make TGI work well

This commit is contained in:
Hardik Shah 2025-03-28 15:38:27 -07:00
parent e58c7f6c37
commit 021dd0d35d
9 changed files with 617 additions and 326 deletions

View file

@ -33,10 +33,9 @@ from llama_stack.apis.inference import (
from llama_stack.apis.models.models import Model
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
convert_chat_completion_request_to_openai_params,
convert_message_to_openai_dict_new,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
@ -55,7 +54,9 @@ class LiteLLMOpenAIMixin(
Inference,
NeedsRequestProviderData,
):
def __init__(self, model_entries, api_key_from_config: str, provider_data_api_key_field: str):
def __init__(
self, model_entries, api_key_from_config: str, provider_data_api_key_field: str
):
ModelRegistryHelper.__init__(self, model_entries)
self.api_key_from_config = api_key_from_config
self.provider_data_api_key_field = provider_data_api_key_field
@ -95,7 +96,9 @@ class LiteLLMOpenAIMixin(
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
) -> Union[
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
@ -110,7 +113,17 @@ class LiteLLMOpenAIMixin(
tool_config=tool_config,
)
params = await self._get_params(request)
params = await convert_chat_completion_request_to_openai_params(request)
# add api_key to params if available
provider_data = self.get_request_provider_data()
key_field = self.provider_data_api_key_field
if provider_data and getattr(provider_data, key_field, None):
api_key = getattr(provider_data, key_field)
else:
api_key = self.api_key_from_config
params["api_key"] = api_key
logger.debug(f"params to litellm (openai compat): {params}")
# unfortunately, we need to use synchronous litellm.completion here because litellm
# caches various httpx.client objects in a non-eventloop aware manner
@ -132,87 +145,6 @@ class LiteLLMOpenAIMixin(
):
yield chunk
def _add_additional_properties_recursive(self, schema):
"""
Recursively add additionalProperties: False to all object schemas
"""
if isinstance(schema, dict):
if schema.get("type") == "object":
schema["additionalProperties"] = False
# Add required field with all property keys if properties exist
if "properties" in schema and schema["properties"]:
schema["required"] = list(schema["properties"].keys())
if "properties" in schema:
for prop_schema in schema["properties"].values():
self._add_additional_properties_recursive(prop_schema)
for key in ["anyOf", "allOf", "oneOf"]:
if key in schema:
for sub_schema in schema[key]:
self._add_additional_properties_recursive(sub_schema)
if "not" in schema:
self._add_additional_properties_recursive(schema["not"])
# Handle $defs/$ref
if "$defs" in schema:
for def_schema in schema["$defs"].values():
self._add_additional_properties_recursive(def_schema)
return schema
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {}
input_dict["messages"] = [await convert_message_to_openai_dict_new(m) for m in request.messages]
if fmt := request.response_format:
if not isinstance(fmt, JsonSchemaResponseFormat):
raise ValueError(
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
)
fmt = fmt.json_schema
name = fmt["title"]
del fmt["title"]
fmt["additionalProperties"] = False
# Apply additionalProperties: False recursively to all objects
fmt = self._add_additional_properties_recursive(fmt)
input_dict["response_format"] = {
"type": "json_schema",
"json_schema": {
"name": name,
"schema": fmt,
"strict": True,
},
}
if request.tools:
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
if request.tool_config.tool_choice:
input_dict["tool_choice"] = (
request.tool_config.tool_choice.value
if isinstance(request.tool_config.tool_choice, ToolChoice)
else request.tool_config.tool_choice
)
provider_data = self.get_request_provider_data()
key_field = self.provider_data_api_key_field
if provider_data and getattr(provider_data, key_field, None):
api_key = getattr(provider_data, key_field)
else:
api_key = self.api_key_from_config
return {
"model": request.model,
"api_key": api_key,
**input_dict,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model_id: str,