mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 01:48:05 +00:00
Merge 606b9f0ca4 into 8d01baeb59
This commit is contained in:
commit
01989eedb3
6 changed files with 211 additions and 53 deletions
|
|
@ -176,7 +176,7 @@ class InferenceRouter(Inference):
|
|||
async def openai_completion(
|
||||
self,
|
||||
params: Annotated[OpenAICompletionRequestWithExtraBody, Body(...)],
|
||||
) -> OpenAICompletion:
|
||||
) -> OpenAICompletion | AsyncIterator[Any]:
|
||||
logger.debug(
|
||||
f"InferenceRouter.openai_completion: model={params.model}, stream={params.stream}, prompt={params.prompt}",
|
||||
)
|
||||
|
|
@ -185,9 +185,12 @@ class InferenceRouter(Inference):
|
|||
params.model = provider_resource_id
|
||||
|
||||
if params.stream:
|
||||
return await provider.openai_completion(params)
|
||||
# TODO: Metrics do NOT work with openai_completion stream=True due to the fact
|
||||
# that we do not return an AsyncIterator, our tests expect a stream of chunks we cannot intercept currently.
|
||||
response_stream = await provider.openai_completion(params)
|
||||
return self.wrap_completion_stream_with_metrics(
|
||||
response=response_stream,
|
||||
fully_qualified_model_id=request_model_id,
|
||||
provider_id=provider.__provider_id__,
|
||||
)
|
||||
|
||||
response = await provider.openai_completion(params)
|
||||
response.model = request_model_id
|
||||
|
|
@ -412,16 +415,17 @@ class InferenceRouter(Inference):
|
|||
completion_text += "".join(choice_data["content_parts"])
|
||||
|
||||
# Add metrics to the chunk
|
||||
if self.telemetry_enabled and hasattr(chunk, "usage") and chunk.usage:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=chunk.usage.prompt_tokens,
|
||||
completion_tokens=chunk.usage.completion_tokens,
|
||||
total_tokens=chunk.usage.total_tokens,
|
||||
fully_qualified_model_id=fully_qualified_model_id,
|
||||
provider_id=provider_id,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
if self.telemetry_enabled:
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=chunk.usage.prompt_tokens,
|
||||
completion_tokens=chunk.usage.completion_tokens,
|
||||
total_tokens=chunk.usage.total_tokens,
|
||||
fully_qualified_model_id=fully_qualified_model_id,
|
||||
provider_id=provider_id,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
||||
yield chunk
|
||||
finally:
|
||||
|
|
@ -471,3 +475,31 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
logger.debug(f"InferenceRouter.completion_response: {final_response}")
|
||||
asyncio.create_task(self.store.store_chat_completion(final_response, messages))
|
||||
|
||||
async def wrap_completion_stream_with_metrics(
|
||||
self,
|
||||
response: AsyncIterator,
|
||||
fully_qualified_model_id: str,
|
||||
provider_id: str,
|
||||
) -> AsyncIterator:
|
||||
"""Stream OpenAI completion chunks and compute metrics on final chunk."""
|
||||
|
||||
async for chunk in response:
|
||||
if hasattr(chunk, "model"):
|
||||
chunk.model = fully_qualified_model_id
|
||||
|
||||
if getattr(chunk, "choices", None) and any(c.finish_reason for c in chunk.choices):
|
||||
if self.telemetry_enabled:
|
||||
if getattr(chunk, "usage", None):
|
||||
usage = chunk.usage
|
||||
metrics = self._construct_metrics(
|
||||
prompt_tokens=usage.prompt_tokens,
|
||||
completion_tokens=usage.completion_tokens,
|
||||
total_tokens=usage.total_tokens,
|
||||
fully_qualified_model_id=fully_qualified_model_id,
|
||||
provider_id=provider_id,
|
||||
)
|
||||
for metric in metrics:
|
||||
enqueue_event(metric)
|
||||
|
||||
yield chunk
|
||||
|
|
|
|||
|
|
@ -8,7 +8,6 @@ from collections.abc import AsyncIterator, Iterable
|
|||
|
||||
from openai import AuthenticationError
|
||||
|
||||
from llama_stack.core.telemetry.tracing import get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack_api import (
|
||||
|
|
@ -82,14 +81,7 @@ class BedrockInferenceAdapter(OpenAIMixin):
|
|||
self,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Override to enable streaming usage metrics and handle authentication errors."""
|
||||
# Enable streaming usage metrics when telemetry is active
|
||||
if params.stream and get_current_span() is not None:
|
||||
if params.stream_options is None:
|
||||
params.stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in params.stream_options:
|
||||
params.stream_options = {**params.stream_options, "include_usage": True}
|
||||
|
||||
"""Override to handle authentication errors and null responses."""
|
||||
try:
|
||||
logger.debug(f"Calling Bedrock OpenAI API with model={params.model}, stream={params.stream}")
|
||||
result = await super().openai_chat_completion(params=params)
|
||||
|
|
|
|||
|
|
@ -4,14 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack_api import (
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
)
|
||||
|
||||
from .config import RunpodImplConfig
|
||||
|
||||
|
|
@ -29,15 +22,3 @@ class RunpodInferenceAdapter(OpenAIMixin):
|
|||
def get_base_url(self) -> str:
|
||||
"""Get base URL for OpenAI client."""
|
||||
return str(self.config.base_url)
|
||||
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Override to add RunPod-specific stream_options requirement."""
|
||||
params = params.model_copy()
|
||||
|
||||
if params.stream and not params.stream_options:
|
||||
params.stream_options = {"include_usage": True}
|
||||
|
||||
return await super().openai_chat_completion(params)
|
||||
|
|
|
|||
|
|
@ -10,7 +10,6 @@ from typing import Any
|
|||
import litellm
|
||||
import requests
|
||||
|
||||
from llama_stack.core.telemetry.tracing import get_current_span
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.remote.inference.watsonx.config import WatsonXConfig
|
||||
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
||||
|
|
@ -56,15 +55,6 @@ class WatsonXInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
Override parent method to add timeout and inject usage object when missing.
|
||||
This works around a LiteLLM defect where usage block is sometimes dropped.
|
||||
"""
|
||||
|
||||
# Add usage tracking for streaming when telemetry is active
|
||||
stream_options = params.stream_options
|
||||
if params.stream and get_current_span() is not None:
|
||||
if stream_options is None:
|
||||
stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in stream_options:
|
||||
stream_options = {**stream_options, "include_usage": True}
|
||||
|
||||
model_obj = await self.model_store.get_model(params.model)
|
||||
|
||||
request_params = await prepare_openai_completion_params(
|
||||
|
|
@ -84,7 +74,7 @@ class WatsonXInferenceAdapter(LiteLLMOpenAIMixin):
|
|||
seed=params.seed,
|
||||
stop=params.stop,
|
||||
stream=params.stream,
|
||||
stream_options=stream_options,
|
||||
stream_options=params.stream_options,
|
||||
temperature=params.temperature,
|
||||
tool_choice=params.tool_choice,
|
||||
tools=params.tools,
|
||||
|
|
|
|||
|
|
@ -271,6 +271,16 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
"""
|
||||
Direct OpenAI completion API call.
|
||||
"""
|
||||
from llama_stack.core.telemetry.tracing import get_current_span
|
||||
|
||||
# inject if streaming AND telemetry active
|
||||
if params.stream and get_current_span() is not None:
|
||||
params = params.model_copy()
|
||||
if params.stream_options is None:
|
||||
params.stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in params.stream_options:
|
||||
params.stream_options = {**params.stream_options, "include_usage": True}
|
||||
|
||||
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
||||
provider_model_id = await self._get_provider_model_id(params.model)
|
||||
self._validate_model_allowed(provider_model_id)
|
||||
|
|
@ -308,6 +318,16 @@ class OpenAIMixin(NeedsRequestProviderData, ABC, BaseModel):
|
|||
"""
|
||||
Direct OpenAI chat completion API call.
|
||||
"""
|
||||
from llama_stack.core.telemetry.tracing import get_current_span
|
||||
|
||||
# inject if streaming AND telemetry active
|
||||
if params.stream and get_current_span() is not None:
|
||||
params = params.model_copy()
|
||||
if params.stream_options is None:
|
||||
params.stream_options = {"include_usage": True}
|
||||
elif "include_usage" not in params.stream_options:
|
||||
params.stream_options = {**params.stream_options, "include_usage": True}
|
||||
|
||||
provider_model_id = await self._get_provider_model_id(params.model)
|
||||
self._validate_model_allowed(provider_model_id)
|
||||
|
||||
|
|
|
|||
|
|
@ -934,3 +934,146 @@ class TestOpenAIMixinAllowedModelsInference:
|
|||
model="gpt-4", messages=[OpenAIUserMessageParam(role="user", content="Hello")]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class TestOpenAIMixinStreamingMetrics:
|
||||
"""Test cases for streaming metrics injection in OpenAIMixin"""
|
||||
|
||||
async def test_openai_chat_completion_streaming_metrics_injection(self, mixin, mock_client_context):
|
||||
"""Test that stream_options={"include_usage": True} is injected when streaming and telemetry is enabled"""
|
||||
|
||||
params = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="test-model",
|
||||
messages=[{"role": "user", "content": "hello"}],
|
||||
stream=True,
|
||||
stream_options=None,
|
||||
)
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with patch("llama_stack.core.telemetry.tracing.get_current_span") as mock_get_span:
|
||||
mock_get_span.return_value = MagicMock()
|
||||
|
||||
with patch(
|
||||
"llama_stack.providers.utils.inference.openai_mixin.prepare_openai_completion_params"
|
||||
) as mock_prepare:
|
||||
mock_prepare.return_value = {"model": "test-model"}
|
||||
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
call_kwargs = mock_prepare.call_args.kwargs
|
||||
assert call_kwargs["stream_options"] == {"include_usage": True}
|
||||
|
||||
assert params.stream_options is None
|
||||
|
||||
async def test_openai_chat_completion_streaming_no_telemetry(self, mixin, mock_client_context):
|
||||
"""Test that stream_options is NOT injected when telemetry is disabled"""
|
||||
|
||||
params = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="test-model",
|
||||
messages=[{"role": "user", "content": "hello"}],
|
||||
stream=True,
|
||||
stream_options=None,
|
||||
)
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with patch("llama_stack.core.telemetry.tracing.get_current_span") as mock_get_span:
|
||||
mock_get_span.return_value = None
|
||||
|
||||
with patch(
|
||||
"llama_stack.providers.utils.inference.openai_mixin.prepare_openai_completion_params"
|
||||
) as mock_prepare:
|
||||
mock_prepare.return_value = {"model": "test-model"}
|
||||
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
call_kwargs = mock_prepare.call_args.kwargs
|
||||
assert call_kwargs["stream_options"] is None
|
||||
|
||||
async def test_openai_completion_streaming_metrics_injection(self, mixin, mock_client_context):
|
||||
"""Test that stream_options={"include_usage": True} is injected for legacy completion"""
|
||||
|
||||
params = OpenAICompletionRequestWithExtraBody(
|
||||
model="test-model",
|
||||
prompt="hello",
|
||||
stream=True,
|
||||
stream_options=None,
|
||||
)
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with patch("llama_stack.core.telemetry.tracing.get_current_span") as mock_get_span:
|
||||
mock_get_span.return_value = MagicMock()
|
||||
|
||||
with patch(
|
||||
"llama_stack.providers.utils.inference.openai_mixin.prepare_openai_completion_params"
|
||||
) as mock_prepare:
|
||||
mock_prepare.return_value = {"model": "test-model"}
|
||||
|
||||
await mixin.openai_completion(params)
|
||||
|
||||
call_kwargs = mock_prepare.call_args.kwargs
|
||||
assert call_kwargs["stream_options"] == {"include_usage": True}
|
||||
assert params.stream_options is None
|
||||
|
||||
async def test_preserves_existing_stream_options(self, mixin, mock_client_context):
|
||||
"""Test that existing stream_options are preserved and merged"""
|
||||
|
||||
params = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="test-model",
|
||||
messages=[{"role": "user", "content": "hello"}],
|
||||
stream=True,
|
||||
stream_options={"include_usage": False},
|
||||
)
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with patch("llama_stack.core.telemetry.tracing.get_current_span") as mock_get_span:
|
||||
mock_get_span.return_value = MagicMock()
|
||||
|
||||
with patch(
|
||||
"llama_stack.providers.utils.inference.openai_mixin.prepare_openai_completion_params"
|
||||
) as mock_prepare:
|
||||
mock_prepare.return_value = {"model": "test-model"}
|
||||
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
call_kwargs = mock_prepare.call_args.kwargs
|
||||
# It should stay False because it was present
|
||||
assert call_kwargs["stream_options"] == {"include_usage": False}
|
||||
|
||||
async def test_merges_existing_stream_options(self, mixin, mock_client_context):
|
||||
"""Test that existing stream_options are merged"""
|
||||
|
||||
params = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model="test-model",
|
||||
messages=[{"role": "user", "content": "hello"}],
|
||||
stream=True,
|
||||
stream_options={"other_option": True},
|
||||
)
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_client.chat.completions.create = AsyncMock(return_value=MagicMock())
|
||||
|
||||
with mock_client_context(mixin, mock_client):
|
||||
with patch("llama_stack.core.telemetry.tracing.get_current_span") as mock_get_span:
|
||||
mock_get_span.return_value = MagicMock()
|
||||
|
||||
with patch(
|
||||
"llama_stack.providers.utils.inference.openai_mixin.prepare_openai_completion_params"
|
||||
) as mock_prepare:
|
||||
mock_prepare.return_value = {"model": "test-model"}
|
||||
|
||||
await mixin.openai_chat_completion(params)
|
||||
|
||||
call_kwargs = mock_prepare.call_args.kwargs
|
||||
assert call_kwargs["stream_options"] == {"other_option": True, "include_usage": True}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue