||||
def _is_nvidia_hosted(config: NVIDIAConfig) -> bool:
|
||||
return "integrate.api.nvidia.com" in config.url
|
||||
|
||||
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Returns:
|
||||
Tuple[bool, bool]: (is_live, is_ready)
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
live = await client.get(f"{url}/v1/health/live")
|
||||
ready = await client.get(f"{url}/v1/health/ready")
|
||||
return live.status_code == 200, ready.status_code == 200
|
||||
|
||||
|
||||
async def check_health(config: NVIDIAConfig) -> None:
|
||||
"""
|
||||
Check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the server is not running or ready
|
||||
"""
|
||||
if not _is_nvidia_hosted(config):
|
||||
print("Checking NVIDIA NIM health...")
|
||||
try:
|
||||
is_live, is_ready = await _get_health(config.url)
|
||||
if not is_live:
|
||||
raise ConnectionError("NVIDIA NIM is not running")
|
||||
if not is_ready:
|
||||
raise ConnectionError("NVIDIA NIM is not ready")
|
||||
# TODO(mf): should we wait for the server to be ready?
|
||||
except httpx.ConnectError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
|
||||
|
|
@ -36,6 +36,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
convert_image_media_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
|
@ -59,18 +60,26 @@ model_aliases = [
|
|||
"llama3.1:70b",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.1:405b-instruct-fp16",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.1:405b",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.2:1b-instruct-fp16",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2:1b",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.2:3b-instruct-fp16",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2:1b",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2:3b",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
|
|
@ -83,6 +92,14 @@ model_aliases = [
|
|||
"llama3.2-vision",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"llama3.2-vision:90b-instruct-fp16",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias_with_just_provider_model_id(
|
||||
"llama3.2-vision:90b",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
# The Llama Guard models don't have their full fp16 versions
|
||||
# so we are going to alias their default version to the canonical SKU
|
||||
build_model_alias(
|
||||
|
|
@ -164,7 +181,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
|
|
@ -254,7 +270,6 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
r = await self.client.chat(**params)
|
||||
else:
|
||||
r = await self.client.generate(**params)
|
||||
assert isinstance(r, dict)
|
||||
|
||||
if "message" in r:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
|
|
@ -307,9 +322,30 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
assert all(
|
||||
not content_has_media(content) for content in contents
|
||||
), "Ollama does not support media for embeddings"
|
||||
response = await self.client.embed(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_text_media_as_str(content) for content in contents],
|
||||
)
|
||||
embeddings = response["embeddings"]
|
||||
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
# ollama does not have embedding models running. Check if the model is in list of available models.
|
||||
if model.model_type == ModelType.embedding:
|
||||
response = await self.client.list()
|
||||
available_models = [m["model"] for m in response["models"]]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
f"Model '{model.provider_resource_id}' is not available in Ollama. "
|
||||
f"Available models: {', '.join(available_models)}"
|
||||
)
|
||||
return model
|
||||
model = await self.register_helper.register_model(model)
|
||||
models = await self.client.ps()
|
||||
available_models = [m["model"] for m in models["models"]]
|
||||
|
|
|
|||
|
|
@ -17,6 +17,10 @@ from llama_stack.apis.inference import * # noqa: F403
|
|||
from llama_stack.apis.models import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
|
|
@ -37,6 +41,17 @@ from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImpl
|
|||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def build_model_aliases():
|
||||
return [
|
||||
build_model_alias(
|
||||
model.huggingface_repo,
|
||||
model.descriptor(),
|
||||
)
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
]
|
||||
|
||||
|
||||
class _HfAdapter(Inference, ModelsProtocolPrivate):
|
||||
client: AsyncInferenceClient
|
||||
max_tokens: int
|
||||
|
|
@ -44,45 +59,39 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
def __init__(self) -> None:
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
self.register_helper = ModelRegistryHelper(build_model_aliases())
|
||||
self.huggingface_repo_to_llama_model_id = {
|
||||
model.huggingface_repo: model.descriptor()
|
||||
for model in all_registered_models()
|
||||
if model.huggingface_repo
|
||||
}
|
||||
|
||||
async def register_model(self, model: Model) -> None:
|
||||
pass
|
||||
|
||||
async def list_models(self) -> List[Model]:
|
||||
repo = self.model_id
|
||||
identifier = self.huggingface_repo_to_llama_model_id[repo]
|
||||
return [
|
||||
Model(
|
||||
identifier=identifier,
|
||||
llama_model=identifier,
|
||||
metadata={
|
||||
"huggingface_repo": repo,
|
||||
},
|
||||
)
|
||||
]
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_model(self, model: Model) -> None:
|
||||
model = await self.register_helper.register_model(model)
|
||||
if model.provider_resource_id != self.model_id:
|
||||
raise ValueError(
|
||||
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
||||
)
|
||||
return model
|
||||
|
||||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model,
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
|
|
@ -176,7 +185,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
|
|
@ -186,8 +195,9 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
|
|
@ -241,7 +251,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
prompt, input_tokens = chat_completion_request_to_model_input_info(
|
||||
request, self.formatter
|
||||
request, self.register_helper.get_llama_model(request.model), self.formatter
|
||||
)
|
||||
return dict(
|
||||
prompt=prompt,
|
||||
|
|
@ -256,7 +266,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
|
||||
async def embeddings(
|
||||
self,
|
||||
model: str,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
|
|
|||
|
|
@ -31,6 +31,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
convert_message_to_dict,
|
||||
request_has_media,
|
||||
)
|
||||
|
|
@ -253,4 +254,13 @@ class TogetherInferenceAdapter(
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
assert all(
|
||||
not content_has_media(content) for content in contents
|
||||
), "Together does not support media for embeddings"
|
||||
r = self._get_client().embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_text_media_as_str(content) for content in contents],
|
||||
)
|
||||
embeddings = [item.embedding for item in r.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
|
|
@ -29,6 +29,7 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
content_has_media,
|
||||
convert_message_to_dict,
|
||||
request_has_media,
|
||||
)
|
||||
|
|
@ -100,6 +101,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
response_format=response_format,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, self.client)
|
||||
|
|
@ -180,6 +182,16 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
self.formatter,
|
||||
)
|
||||
|
||||
if fmt := request.response_format:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
input_dict["extra_body"] = {
|
||||
"guided_json": request.response_format.json_schema
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
raise NotImplementedError("Grammar response format not supported yet")
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
**input_dict,
|
||||
|
|
@ -192,4 +204,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
kwargs = {}
|
||||
assert model.model_type == ModelType.embedding
|
||||
assert model.metadata.get("embedding_dimensions")
|
||||
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
||||
assert all(
|
||||
not content_has_media(content) for content in contents
|
||||
), "VLLM does not support media for embeddings"
|
||||
response = self.client.embeddings.create(
|
||||
model=model.provider_resource_id,
|
||||
input=[interleaved_text_media_as_str(content) for content in contents],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
embeddings = [data.embedding for data in response.data]
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
|
|
|||
|
|
@ -4,12 +4,18 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import ChromaRemoteImplConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
|
||||
async def get_adapter_impl(
|
||||
config: ChromaRemoteImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
from .chroma import ChromaMemoryAdapter
|
||||
|
||||
impl = ChromaMemoryAdapter(config.url)
|
||||
impl = ChromaMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import List
|
||||
|
|
@ -12,21 +12,30 @@ from urllib.parse import urlparse
|
|||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pydantic import parse_obj_as
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
from .config import ChromaRemoteImplConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
|
||||
|
||||
|
||||
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
||||
async def maybe_await(result):
|
||||
if asyncio.iscoroutine(result):
|
||||
return await result
|
||||
return result
|
||||
|
||||
|
||||
class ChromaIndex(EmbeddingIndex):
|
||||
def __init__(self, client: chromadb.AsyncHttpClient, collection):
|
||||
def __init__(self, client: ChromaClientType, collection):
|
||||
self.client = client
|
||||
self.collection = collection
|
||||
|
||||
|
|
@ -35,19 +44,23 @@ class ChromaIndex(EmbeddingIndex):
|
|||
embeddings
|
||||
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
||||
await self.collection.add(
|
||||
documents=[chunk.json() for chunk in chunks],
|
||||
embeddings=embeddings,
|
||||
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
||||
await maybe_await(
|
||||
self.collection.add(
|
||||
documents=[chunk.model_dump_json() for chunk in chunks],
|
||||
embeddings=embeddings,
|
||||
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
||||
)
|
||||
)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
results = await self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
n_results=k,
|
||||
include=["documents", "distances"],
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
n_results=k,
|
||||
include=["documents", "distances"],
|
||||
)
|
||||
)
|
||||
distances = results["distances"][0]
|
||||
documents = results["documents"][0]
|
||||
|
|
@ -68,31 +81,37 @@ class ChromaIndex(EmbeddingIndex):
|
|||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
await self.client.delete_collection(self.collection.name)
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, url: str) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
|
||||
url = url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
if parsed.path and parsed.path != "/":
|
||||
raise ValueError("URL should not contain a path")
|
||||
|
||||
self.host = parsed.hostname
|
||||
self.port = parsed.port
|
||||
def __init__(
|
||||
self,
|
||||
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
|
||||
inference_api: Api.inference,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
||||
self.client = None
|
||||
self.cache = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
try:
|
||||
log.info(f"Connecting to Chroma server at: {self.host}:{self.port}")
|
||||
self.client = await chromadb.AsyncHttpClient(host=self.host, port=self.port)
|
||||
except Exception as e:
|
||||
log.exception("Could not connect to Chroma server")
|
||||
raise RuntimeError("Could not connect to Chroma server") from e
|
||||
if isinstance(self.config, ChromaRemoteImplConfig):
|
||||
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
||||
url = self.config.url.rstrip("/")
|
||||
parsed = urlparse(url)
|
||||
|
||||
if parsed.path and parsed.path != "/":
|
||||
raise ValueError("URL should not contain a path")
|
||||
|
||||
self.client = await chromadb.AsyncHttpClient(
|
||||
host=parsed.hostname, port=parsed.port
|
||||
)
|
||||
else:
|
||||
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
||||
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
@ -105,32 +124,15 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
collection = await self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.json()},
|
||||
)
|
||||
bank_index = BankWithIndex(
|
||||
bank=memory_bank, index=ChromaIndex(self.client, collection)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = bank_index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
collections = await self.client.list_collections()
|
||||
for collection in collections:
|
||||
try:
|
||||
data = json.loads(collection.metadata["bank"])
|
||||
bank = parse_obj_as(VectorMemoryBank, data)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse bank: {collection.metadata}")
|
||||
continue
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=ChromaIndex(self.client, collection),
|
||||
collection = await maybe_await(
|
||||
self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
|
||||
return [i.bank for i in self.cache.values()]
|
||||
)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
|
|
@ -163,9 +165,11 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
|
||||
collection = await self.client.get_collection(bank_id)
|
||||
collection = await maybe_await(self.client.get_collection(bank_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
||||
index = BankWithIndex(bank=bank, index=ChromaIndex(self.client, collection))
|
||||
index = BankWithIndex(
|
||||
bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
|
|
|||
17
llama_stack/providers/remote/memory/chroma/config.py
Normal file
17
llama_stack/providers/remote/memory/chroma/config.py
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ChromaRemoteImplConfig(BaseModel):
|
||||
url: str
|
||||
|
||||
@classmethod
|
||||
def sample_config(cls) -> Dict[str, Any]:
|
||||
return {"url": "{env.CHROMADB_URL}"}
|
||||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import PGVectorConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: PGVectorConfig, _deps):
|
||||
async def get_adapter_impl(config: PGVectorConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .pgvector import PGVectorMemoryAdapter
|
||||
|
||||
impl = PGVectorMemoryAdapter(config)
|
||||
impl = PGVectorMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -16,9 +16,9 @@ from pydantic import BaseModel, parse_obj_as
|
|||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
ALL_MINILM_L6_V2_DIMENSION,
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
|
|
@ -120,8 +120,9 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: PGVectorConfig) -> None:
|
||||
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.cursor = None
|
||||
self.conn = None
|
||||
self.cache = {}
|
||||
|
|
@ -160,42 +161,21 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
) -> None:
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
upsert_models(
|
||||
self.cursor,
|
||||
[
|
||||
(memory_bank.identifier, memory_bank),
|
||||
],
|
||||
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
|
||||
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, index, self.inference_api
|
||||
)
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=PGVectorIndex(memory_bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
banks = load_models(self.cursor, VectorMemoryBank)
|
||||
for bank in banks:
|
||||
if bank.identifier not in self.cache:
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[bank.identifier] = index
|
||||
return banks
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
|
|
@ -214,14 +194,13 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
return await index.query_documents(query, params)
|
||||
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=PGVectorIndex(bank, ALL_MINILM_L6_V2_DIMENSION, self.cursor),
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
|
||||
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
|
||||
return self.cache[bank_id]
|
||||
|
|
|
|||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import QdrantConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantConfig, _deps):
|
||||
async def get_adapter_impl(config: QdrantConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .qdrant import QdrantVectorMemoryAdapter
|
||||
|
||||
impl = QdrantVectorMemoryAdapter(config)
|
||||
impl = QdrantVectorMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -101,10 +101,11 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
def __init__(self, config: QdrantConfig) -> None:
|
||||
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
self.cache = {}
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
|
@ -123,15 +124,11 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=QdrantIndex(self.client, memory_bank.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
# Qdrant doesn't have collection level metadata to store the bank properties
|
||||
# So we only return from the cache value
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
|
@ -143,6 +140,7 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=QdrantIndex(client=self.client, collection_name=bank_id),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ class SampleMemoryImpl(Memory):
|
|||
def __init__(self, config: SampleConfig):
|
||||
self.config = config
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBankDef) -> None:
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
# these are the memory banks the Llama Stack will use to route requests to this provider
|
||||
# perform validation here if necessary
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -4,12 +4,16 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import WeaviateConfig, WeaviateRequestProviderData # noqa: F401
|
||||
|
||||
|
||||
async def get_adapter_impl(config: WeaviateConfig, _deps):
|
||||
async def get_adapter_impl(config: WeaviateConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .weaviate import WeaviateMemoryAdapter
|
||||
|
||||
impl = WeaviateMemoryAdapter(config)
|
||||
impl = WeaviateMemoryAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
|||
|
|
@ -12,10 +12,11 @@ import weaviate
|
|||
import weaviate.classes as wvc
|
||||
from numpy.typing import NDArray
|
||||
from weaviate.classes.init import Auth
|
||||
from weaviate.classes.query import Filter
|
||||
|
||||
from llama_stack.apis.memory import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
|
|
@ -80,12 +81,21 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: List[str]) -> None:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
collection.data.delete_many(
|
||||
where=Filter.by_property("id").contains_any(chunk_ids)
|
||||
)
|
||||
|
||||
|
||||
class WeaviateMemoryAdapter(
|
||||
Memory, NeedsRequestProviderData, MemoryBanksProtocolPrivate
|
||||
Memory,
|
||||
NeedsRequestProviderData,
|
||||
MemoryBanksProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: WeaviateConfig) -> None:
|
||||
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client_cache = {}
|
||||
self.cache = {}
|
||||
|
||||
|
|
@ -117,7 +127,7 @@ class WeaviateMemoryAdapter(
|
|||
memory_bank: MemoryBank,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
client = self._get_client()
|
||||
|
|
@ -135,18 +145,11 @@ class WeaviateMemoryAdapter(
|
|||
],
|
||||
)
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank,
|
||||
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[memory_bank.identifier] = index
|
||||
|
||||
async def list_memory_banks(self) -> List[MemoryBank]:
|
||||
# TODO: right now the Llama Stack is the source of truth for these banks. That is
|
||||
# not ideal. It should be Weaviate which is the source of truth. Unfortunately,
|
||||
# list() happens at Stack startup when the Weaviate client (credentials) is not
|
||||
# yet available. We need to figure out a way to make this work.
|
||||
return [i.bank for i in self.cache.values()]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
|
|
@ -163,6 +166,7 @@ class WeaviateMemoryAdapter(
|
|||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=WeaviateIndex(client=client, collection_name=bank_id),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
|
|
|||
|
|
@ -1,15 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import OpenTelemetryConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: OpenTelemetryConfig, _deps):
|
||||
from .opentelemetry import OpenTelemetryAdapter
|
||||
|
||||
impl = OpenTelemetryAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
@ -1,201 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
|
||||
from opentelemetry import metrics, trace
|
||||
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
|
||||
from opentelemetry.sdk.metrics import MeterProvider
|
||||
from opentelemetry.sdk.metrics.export import (
|
||||
ConsoleMetricExporter,
|
||||
PeriodicExportingMetricReader,
|
||||
)
|
||||
from opentelemetry.sdk.resources import Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import BatchSpanProcessor
|
||||
from opentelemetry.semconv.resource import ResourceAttributes
|
||||
|
||||
from llama_stack.apis.telemetry import * # noqa: F403
|
||||
|
||||
from .config import OpenTelemetryConfig
|
||||
|
||||
|
||||
def string_to_trace_id(s: str) -> int:
|
||||
# Convert the string to bytes and then to an integer
|
||||
return int.from_bytes(s.encode(), byteorder="big", signed=False)
|
||||
|
||||
|
||||
def string_to_span_id(s: str) -> int:
|
||||
# Use only the first 8 bytes (64 bits) for span ID
|
||||
return int.from_bytes(s.encode()[:8], byteorder="big", signed=False)
|
||||
|
||||
|
||||
def is_tracing_enabled(tracer):
|
||||
with tracer.start_as_current_span("check_tracing") as span:
|
||||
return span.is_recording()
|
||||
|
||||
|
||||
class OpenTelemetryAdapter(Telemetry):
|
||||
def __init__(self, config: OpenTelemetryConfig):
|
||||
self.config = config
|
||||
|
||||
self.resource = Resource.create(
|
||||
{ResourceAttributes.SERVICE_NAME: "foobar-service"}
|
||||
)
|
||||
|
||||
# Set up tracing with Jaeger exporter
|
||||
jaeger_exporter = JaegerExporter(
|
||||
agent_host_name=self.config.jaeger_host,
|
||||
agent_port=self.config.jaeger_port,
|
||||
)
|
||||
trace_provider = TracerProvider(resource=self.resource)
|
||||
trace_processor = BatchSpanProcessor(jaeger_exporter)
|
||||
trace_provider.add_span_processor(trace_processor)
|
||||
trace.set_tracer_provider(trace_provider)
|
||||
self.tracer = trace.get_tracer(__name__)
|
||||
|
||||
# Set up metrics
|
||||
metric_reader = PeriodicExportingMetricReader(ConsoleMetricExporter())
|
||||
metric_provider = MeterProvider(
|
||||
resource=self.resource, metric_readers=[metric_reader]
|
||||
)
|
||||
metrics.set_meter_provider(metric_provider)
|
||||
self.meter = metrics.get_meter(__name__)
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
trace.get_tracer_provider().shutdown()
|
||||
metrics.get_meter_provider().shutdown()
|
||||
|
||||
async def log_event(self, event: Event) -> None:
|
||||
if isinstance(event, UnstructuredLogEvent):
|
||||
self._log_unstructured(event)
|
||||
elif isinstance(event, MetricEvent):
|
||||
self._log_metric(event)
|
||||
elif isinstance(event, StructuredLogEvent):
|
||||
self._log_structured(event)
|
||||
|
||||
def _log_unstructured(self, event: UnstructuredLogEvent) -> None:
|
||||
span = trace.get_current_span()
|
||||
span.add_event(
|
||||
name=event.message,
|
||||
attributes={"severity": event.severity.value, **event.attributes},
|
||||
timestamp=event.timestamp,
|
||||
)
|
||||
|
||||
def _log_metric(self, event: MetricEvent) -> None:
|
||||
if isinstance(event.value, int):
|
||||
self.meter.create_counter(
|
||||
name=event.metric,
|
||||
unit=event.unit,
|
||||
description=f"Counter for {event.metric}",
|
||||
).add(event.value, attributes=event.attributes)
|
||||
elif isinstance(event.value, float):
|
||||
self.meter.create_gauge(
|
||||
name=event.metric,
|
||||
unit=event.unit,
|
||||
description=f"Gauge for {event.metric}",
|
||||
).set(event.value, attributes=event.attributes)
|
||||
|
||||
def _log_structured(self, event: StructuredLogEvent) -> None:
|
||||
if isinstance(event.payload, SpanStartPayload):
|
||||
context = trace.set_span_in_context(
|
||||
trace.NonRecordingSpan(
|
||||
trace.SpanContext(
|
||||
trace_id=string_to_trace_id(event.trace_id),
|
||||
span_id=string_to_span_id(event.span_id),
|
||||
is_remote=True,
|
||||
)
|
||||
)
|
||||
)
|
||||
span = self.tracer.start_span(
|
||||
name=event.payload.name,
|
||||
kind=trace.SpanKind.INTERNAL,
|
||||
context=context,
|
||||
attributes=event.attributes,
|
||||
)
|
||||
|
||||
if event.payload.parent_span_id:
|
||||
span.set_parent(
|
||||
trace.SpanContext(
|
||||
trace_id=string_to_trace_id(event.trace_id),
|
||||
span_id=string_to_span_id(event.payload.parent_span_id),
|
||||
is_remote=True,
|
||||
)
|
||||
)
|
||||
elif isinstance(event.payload, SpanEndPayload):
|
||||
span = trace.get_current_span()
|
||||
span.set_status(
|
||||
trace.Status(
|
||||
trace.StatusCode.OK
|
||||
if event.payload.status == SpanStatus.OK
|
||||
else trace.StatusCode.ERROR
|
||||
)
|
||||
)
|
||||
span.end(end_time=event.timestamp)
|
||||
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
# we need to look up the root span id
|
||||
raise NotImplementedError("not yet no")
|
||||
|
||||
|
||||
# Usage example
|
||||
async def main():
|
||||
telemetry = OpenTelemetryTelemetry("my-service")
|
||||
await telemetry.initialize()
|
||||
|
||||
# Log an unstructured event
|
||||
await telemetry.log_event(
|
||||
UnstructuredLogEvent(
|
||||
trace_id="trace123",
|
||||
span_id="span456",
|
||||
timestamp=datetime.now(),
|
||||
message="This is a log message",
|
||||
severity=LogSeverity.INFO,
|
||||
)
|
||||
)
|
||||
|
||||
# Log a metric event
|
||||
await telemetry.log_event(
|
||||
MetricEvent(
|
||||
trace_id="trace123",
|
||||
span_id="span456",
|
||||
timestamp=datetime.now(),
|
||||
metric="my_metric",
|
||||
value=42,
|
||||
unit="count",
|
||||
)
|
||||
)
|
||||
|
||||
# Log a structured event (span start)
|
||||
await telemetry.log_event(
|
||||
StructuredLogEvent(
|
||||
trace_id="trace123",
|
||||
span_id="span789",
|
||||
timestamp=datetime.now(),
|
||||
payload=SpanStartPayload(name="my_operation"),
|
||||
)
|
||||
)
|
||||
|
||||
# Log a structured event (span end)
|
||||
await telemetry.log_event(
|
||||
StructuredLogEvent(
|
||||
trace_id="trace123",
|
||||
span_id="span789",
|
||||
timestamp=datetime.now(),
|
||||
payload=SpanEndPayload(status=SpanStatus.OK),
|
||||
)
|
||||
)
|
||||
|
||||
await telemetry.shutdown()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
asyncio.run(main())
|
||||
|
|
@ -81,6 +81,18 @@ class TestDatasetIO:
|
|||
assert len(response) == 1
|
||||
assert response[0].identifier == "test_dataset"
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
# unregister a dataset that does not exist
|
||||
await datasets_impl.unregister_dataset("test_dataset2")
|
||||
|
||||
await datasets_impl.unregister_dataset("test_dataset")
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert isinstance(response, list)
|
||||
assert len(response) == 0
|
||||
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
await datasets_impl.unregister_dataset("test_dataset")
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_rows_paginated(self, datasetio_stack):
|
||||
datasetio_impl, datasets_impl = datasetio_stack
|
||||
|
|
|
|||
|
|
@ -6,10 +6,14 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from ..agents.fixtures import AGENTS_FIXTURES
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from ..datasetio.fixtures import DATASETIO_FIXTURES
|
||||
from ..inference.fixtures import INFERENCE_FIXTURES
|
||||
from ..memory.fixtures import MEMORY_FIXTURES
|
||||
from ..safety.fixtures import SAFETY_FIXTURES
|
||||
from ..scoring.fixtures import SCORING_FIXTURES
|
||||
from .fixtures import EVAL_FIXTURES
|
||||
|
||||
|
|
@ -20,6 +24,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
|
|||
"scoring": "basic",
|
||||
"datasetio": "localfs",
|
||||
"inference": "fireworks",
|
||||
"agents": "meta_reference",
|
||||
"safety": "llama_guard",
|
||||
"memory": "faiss",
|
||||
},
|
||||
id="meta_reference_eval_fireworks_inference",
|
||||
marks=pytest.mark.meta_reference_eval_fireworks_inference,
|
||||
|
|
@ -30,6 +37,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
|
|||
"scoring": "basic",
|
||||
"datasetio": "localfs",
|
||||
"inference": "together",
|
||||
"agents": "meta_reference",
|
||||
"safety": "llama_guard",
|
||||
"memory": "faiss",
|
||||
},
|
||||
id="meta_reference_eval_together_inference",
|
||||
marks=pytest.mark.meta_reference_eval_together_inference,
|
||||
|
|
@ -40,6 +50,9 @@ DEFAULT_PROVIDER_COMBINATIONS = [
|
|||
"scoring": "basic",
|
||||
"datasetio": "huggingface",
|
||||
"inference": "together",
|
||||
"agents": "meta_reference",
|
||||
"safety": "llama_guard",
|
||||
"memory": "faiss",
|
||||
},
|
||||
id="meta_reference_eval_together_inference_huggingface_datasetio",
|
||||
marks=pytest.mark.meta_reference_eval_together_inference_huggingface_datasetio,
|
||||
|
|
@ -67,6 +80,13 @@ def pytest_addoption(parser):
|
|||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
|
||||
parser.addoption(
|
||||
"--judge-model",
|
||||
action="store",
|
||||
default="meta-llama/Llama-3.1-8B-Instruct",
|
||||
help="Specify the judge model to use for testing",
|
||||
)
|
||||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "eval_stack" in metafunc.fixturenames:
|
||||
|
|
@ -75,6 +95,9 @@ def pytest_generate_tests(metafunc):
|
|||
"scoring": SCORING_FIXTURES,
|
||||
"datasetio": DATASETIO_FIXTURES,
|
||||
"inference": INFERENCE_FIXTURES,
|
||||
"agents": AGENTS_FIXTURES,
|
||||
"safety": SAFETY_FIXTURES,
|
||||
"memory": MEMORY_FIXTURES,
|
||||
}
|
||||
combinations = (
|
||||
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
from llama_stack.distribution.datatypes import Api, ModelInput, Provider
|
||||
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||
|
|
@ -35,21 +35,44 @@ EVAL_FIXTURES = ["meta_reference", "remote"]
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def eval_stack(request):
|
||||
async def eval_stack(request, inference_model, judge_model):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
provider_data = {}
|
||||
for key in ["datasetio", "eval", "scoring", "inference"]:
|
||||
for key in [
|
||||
"datasetio",
|
||||
"eval",
|
||||
"scoring",
|
||||
"inference",
|
||||
"agents",
|
||||
"safety",
|
||||
"memory",
|
||||
]:
|
||||
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||
providers[key] = fixture.providers
|
||||
if fixture.provider_data:
|
||||
provider_data.update(fixture.provider_data)
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.eval, Api.datasetio, Api.inference, Api.scoring],
|
||||
[
|
||||
Api.eval,
|
||||
Api.datasetio,
|
||||
Api.inference,
|
||||
Api.scoring,
|
||||
Api.agents,
|
||||
Api.safety,
|
||||
Api.memory,
|
||||
],
|
||||
providers,
|
||||
provider_data,
|
||||
models=[
|
||||
ModelInput(model_id=model)
|
||||
for model in [
|
||||
inference_model,
|
||||
judge_model,
|
||||
]
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ class Testeval:
|
|||
assert isinstance(response, list)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_evaluate_rows(self, eval_stack):
|
||||
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
|
|
@ -46,11 +46,7 @@ class Testeval:
|
|||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
await register_dataset(
|
||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
)
|
||||
|
|
@ -77,12 +73,12 @@ class Testeval:
|
|||
scoring_functions=scoring_functions,
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
scoring_params={
|
||||
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-8B-Instruct",
|
||||
judge_model=judge_model,
|
||||
prompt_template=JUDGE_PROMPT,
|
||||
judge_score_regexes=[
|
||||
r"Total rating: (\d+)",
|
||||
|
|
@ -97,18 +93,14 @@ class Testeval:
|
|||
assert "basic::equality" in response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_eval(self, eval_stack):
|
||||
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
await register_dataset(
|
||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
)
|
||||
|
|
@ -127,7 +119,7 @@ class Testeval:
|
|||
task_id=task_id,
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
),
|
||||
|
|
@ -142,18 +134,14 @@ class Testeval:
|
|||
assert "basic::subset_of" in eval_response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) > 0
|
||||
if response[0].provider_id != "huggingface":
|
||||
|
|
@ -192,7 +180,7 @@ class Testeval:
|
|||
task_id=benchmark_id,
|
||||
task_config=BenchmarkEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
num_examples=3,
|
||||
|
|
|
|||
|
|
@ -6,6 +6,8 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from .fixtures import INFERENCE_FIXTURES
|
||||
|
||||
|
||||
|
|
@ -16,6 +18,12 @@ def pytest_addoption(parser):
|
|||
default=None,
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
parser.addoption(
|
||||
"--embedding-model",
|
||||
action="store",
|
||||
default=None,
|
||||
help="Specify the embedding model to use for testing",
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
|
|
@ -67,11 +75,12 @@ def pytest_generate_tests(metafunc):
|
|||
indirect=True,
|
||||
)
|
||||
if "inference_stack" in metafunc.fixturenames:
|
||||
metafunc.parametrize(
|
||||
"inference_stack",
|
||||
[
|
||||
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
|
||||
for fixture_name in INFERENCE_FIXTURES
|
||||
],
|
||||
indirect=True,
|
||||
)
|
||||
fixtures = INFERENCE_FIXTURES
|
||||
if filtered_stacks := get_provider_fixture_overrides(
|
||||
metafunc.config,
|
||||
{
|
||||
"inference": INFERENCE_FIXTURES,
|
||||
},
|
||||
):
|
||||
fixtures = [stack.values[0]["inference"] for stack in filtered_stacks]
|
||||
metafunc.parametrize("inference_stack", fixtures, indirect=True)
|
||||
|
|
|
|||
|
|
@ -9,16 +9,19 @@ import os
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.apis.models import ModelInput
|
||||
|
||||
from llama_stack.apis.models import ModelInput, ModelType
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.inline.inference.meta_reference import (
|
||||
MetaReferenceInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
|
||||
|
||||
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
|
|
@ -44,6 +47,9 @@ def inference_meta_reference(inference_model) -> ProviderFixture:
|
|||
inference_model = (
|
||||
[inference_model] if isinstance(inference_model, str) else inference_model
|
||||
)
|
||||
# If embedding dimension is set, use the 8B model for testing
|
||||
if os.getenv("EMBEDDING_DIMENSION"):
|
||||
inference_model = ["meta-llama/Llama-3.1-8B-Instruct"]
|
||||
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
|
|
@ -62,12 +68,27 @@ def inference_meta_reference(inference_model) -> ProviderFixture:
|
|||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_cerebras() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="cerebras",
|
||||
provider_type="remote::cerebras",
|
||||
config=CerebrasImplConfig(
|
||||
api_key=get_env_or_fail("CEREBRAS_API_KEY"),
|
||||
).model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_ollama(inference_model) -> ProviderFixture:
|
||||
inference_model = (
|
||||
[inference_model] if isinstance(inference_model, str) else inference_model
|
||||
)
|
||||
if "Llama3.1-8B-Instruct" in inference_model:
|
||||
if inference_model and "Llama3.1-8B-Instruct" in inference_model:
|
||||
pytest.skip("Ollama only supports Llama3.2-3B-Instruct for testing")
|
||||
|
||||
return ProviderFixture(
|
||||
|
|
@ -142,6 +163,35 @@ def inference_bedrock() -> ProviderFixture:
|
|||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_nvidia() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIAConfig().model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_tgi() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="tgi",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig(
|
||||
url=get_env_or_fail("TGI_URL"),
|
||||
api_token=os.getenv("TGI_API_TOKEN", None),
|
||||
).model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def get_model_short_name(model_name: str) -> str:
|
||||
"""Convert model name to a short test identifier.
|
||||
|
||||
|
|
@ -175,6 +225,9 @@ INFERENCE_FIXTURES = [
|
|||
"vllm_remote",
|
||||
"remote",
|
||||
"bedrock",
|
||||
"cerebras",
|
||||
"nvidia",
|
||||
"tgi",
|
||||
]
|
||||
|
||||
|
||||
|
|
@ -182,11 +235,23 @@ INFERENCE_FIXTURES = [
|
|||
async def inference_stack(request, inference_model):
|
||||
fixture_name = request.param
|
||||
inference_fixture = request.getfixturevalue(f"inference_{fixture_name}")
|
||||
model_type = ModelType.llm
|
||||
metadata = {}
|
||||
if os.getenv("EMBEDDING_DIMENSION"):
|
||||
model_type = ModelType.embedding
|
||||
metadata["embedding_dimension"] = get_env_or_fail("EMBEDDING_DIMENSION")
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.inference],
|
||||
{"inference": inference_fixture.providers},
|
||||
inference_fixture.provider_data,
|
||||
models=[ModelInput(model_id=inference_model)],
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=inference_model,
|
||||
model_type=model_type,
|
||||
metadata=metadata,
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls[Api.inference], test_stack.impls[Api.models]
|
||||
|
|
|
|||
62
llama_stack/providers/tests/inference/test_embeddings.py
Normal file
62
llama_stack/providers/tests/inference/test_embeddings.py
Normal file
|
|
@ -0,0 +1,62 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.inference import EmbeddingsResponse, ModelType
|
||||
|
||||
# How to run this test:
|
||||
# pytest -v -s llama_stack/providers/tests/inference/test_embeddings.py
|
||||
|
||||
|
||||
class TestEmbeddings:
|
||||
@pytest.mark.asyncio
|
||||
async def test_embeddings(self, inference_model, inference_stack):
|
||||
inference_impl, models_impl = inference_stack
|
||||
model = await models_impl.get_model(inference_model)
|
||||
|
||||
if model.model_type != ModelType.embedding:
|
||||
pytest.skip("This test is only applicable for embedding models")
|
||||
|
||||
response = await inference_impl.embeddings(
|
||||
model_id=inference_model,
|
||||
contents=["Hello, world!"],
|
||||
)
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) > 0
|
||||
assert all(isinstance(embedding, list) for embedding in response.embeddings)
|
||||
assert all(
|
||||
isinstance(value, float)
|
||||
for embedding in response.embeddings
|
||||
for value in embedding
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_embeddings(self, inference_model, inference_stack):
|
||||
inference_impl, models_impl = inference_stack
|
||||
model = await models_impl.get_model(inference_model)
|
||||
|
||||
if model.model_type != ModelType.embedding:
|
||||
pytest.skip("This test is only applicable for embedding models")
|
||||
|
||||
texts = ["Hello, world!", "This is a test", "Testing embeddings"]
|
||||
|
||||
response = await inference_impl.embeddings(
|
||||
model_id=inference_model,
|
||||
contents=texts,
|
||||
)
|
||||
|
||||
assert isinstance(response, EmbeddingsResponse)
|
||||
assert len(response.embeddings) == len(texts)
|
||||
assert all(isinstance(embedding, list) for embedding in response.embeddings)
|
||||
assert all(
|
||||
isinstance(value, float)
|
||||
for embedding in response.embeddings
|
||||
for value in embedding
|
||||
)
|
||||
|
||||
embedding_dim = len(response.embeddings[0])
|
||||
assert all(len(embedding) == embedding_dim for embedding in response.embeddings)
|
||||
|
|
@ -94,6 +94,8 @@ class TestInference:
|
|||
"remote::tgi",
|
||||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::nvidia",
|
||||
"remote::cerebras",
|
||||
):
|
||||
pytest.skip("Other inference providers don't support completion() yet")
|
||||
|
||||
|
|
@ -126,11 +128,64 @@ class TestInference:
|
|||
last = chunks[-1]
|
||||
assert last.stop_reason == StopReason.out_of_tokens
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_logprobs(self, inference_model, inference_stack):
|
||||
inference_impl, _ = inference_stack
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||
if provider.__provider_spec__.provider_type not in (
|
||||
# "remote::nvidia", -- provider doesn't provide all logprobs
|
||||
):
|
||||
pytest.skip("Other inference providers don't support completion() yet")
|
||||
|
||||
response = await inference_impl.completion(
|
||||
content="Micheael Jordan is born in ",
|
||||
stream=False,
|
||||
model_id=inference_model,
|
||||
sampling_params=SamplingParams(
|
||||
max_tokens=5,
|
||||
),
|
||||
logprobs=LogProbConfig(
|
||||
top_k=3,
|
||||
),
|
||||
)
|
||||
|
||||
assert isinstance(response, CompletionResponse)
|
||||
assert 1 <= len(response.logprobs) <= 5
|
||||
assert response.logprobs, "Logprobs should not be empty"
|
||||
assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs)
|
||||
|
||||
chunks = [
|
||||
r
|
||||
async for r in await inference_impl.completion(
|
||||
content="Roses are red,",
|
||||
stream=True,
|
||||
model_id=inference_model,
|
||||
sampling_params=SamplingParams(
|
||||
max_tokens=5,
|
||||
),
|
||||
logprobs=LogProbConfig(
|
||||
top_k=3,
|
||||
),
|
||||
)
|
||||
]
|
||||
|
||||
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
|
||||
assert (
|
||||
1 <= len(chunks) <= 6
|
||||
) # why 6 and not 5? the response may have an extra closing chunk, e.g. for usage or stop_reason
|
||||
for chunk in chunks:
|
||||
if chunk.delta: # if there's a token, we expect logprobs
|
||||
assert chunk.logprobs, "Logprobs should not be empty"
|
||||
assert all(
|
||||
len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs
|
||||
)
|
||||
else: # no token, no logprobs
|
||||
assert not chunk.logprobs, "Logprobs should be empty"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.skip("This test is not quite robust")
|
||||
async def test_completions_structured_output(
|
||||
self, inference_model, inference_stack
|
||||
):
|
||||
async def test_completion_structured_output(self, inference_model, inference_stack):
|
||||
inference_impl, _ = inference_stack
|
||||
|
||||
provider = inference_impl.routing_table.get_provider_impl(inference_model)
|
||||
|
|
@ -139,6 +194,9 @@ class TestInference:
|
|||
"remote::tgi",
|
||||
"remote::together",
|
||||
"remote::fireworks",
|
||||
"remote::nvidia",
|
||||
"remote::vllm",
|
||||
"remote::cerebras",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support structured output in completions yet"
|
||||
|
|
@ -198,6 +256,8 @@ class TestInference:
|
|||
"remote::fireworks",
|
||||
"remote::tgi",
|
||||
"remote::together",
|
||||
"remote::vllm",
|
||||
"remote::nvidia",
|
||||
):
|
||||
pytest.skip("Other inference providers don't support structured output yet")
|
||||
|
||||
|
|
@ -210,7 +270,15 @@ class TestInference:
|
|||
response = await inference_impl.chat_completion(
|
||||
model_id=inference_model,
|
||||
messages=[
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
# we include context about Michael Jordan in the prompt so that the test is
|
||||
# focused on the funtionality of the model and not on the information embedded
|
||||
# in the model. Llama 3.2 3B Instruct tends to think MJ played for 14 seasons.
|
||||
SystemMessage(
|
||||
content=(
|
||||
"You are a helpful assistant.\n\n"
|
||||
"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons."
|
||||
)
|
||||
),
|
||||
UserMessage(content="Please give me information about Michael Jordan."),
|
||||
],
|
||||
stream=False,
|
||||
|
|
@ -361,7 +429,10 @@ class TestInference:
|
|||
for chunk in grouped[ChatCompletionResponseEventType.progress]
|
||||
)
|
||||
first = grouped[ChatCompletionResponseEventType.progress][0]
|
||||
assert first.event.delta.parse_status == ToolCallParseStatus.started
|
||||
if not isinstance(
|
||||
first.event.delta.content, ToolCall
|
||||
): # first chunk may contain entire call
|
||||
assert first.event.delta.parse_status == ToolCallParseStatus.started
|
||||
|
||||
last = grouped[ChatCompletionResponseEventType.progress][-1]
|
||||
# assert last.event.stop_reason == expected_stop_reason
|
||||
|
|
|
|||
|
|
@ -6,9 +6,65 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from ..inference.fixtures import INFERENCE_FIXTURES
|
||||
from .fixtures import MEMORY_FIXTURES
|
||||
|
||||
|
||||
DEFAULT_PROVIDER_COMBINATIONS = [
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "meta_reference",
|
||||
"memory": "faiss",
|
||||
},
|
||||
id="meta_reference",
|
||||
marks=pytest.mark.meta_reference,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "ollama",
|
||||
"memory": "pgvector",
|
||||
},
|
||||
id="ollama",
|
||||
marks=pytest.mark.ollama,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "together",
|
||||
"memory": "chroma",
|
||||
},
|
||||
id="chroma",
|
||||
marks=pytest.mark.chroma,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "bedrock",
|
||||
"memory": "qdrant",
|
||||
},
|
||||
id="qdrant",
|
||||
marks=pytest.mark.qdrant,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "fireworks",
|
||||
"memory": "weaviate",
|
||||
},
|
||||
id="weaviate",
|
||||
marks=pytest.mark.weaviate,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--inference-model",
|
||||
action="store",
|
||||
default=None,
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
for fixture_name in MEMORY_FIXTURES:
|
||||
config.addinivalue_line(
|
||||
|
|
@ -18,12 +74,22 @@ def pytest_configure(config):
|
|||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
if "inference_model" in metafunc.fixturenames:
|
||||
model = metafunc.config.getoption("--inference-model")
|
||||
if not model:
|
||||
raise ValueError(
|
||||
"No inference model specified. Please provide a valid inference model."
|
||||
)
|
||||
params = [pytest.param(model, id="")]
|
||||
|
||||
metafunc.parametrize("inference_model", params, indirect=True)
|
||||
if "memory_stack" in metafunc.fixturenames:
|
||||
metafunc.parametrize(
|
||||
"memory_stack",
|
||||
[
|
||||
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
|
||||
for fixture_name in MEMORY_FIXTURES
|
||||
],
|
||||
indirect=True,
|
||||
available_fixtures = {
|
||||
"inference": INFERENCE_FIXTURES,
|
||||
"memory": MEMORY_FIXTURES,
|
||||
}
|
||||
combinations = (
|
||||
get_provider_fixture_overrides(metafunc.config, available_fixtures)
|
||||
or DEFAULT_PROVIDER_COMBINATIONS
|
||||
)
|
||||
metafunc.parametrize("memory_stack", combinations, indirect=True)
|
||||
|
|
|
|||
|
|
@ -10,8 +10,12 @@ import tempfile
|
|||
import pytest
|
||||
import pytest_asyncio
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider, RemoteProviderConfig
|
||||
from llama_stack.apis.inference import ModelInput, ModelType
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
|
||||
from llama_stack.providers.remote.memory.chroma import ChromaRemoteImplConfig
|
||||
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
|
||||
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
|
|
@ -79,15 +83,21 @@ def memory_weaviate() -> ProviderFixture:
|
|||
|
||||
@pytest.fixture(scope="session")
|
||||
def memory_chroma() -> ProviderFixture:
|
||||
url = os.getenv("CHROMA_URL")
|
||||
if url:
|
||||
config = ChromaRemoteImplConfig(url=url)
|
||||
provider_type = "remote::chromadb"
|
||||
else:
|
||||
if not os.getenv("CHROMA_DB_PATH"):
|
||||
raise ValueError("CHROMA_DB_PATH or CHROMA_URL must be set")
|
||||
config = ChromaInlineImplConfig(db_path=os.getenv("CHROMA_DB_PATH"))
|
||||
provider_type = "inline::chromadb"
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="chroma",
|
||||
provider_type="remote::chromadb",
|
||||
config=RemoteProviderConfig(
|
||||
host=get_env_or_fail("CHROMA_HOST"),
|
||||
port=get_env_or_fail("CHROMA_PORT"),
|
||||
).model_dump(),
|
||||
provider_type=provider_type,
|
||||
config=config.model_dump(),
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
@ -97,14 +107,30 @@ MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def memory_stack(request):
|
||||
fixture_name = request.param
|
||||
fixture = request.getfixturevalue(f"memory_{fixture_name}")
|
||||
async def memory_stack(inference_model, request):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
provider_data = {}
|
||||
for key in ["inference", "memory"]:
|
||||
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
||||
providers[key] = fixture.providers
|
||||
if fixture.provider_data:
|
||||
provider_data.update(fixture.provider_data)
|
||||
|
||||
test_stack = await construct_stack_for_test(
|
||||
[Api.memory],
|
||||
{"memory": fixture.providers},
|
||||
fixture.provider_data,
|
||||
[Api.memory, Api.inference],
|
||||
providers,
|
||||
provider_data,
|
||||
models=[
|
||||
ModelInput(
|
||||
model_id=inference_model,
|
||||
model_type=ModelType.embedding,
|
||||
metadata={
|
||||
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
|
||||
},
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]
|
||||
|
|
|
|||
BIN
llama_stack/providers/tests/memory/fixtures/dummy.pdf
Normal file
BIN
llama_stack/providers/tests/memory/fixtures/dummy.pdf
Normal file
Binary file not shown.
|
|
@ -45,12 +45,14 @@ def sample_documents():
|
|||
]
|
||||
|
||||
|
||||
async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
|
||||
async def register_memory_bank(
|
||||
banks_impl: MemoryBanks, inference_model: str
|
||||
) -> MemoryBank:
|
||||
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
||||
return await banks_impl.register_memory_bank(
|
||||
memory_bank_id=bank_id,
|
||||
params=VectorMemoryBankParams(
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_model=inference_model,
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
),
|
||||
|
|
@ -59,11 +61,11 @@ async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
|
|||
|
||||
class TestMemory:
|
||||
@pytest.mark.asyncio
|
||||
async def test_banks_list(self, memory_stack):
|
||||
async def test_banks_list(self, memory_stack, inference_model):
|
||||
_, banks_impl = memory_stack
|
||||
|
||||
# Register a test bank
|
||||
registered_bank = await register_memory_bank(banks_impl)
|
||||
registered_bank = await register_memory_bank(banks_impl, inference_model)
|
||||
|
||||
try:
|
||||
# Verify our bank shows up in list
|
||||
|
|
@ -84,7 +86,7 @@ class TestMemory:
|
|||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_banks_register(self, memory_stack):
|
||||
async def test_banks_register(self, memory_stack, inference_model):
|
||||
_, banks_impl = memory_stack
|
||||
|
||||
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
||||
|
|
@ -94,7 +96,7 @@ class TestMemory:
|
|||
await banks_impl.register_memory_bank(
|
||||
memory_bank_id=bank_id,
|
||||
params=VectorMemoryBankParams(
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_model=inference_model,
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
),
|
||||
|
|
@ -109,7 +111,7 @@ class TestMemory:
|
|||
await banks_impl.register_memory_bank(
|
||||
memory_bank_id=bank_id,
|
||||
params=VectorMemoryBankParams(
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_model=inference_model,
|
||||
chunk_size_in_tokens=512,
|
||||
overlap_size_in_tokens=64,
|
||||
),
|
||||
|
|
@ -126,13 +128,15 @@ class TestMemory:
|
|||
await banks_impl.unregister_memory_bank(bank_id)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_documents(self, memory_stack, sample_documents):
|
||||
async def test_query_documents(
|
||||
self, memory_stack, inference_model, sample_documents
|
||||
):
|
||||
memory_impl, banks_impl = memory_stack
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
await memory_impl.insert_documents("test_bank", sample_documents)
|
||||
|
||||
registered_bank = await register_memory_bank(banks_impl)
|
||||
registered_bank = await register_memory_bank(banks_impl, inference_model)
|
||||
await memory_impl.insert_documents(
|
||||
registered_bank.memory_bank_id, sample_documents
|
||||
)
|
||||
|
|
@ -165,13 +169,13 @@ class TestMemory:
|
|||
|
||||
# Test case 5: Query with threshold on similarity score
|
||||
query5 = "quantum computing" # Not directly related to any document
|
||||
params5 = {"score_threshold": 0.2}
|
||||
params5 = {"score_threshold": 0.01}
|
||||
response5 = await memory_impl.query_documents(
|
||||
registered_bank.memory_bank_id, query5, params5
|
||||
)
|
||||
assert_valid_response(response5)
|
||||
print("The scores are:", response5.scores)
|
||||
assert all(score >= 0.2 for score in response5.scores)
|
||||
assert all(score >= 0.01 for score in response5.scores)
|
||||
|
||||
|
||||
def assert_valid_response(response: QueryDocumentsResponse):
|
||||
|
|
|
|||
76
llama_stack/providers/tests/memory/test_vector_store.py
Normal file
76
llama_stack/providers/tests/memory/test_vector_store.py
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import mimetypes
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.memory.memory import MemoryBankDocument, URL
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_doc
|
||||
|
||||
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"
|
||||
|
||||
|
||||
def read_file(file_path: str) -> bytes:
|
||||
with open(file_path, "rb") as file:
|
||||
return file.read()
|
||||
|
||||
|
||||
def data_url_from_file(file_path: str) -> str:
|
||||
with open(file_path, "rb") as file:
|
||||
file_content = file.read()
|
||||
|
||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||
mime_type, _ = mimetypes.guess_type(file_path)
|
||||
|
||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||
|
||||
return data_url
|
||||
|
||||
|
||||
class TestVectorStore:
|
||||
@pytest.mark.asyncio
|
||||
async def test_returns_content_from_pdf_data_uri(self):
|
||||
data_uri = data_url_from_file(DUMMY_PDF_PATH)
|
||||
doc = MemoryBankDocument(
|
||||
document_id="dummy",
|
||||
content=data_uri,
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content == "Dummy PDF file"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_downloads_pdf_and_returns_content(self):
|
||||
# Using GitHub to host the PDF file
|
||||
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
|
||||
doc = MemoryBankDocument(
|
||||
document_id="dummy",
|
||||
content=url,
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content == "Dummy PDF file"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_downloads_pdf_and_returns_content_with_url_object(self):
|
||||
# Using GitHub to host the PDF file
|
||||
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
|
||||
doc = MemoryBankDocument(
|
||||
document_id="dummy",
|
||||
content=URL(
|
||||
uri=url,
|
||||
),
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content == "Dummy PDF file"
|
||||
|
|
@ -19,6 +19,7 @@ class TestPostTraining:
|
|||
@pytest.mark.asyncio
|
||||
async def test_supervised_fine_tune(self, post_training_stack):
|
||||
algorithm_config = LoraFinetuningConfig(
|
||||
type="LoRA",
|
||||
lora_attn_modules=["q_proj", "v_proj", "output_proj"],
|
||||
apply_lora_to_mlp=True,
|
||||
apply_lora_to_output=False,
|
||||
|
|
|
|||
|
|
@ -47,6 +47,7 @@ def pytest_configure(config):
|
|||
for fixture_name in [
|
||||
"basic_scoring_together_inference",
|
||||
"braintrust_scoring_together_inference",
|
||||
"llm_as_judge_scoring_together_inference",
|
||||
]:
|
||||
config.addinivalue_line(
|
||||
"markers",
|
||||
|
|
@ -61,9 +62,23 @@ def pytest_addoption(parser):
|
|||
default="meta-llama/Llama-3.2-3B-Instruct",
|
||||
help="Specify the inference model to use for testing",
|
||||
)
|
||||
parser.addoption(
|
||||
"--judge-model",
|
||||
action="store",
|
||||
default="meta-llama/Llama-3.1-8B-Instruct",
|
||||
help="Specify the judge model to use for testing",
|
||||
)
|
||||
|
||||
|
||||
def pytest_generate_tests(metafunc):
|
||||
judge_model = metafunc.config.getoption("--judge-model")
|
||||
if "judge_model" in metafunc.fixturenames:
|
||||
metafunc.parametrize(
|
||||
"judge_model",
|
||||
[pytest.param(judge_model, id="")],
|
||||
indirect=True,
|
||||
)
|
||||
|
||||
if "scoring_stack" in metafunc.fixturenames:
|
||||
available_fixtures = {
|
||||
"scoring": SCORING_FIXTURES,
|
||||
|
|
|
|||
|
|
@ -10,9 +10,10 @@ import pytest_asyncio
|
|||
from llama_stack.apis.models import ModelInput
|
||||
|
||||
from llama_stack.distribution.datatypes import Api, Provider
|
||||
|
||||
from llama_stack.providers.inline.scoring.braintrust import BraintrustScoringConfig
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||
from ..env import get_env_or_fail
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
|
@ -20,6 +21,13 @@ def scoring_remote() -> ProviderFixture:
|
|||
return remote_stack_fixture()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def judge_model(request):
|
||||
if hasattr(request, "param"):
|
||||
return request.param
|
||||
return request.config.getoption("--judge-model", None)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def scoring_basic() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
|
|
@ -40,7 +48,9 @@ def scoring_braintrust() -> ProviderFixture:
|
|||
Provider(
|
||||
provider_id="braintrust",
|
||||
provider_type="inline::braintrust",
|
||||
config={},
|
||||
config=BraintrustScoringConfig(
|
||||
openai_api_key=get_env_or_fail("OPENAI_API_KEY"),
|
||||
).model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
|
@ -63,7 +73,7 @@ SCORING_FIXTURES = ["basic", "remote", "braintrust", "llm_as_judge"]
|
|||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
async def scoring_stack(request, inference_model):
|
||||
async def scoring_stack(request, inference_model, judge_model):
|
||||
fixture_dict = request.param
|
||||
|
||||
providers = {}
|
||||
|
|
@ -82,8 +92,7 @@ async def scoring_stack(request, inference_model):
|
|||
ModelInput(model_id=model)
|
||||
for model in [
|
||||
inference_model,
|
||||
"Llama3.1-405B-Instruct",
|
||||
"Llama3.1-8B-Instruct",
|
||||
judge_model,
|
||||
]
|
||||
],
|
||||
)
|
||||
|
|
|
|||
|
|
@ -7,7 +7,12 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.scoring_functions import * # noqa: F403
|
||||
from llama_stack.apis.scoring_functions import (
|
||||
AggregationFunctionType,
|
||||
BasicScoringFnParams,
|
||||
LLMAsJudgeScoringFnParams,
|
||||
RegexParserScoringFnParams,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import Api
|
||||
from llama_stack.providers.tests.datasetio.test_datasetio import register_dataset
|
||||
|
||||
|
|
@ -18,6 +23,11 @@ from llama_stack.providers.tests.datasetio.test_datasetio import register_datase
|
|||
# -v -s --tb=short --disable-warnings
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_judge_prompt_template():
|
||||
return "Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9."
|
||||
|
||||
|
||||
class TestScoring:
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_functions_list(self, scoring_stack):
|
||||
|
|
@ -54,12 +64,6 @@ class TestScoring:
|
|||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) == 1
|
||||
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
# scoring individual rows
|
||||
rows = await datasetio_impl.get_rows_paginated(
|
||||
dataset_id="test_dataset",
|
||||
|
|
@ -92,7 +96,9 @@ class TestScoring:
|
|||
assert len(response.results[x].score_rows) == 5
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_score_with_params(self, scoring_stack):
|
||||
async def test_scoring_score_with_params_llm_as_judge(
|
||||
self, scoring_stack, sample_judge_prompt_template, judge_model
|
||||
):
|
||||
(
|
||||
scoring_impl,
|
||||
scoring_functions_impl,
|
||||
|
|
@ -110,12 +116,6 @@ class TestScoring:
|
|||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) == 1
|
||||
|
||||
for model_id in ["Llama3.1-405B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
|
||||
provider_id = scoring_fns_list[0].provider_id
|
||||
if provider_id == "braintrust" or provider_id == "basic":
|
||||
|
|
@ -129,10 +129,11 @@ class TestScoring:
|
|||
assert len(rows.rows) == 3
|
||||
|
||||
scoring_functions = {
|
||||
"llm-as-judge::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-405B-Instruct",
|
||||
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
|
||||
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
|
||||
judge_model=judge_model,
|
||||
prompt_template=sample_judge_prompt_template,
|
||||
judge_score_regexes=[r"Score: (\d+)"],
|
||||
aggregation_functions=[AggregationFunctionType.categorical_count],
|
||||
)
|
||||
}
|
||||
|
||||
|
|
@ -154,3 +155,67 @@ class TestScoring:
|
|||
for x in scoring_functions:
|
||||
assert x in response.results
|
||||
assert len(response.results[x].score_rows) == 5
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_scoring_score_with_aggregation_functions(
|
||||
self, scoring_stack, sample_judge_prompt_template, judge_model
|
||||
):
|
||||
(
|
||||
scoring_impl,
|
||||
scoring_functions_impl,
|
||||
datasetio_impl,
|
||||
datasets_impl,
|
||||
models_impl,
|
||||
) = (
|
||||
scoring_stack[Api.scoring],
|
||||
scoring_stack[Api.scoring_functions],
|
||||
scoring_stack[Api.datasetio],
|
||||
scoring_stack[Api.datasets],
|
||||
scoring_stack[Api.models],
|
||||
)
|
||||
await register_dataset(datasets_impl)
|
||||
rows = await datasetio_impl.get_rows_paginated(
|
||||
dataset_id="test_dataset",
|
||||
rows_in_page=3,
|
||||
)
|
||||
assert len(rows.rows) == 3
|
||||
|
||||
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
|
||||
scoring_functions = {}
|
||||
aggr_fns = [
|
||||
AggregationFunctionType.accuracy,
|
||||
AggregationFunctionType.median,
|
||||
AggregationFunctionType.categorical_count,
|
||||
AggregationFunctionType.average,
|
||||
]
|
||||
for x in scoring_fns_list:
|
||||
if x.provider_id == "llm-as-judge":
|
||||
aggr_fns = [AggregationFunctionType.categorical_count]
|
||||
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
|
||||
judge_model=judge_model,
|
||||
prompt_template=sample_judge_prompt_template,
|
||||
judge_score_regexes=[r"Score: (\d+)"],
|
||||
aggregation_functions=aggr_fns,
|
||||
)
|
||||
elif x.provider_id == "basic":
|
||||
if "regex_parser" in x.identifier:
|
||||
scoring_functions[x.identifier] = RegexParserScoringFnParams(
|
||||
aggregation_functions=aggr_fns,
|
||||
)
|
||||
else:
|
||||
scoring_functions[x.identifier] = BasicScoringFnParams(
|
||||
aggregation_functions=aggr_fns,
|
||||
)
|
||||
else:
|
||||
scoring_functions[x.identifier] = None
|
||||
|
||||
response = await scoring_impl.score(
|
||||
input_rows=rows.rows,
|
||||
scoring_functions=scoring_functions,
|
||||
)
|
||||
|
||||
assert len(response.results) == len(scoring_functions)
|
||||
for x in scoring_functions:
|
||||
assert x in response.results
|
||||
assert len(response.results[x].score_rows) == len(rows.rows)
|
||||
assert len(response.results[x].aggregated_results) == len(aggr_fns)
|
||||
|
|
|
|||
|
|
@ -27,7 +27,8 @@ def supported_inference_models() -> List[Model]:
|
|||
m
|
||||
for m in all_registered_models()
|
||||
if (
|
||||
m.model_family in {ModelFamily.llama3_1, ModelFamily.llama3_2}
|
||||
m.model_family
|
||||
in {ModelFamily.llama3_1, ModelFamily.llama3_2, ModelFamily.llama3_3}
|
||||
or is_supported_safety_model(m)
|
||||
)
|
||||
]
|
||||
|
|
|
|||
47
llama_stack/providers/utils/inference/embedding_mixin.py
Normal file
47
llama_stack/providers/utils/inference/embedding_mixin.py
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
from llama_models.llama3.api.datatypes import InterleavedTextMedia
|
||||
|
||||
from llama_stack.apis.inference.inference import EmbeddingsResponse, ModelStore
|
||||
|
||||
EMBEDDING_MODELS = {}
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SentenceTransformerEmbeddingMixin:
|
||||
model_store: ModelStore
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
embedding_model = self._load_sentence_transformer_model(
|
||||
model.provider_resource_id
|
||||
)
|
||||
embeddings = embedding_model.encode(contents)
|
||||
return EmbeddingsResponse(embeddings=embeddings)
|
||||
|
||||
def _load_sentence_transformer_model(self, model: str) -> "SentenceTransformer":
|
||||
global EMBEDDING_MODELS
|
||||
|
||||
loaded_model = EMBEDDING_MODELS.get(model)
|
||||
if loaded_model is not None:
|
||||
return loaded_model
|
||||
|
||||
log.info(f"Loading sentence transformer for {model}...")
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
loaded_model = SentenceTransformer(model)
|
||||
EMBEDDING_MODELS[model] = loaded_model
|
||||
return loaded_model
|
||||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue