make TGI work well

This commit is contained in:
Hardik Shah 2025-03-28 15:38:27 -07:00
parent e58c7f6c37
commit 021dd0d35d
9 changed files with 617 additions and 326 deletions

View file

@ -8,7 +8,7 @@
import logging
from typing import AsyncGenerator, List, Optional
from huggingface_hub import AsyncInferenceClient, HfApi
from huggingface_hub import AsyncInferenceClient, HfApi, InferenceClient
from llama_stack.apis.common.content_types import (
InterleavedContent,
@ -21,6 +21,7 @@ from llama_stack.apis.inference import (
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
ResponseFormat,
@ -33,16 +34,23 @@ from llama_stack.apis.inference import (
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.log import get_logger
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import ModelsProtocolPrivate
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
convert_chat_completion_request_to_openai_params,
convert_completion_request_to_openai_params,
convert_message_to_openai_dict_new,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_tooldef_to_openai_tool,
get_sampling_options,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
@ -55,7 +63,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
log = logging.getLogger(__name__)
logger = get_logger(name=__name__, category="inference")
def build_hf_repo_model_entries():
@ -77,7 +85,9 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
def __init__(self) -> None:
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
self.huggingface_repo_to_llama_model_id = {
model.huggingface_repo: model.descriptor() for model in all_registered_models() if model.huggingface_repo
model.huggingface_repo: model.descriptor()
for model in all_registered_models()
if model.huggingface_repo
}
async def shutdown(self) -> None:
@ -103,6 +113,9 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
if response_format:
raise ValueError(f"TGI does not support Response Format for completions.")
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
@ -153,13 +166,17 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
return options
async def _get_params_for_completion(self, request: CompletionRequest) -> dict:
prompt, input_tokens = await completion_request_to_prompt_model_input_info(request)
prompt, input_tokens = await completion_request_to_prompt_model_input_info(
request
)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
max_new_tokens=self._get_max_new_tokens(
request.sampling_params, input_tokens
),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**self._build_options(request.sampling_params, request.response_format),
)
@ -168,14 +185,16 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
params = await self._get_params_for_completion(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
async for chunk in s:
s = self.client.text_generation(**params)
for chunk in s:
token_result = chunk.token
finish_reason = None
if chunk.details:
finish_reason = chunk.details.finish_reason
choice = OpenAICompatCompletionChoice(text=token_result.text, finish_reason=finish_reason)
choice = OpenAICompatCompletionChoice(
text=token_result.text, finish_reason=finish_reason
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
@ -186,7 +205,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params_for_completion(request)
r = await self.client.text_generation(**params)
r = self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
@ -215,6 +234,9 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
from rich.pretty import pprint
pprint(messages)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
@ -226,53 +248,22 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
tool_config=tool_config,
)
params = await convert_chat_completion_request_to_openai_params(request)
import json
# print(json.dumps(params, indent=2))
pprint(params)
response = self.client.chat.completions.create(**params)
if stream:
return self._stream_chat_completion(request)
return convert_openai_chat_completion_stream(
response, enable_incremental_tool_calls=True
)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
text="".join(t.text for t in r.details.tokens),
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_chat_completion_response(response, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
async for chunk in s:
token_result = chunk.token
choice = OpenAICompatCompletionChoice(text=token_result.text)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: ChatCompletionRequest) -> dict:
prompt, input_tokens = await chat_completion_request_to_model_input_info(
request, self.register_helper.get_llama_model(request.model)
)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**self._build_options(request.sampling_params, request.response_format),
)
return convert_openai_chat_completion_choice(response.choices[0])
async def embeddings(
self,
@ -287,18 +278,21 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
class TGIAdapter(_HfAdapter):
async def initialize(self, config: TGIImplConfig) -> None:
log.info(f"Initializing TGI client with url={config.url}")
self.client = AsyncInferenceClient(
model=config.url,
)
endpoint_info = await self.client.get_endpoint_info()
logger.info(f"Initializing TGI client with url={config.url}")
# unfortunately, the TGI async client does not work well with proxies
# so using sync client for now instead
self.client = InferenceClient(model=f"{config.url}")
endpoint_info = self.client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
self.model_id = endpoint_info["model_id"]
class InferenceAPIAdapter(_HfAdapter):
async def initialize(self, config: InferenceAPIImplConfig) -> None:
self.client = AsyncInferenceClient(model=config.huggingface_repo, token=config.api_token.get_secret_value())
self.client = AsyncInferenceClient(
model=config.huggingface_repo, token=config.api_token.get_secret_value()
)
endpoint_info = await self.client.get_endpoint_info()
self.max_tokens = endpoint_info["max_total_tokens"]
self.model_id = endpoint_info["model_id"]
@ -316,4 +310,6 @@ class InferenceEndpointAdapter(_HfAdapter):
# Initialize the adapter
self.client = endpoint.async_client
self.model_id = endpoint.repository
self.max_tokens = int(endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"])
self.max_tokens = int(
endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"]
)