mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 22:59:32 +00:00
Merge branch 'main' into feat/litellm_sambanova_usage
This commit is contained in:
commit
02a4f9ac59
69 changed files with 1128 additions and 445 deletions
|
|
@ -35,12 +35,12 @@ class PandasDataframeDataset:
|
|||
else:
|
||||
return self.df.iloc[idx].to_dict()
|
||||
|
||||
def load(self) -> None:
|
||||
async def load(self) -> None:
|
||||
if self.df is not None:
|
||||
return
|
||||
|
||||
if self.dataset_def.source.type == "uri":
|
||||
self.df = get_dataframe_from_uri(self.dataset_def.source.uri)
|
||||
self.df = await get_dataframe_from_uri(self.dataset_def.source.uri)
|
||||
elif self.dataset_def.source.type == "rows":
|
||||
self.df = pandas.DataFrame(self.dataset_def.source.rows)
|
||||
else:
|
||||
|
|
@ -95,7 +95,7 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
) -> IterrowsResponse:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
dataset_impl = PandasDataframeDataset(dataset_def)
|
||||
dataset_impl.load()
|
||||
await dataset_impl.load()
|
||||
|
||||
start_index = start_index or 0
|
||||
|
||||
|
|
@ -114,7 +114,7 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|||
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
dataset_impl = PandasDataframeDataset(dataset_def)
|
||||
dataset_impl.load()
|
||||
await dataset_impl.load()
|
||||
|
||||
new_rows_df = pandas.DataFrame(rows)
|
||||
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing
|
||||
|
|
@ -213,7 +214,7 @@ def maybe_parse_message(maybe_json: Optional[str]) -> Optional[ProcessingMessage
|
|||
|
||||
def parse_message(json_str: str) -> ProcessingMessage:
|
||||
data = json.loads(json_str)
|
||||
return ProcessingMessageWrapper(**data).payload
|
||||
return copy.deepcopy(ProcessingMessageWrapper(**data).payload)
|
||||
|
||||
|
||||
def worker_process_entrypoint(
|
||||
|
|
|
|||
|
|
@ -582,6 +582,7 @@ class VLLMInferenceImpl(Inference, ModelsProtocolPrivate):
|
|||
tool_name=t.function.name,
|
||||
# vLLM function args come back as a string. Llama Stack expects JSON.
|
||||
arguments=json.loads(t.function.arguments),
|
||||
arguments_json=t.function.arguments,
|
||||
)
|
||||
for t in vllm_message.tool_calls
|
||||
],
|
||||
|
|
|
|||
|
|
@ -9,6 +9,9 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.common.type_system import (
|
||||
ChatCompletionInputType,
|
||||
DialogType,
|
||||
|
|
@ -20,7 +23,7 @@ from llama_stack.providers.utils.common.data_schema_validator import (
|
|||
validate_dataset_schema,
|
||||
)
|
||||
|
||||
EXPECTED_DATASET_SCHEMA = {
|
||||
EXPECTED_DATASET_SCHEMA: dict[str, list[dict[str, Any]]] = {
|
||||
"instruct": [
|
||||
{
|
||||
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
|
||||
|
|
@ -41,6 +44,9 @@ async def validate_input_dataset_schema(
|
|||
dataset_type: str,
|
||||
) -> None:
|
||||
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
if not dataset_def:
|
||||
raise ValueError(f"Dataset {dataset_id} does not exist.")
|
||||
|
||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
||||
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ class TorchtuneCheckpointer:
|
|||
checkpoint_files: List[str],
|
||||
output_dir: str,
|
||||
model_type: str,
|
||||
) -> None:
|
||||
):
|
||||
# Fail fast if ``checkpoint_files`` is invalid
|
||||
# TODO: support loading more than one file
|
||||
if len(checkpoint_files) != 1:
|
||||
|
|
@ -58,7 +58,7 @@ class TorchtuneCheckpointer:
|
|||
"""
|
||||
Load Meta checkpoint from file. Currently only loading from a single file is supported.
|
||||
"""
|
||||
state_dict: Dict[str:Any] = {}
|
||||
state_dict: Dict[str, Any] = {}
|
||||
model_state_dict = safe_torch_load(self._checkpoint_path)
|
||||
if self._model_type == ModelType.LLAMA3_VISION:
|
||||
from torchtune.models.llama3_2_vision._convert_weights import (
|
||||
|
|
@ -85,10 +85,10 @@ class TorchtuneCheckpointer:
|
|||
state_dict: Dict[str, Any],
|
||||
epoch: int,
|
||||
adapter_only: bool = False,
|
||||
checkpoint_format: str = "meta",
|
||||
checkpoint_format: str | None = None,
|
||||
) -> str:
|
||||
model_file_path = Path(self._output_dir) / f"{self._model_id}-{self._training_algorithm}-{epoch}"
|
||||
if checkpoint_format == "meta":
|
||||
if checkpoint_format == "meta" or checkpoint_format is None:
|
||||
self._save_meta_format_checkpoint(model_file_path, state_dict, adapter_only)
|
||||
elif checkpoint_format == "huggingface":
|
||||
# Note: for saving hugging face format checkpoints, we only suppport saving adapter weights now
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Callable, Dict
|
||||
from typing import Callable, Dict
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel
|
||||
|
|
@ -25,10 +25,13 @@ from llama_stack.apis.post_training import DatasetFormat
|
|||
from llama_stack.models.llama.datatypes import Model
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
model_definition: Any
|
||||
tokenizer_type: Any
|
||||
model_definition: BuildLoraModelCallable
|
||||
tokenizer_type: BuildTokenizerCallable
|
||||
checkpoint_type: str
|
||||
|
||||
|
||||
|
|
@ -51,10 +54,6 @@ DATA_FORMATS: Dict[str, Transform] = {
|
|||
}
|
||||
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
||||
|
||||
def _validate_model_id(model_id: str) -> Model:
|
||||
model = resolve_model(model_id)
|
||||
if model is None or model.core_model_id.value not in MODEL_CONFIGS:
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ class SFTDataset(Dataset):
|
|||
if "messages" in transformed_sample:
|
||||
validate_messages(transformed_sample["messages"])
|
||||
|
||||
tokenized_dict = self._model_transform(transformed_sample)
|
||||
tokenized_dict: dict[str, Any] = self._model_transform(transformed_sample)
|
||||
|
||||
if not ("tokens" in tokenized_dict and "mask" in tokenized_dict):
|
||||
keys_str = ", ".join(tokenized_dict.keys())
|
||||
|
|
|
|||
|
|
@ -37,10 +37,10 @@ from llama_stack.apis.common.training_types import PostTrainingMetric
|
|||
from llama_stack.apis.datasetio import DatasetIO
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
from llama_stack.apis.post_training import (
|
||||
AlgorithmConfig,
|
||||
Checkpoint,
|
||||
LoraFinetuningConfig,
|
||||
OptimizerConfig,
|
||||
QATFinetuningConfig,
|
||||
TrainingConfig,
|
||||
)
|
||||
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
|
||||
|
|
@ -73,6 +73,9 @@ class LoraFinetuningSingleDevice:
|
|||
|
||||
# Currently logging only logs limited training metrics to local disk
|
||||
# will figure out more loggings and how it works with telemetry in future PRs
|
||||
|
||||
_checkpointer: TorchtuneCheckpointer
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: TorchtunePostTrainingConfig,
|
||||
|
|
@ -82,7 +85,7 @@ class LoraFinetuningSingleDevice:
|
|||
logger_config: Dict[str, Any],
|
||||
model: str,
|
||||
checkpoint_dir: Optional[str],
|
||||
algorithm_config: Optional[AlgorithmConfig],
|
||||
algorithm_config: LoraFinetuningConfig | QATFinetuningConfig | None,
|
||||
datasetio_api: DatasetIO,
|
||||
datasets_api: Datasets,
|
||||
) -> None:
|
||||
|
|
@ -109,12 +112,12 @@ class LoraFinetuningSingleDevice:
|
|||
return str(checkpoint_dir)
|
||||
|
||||
if checkpoint_dir and checkpoint_dir != "null":
|
||||
self.checkpoint_dir = config.checkpoint_dir
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
else:
|
||||
model = resolve_model(self.model_id)
|
||||
if model is None:
|
||||
model_obj = resolve_model(self.model_id)
|
||||
if model_obj is None:
|
||||
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
|
||||
self.checkpoint_dir = model_checkpoint_dir(model)
|
||||
self.checkpoint_dir = model_checkpoint_dir(model_obj)
|
||||
|
||||
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
|
||||
self._checkpoint_format = config.checkpoint_format
|
||||
|
|
@ -135,16 +138,16 @@ class LoraFinetuningSingleDevice:
|
|||
self.max_validation_steps = training_config.max_validation_steps
|
||||
|
||||
self._clip_grad_norm = 1.0
|
||||
self._enable_activation_checkpointing = (
|
||||
(training_config.efficiency_config.enable_activation_checkpointing)
|
||||
if training_config.efficiency_config
|
||||
else False
|
||||
)
|
||||
self._enable_activation_offloading = (
|
||||
(training_config.efficiency_config.enable_activation_offloading)
|
||||
if training_config.efficiency_config
|
||||
else False
|
||||
)
|
||||
|
||||
self._enable_activation_checkpointing = False
|
||||
self._enable_activation_offloading = False
|
||||
if training_config.efficiency_config:
|
||||
if training_config.efficiency_config.enable_activation_checkpointing:
|
||||
self._enable_activation_checkpointing = (
|
||||
training_config.efficiency_config.enable_activation_checkpointing
|
||||
)
|
||||
if training_config.efficiency_config.enable_activation_offloading:
|
||||
self._enable_activation_offloading = training_config.efficiency_config.enable_activation_offloading
|
||||
|
||||
self.datasetio_api = datasetio_api
|
||||
self.datasets_api = datasets_api
|
||||
|
|
@ -451,12 +454,12 @@ class LoraFinetuningSingleDevice:
|
|||
"""
|
||||
# Initialize tokens count and running loss (for grad accumulation)
|
||||
t0 = time.perf_counter()
|
||||
running_loss = 0
|
||||
running_loss: float = 0.0
|
||||
num_tokens = 0
|
||||
|
||||
# training artifacts
|
||||
checkpoints = []
|
||||
memory_stats = {}
|
||||
memory_stats: Dict[str, Any] = {}
|
||||
|
||||
# self.epochs_run should be non-zero when we're resuming from a checkpoint
|
||||
for curr_epoch in range(self.epochs_run, self.total_epochs):
|
||||
|
|
@ -484,7 +487,7 @@ class LoraFinetuningSingleDevice:
|
|||
# Loss is normalized by default so we multiply by the number of tokens
|
||||
# This way we can normalize by the total number of tokens if we're accumulating gradients
|
||||
current_loss = await self._loss_step(batch) * current_num_tokens
|
||||
running_loss += current_loss
|
||||
running_loss += current_loss.detach().item()
|
||||
current_loss.backward()
|
||||
|
||||
# Step with optimizer
|
||||
|
|
@ -500,7 +503,7 @@ class LoraFinetuningSingleDevice:
|
|||
# Update the number of steps when the weights are updated
|
||||
self.global_step += 1
|
||||
|
||||
loss_to_log = running_loss.item() / num_tokens
|
||||
loss_to_log = running_loss / num_tokens
|
||||
|
||||
pbar.update(1)
|
||||
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
|
||||
|
|
@ -523,7 +526,7 @@ class LoraFinetuningSingleDevice:
|
|||
)
|
||||
|
||||
# Reset running stats for the next step
|
||||
running_loss = 0
|
||||
running_loss = 0.0
|
||||
num_tokens = 0
|
||||
t0 = time.perf_counter()
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import tempfile
|
||||
|
|
@ -37,7 +38,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def register_tool(self, tool: Tool):
|
||||
async def register_tool(self, tool: Tool) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_tool(self, tool_id: str) -> None:
|
||||
|
|
@ -65,7 +66,7 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
|
|||
# Use environment variable to control bwrap usage
|
||||
force_disable_bwrap = os.environ.get("DISABLE_CODE_SANDBOX", "").lower() in ("1", "true", "yes")
|
||||
req = CodeExecutionRequest(scripts=[script], use_bwrap=not force_disable_bwrap)
|
||||
res = self.code_executor.execute(req)
|
||||
res = await asyncio.to_thread(self.code_executor.execute, req)
|
||||
pieces = [res["process_status"]]
|
||||
for out_type in ["stdout", "stderr"]:
|
||||
res_out = res[out_type]
|
||||
|
|
|
|||
19
llama_stack/providers/inline/vector_io/qdrant/__init__.py
Normal file
19
llama_stack/providers/inline/vector_io/qdrant/__init__.py
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import QdrantVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: QdrantVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter
|
||||
|
||||
impl = QdrantVectorIOAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
23
llama_stack/providers/inline/vector_io/qdrant/config.py
Normal file
23
llama_stack/providers/inline/vector_io/qdrant/config.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QdrantVectorIOConfig(BaseModel):
|
||||
path: str
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str) -> Dict[str, Any]:
|
||||
return {
|
||||
"path": "${env.QDRANT_PATH:~/.llama/" + __distro_dir__ + "}/" + "qdrant.db",
|
||||
}
|
||||
|
|
@ -92,6 +92,14 @@ def available_providers() -> List[ProviderSpec]:
|
|||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
provider_type="inline::qdrant",
|
||||
pip_packages=["qdrant-client"],
|
||||
module="llama_stack.providers.inline.vector_io.qdrant",
|
||||
config_class="llama_stack.providers.inline.vector_io.qdrant.QdrantVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import logging
|
||||
import warnings
|
||||
from functools import lru_cache
|
||||
from typing import AsyncIterator, List, Optional, Union
|
||||
|
||||
from openai import APIConnectionError, AsyncOpenAI, BadRequestError
|
||||
|
|
@ -82,12 +83,42 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
# )
|
||||
|
||||
self._config = config
|
||||
# make sure the client lives longer than any async calls
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=f"{self._config.url}/v1",
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
@lru_cache # noqa: B019
|
||||
def _get_client(self, provider_model_id: str) -> AsyncOpenAI:
|
||||
"""
|
||||
For hosted models, https://integrate.api.nvidia.com/v1 is the primary base_url. However,
|
||||
some models are hosted on different URLs. This function returns the appropriate client
|
||||
for the given provider_model_id.
|
||||
|
||||
This relies on lru_cache and self._default_client to avoid creating a new client for each request
|
||||
or for each model that is hosted on https://integrate.api.nvidia.com/v1.
|
||||
|
||||
:param provider_model_id: The provider model ID
|
||||
:return: An OpenAI client
|
||||
"""
|
||||
|
||||
@lru_cache # noqa: B019
|
||||
def _get_client_for_base_url(base_url: str) -> AsyncOpenAI:
|
||||
"""
|
||||
Maintain a single OpenAI client per base_url.
|
||||
"""
|
||||
return AsyncOpenAI(
|
||||
base_url=base_url,
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
special_model_urls = {
|
||||
"meta/llama-3.2-11b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-11b-vision-instruct",
|
||||
"meta/llama-3.2-90b-vision-instruct": "https://ai.api.nvidia.com/v1/gr/meta/llama-3.2-90b-vision-instruct",
|
||||
}
|
||||
|
||||
base_url = f"{self._config.url}/v1"
|
||||
if _is_nvidia_hosted(self._config) and provider_model_id in special_model_urls:
|
||||
base_url = special_model_urls[provider_model_id]
|
||||
|
||||
return _get_client_for_base_url(base_url)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
|
@ -105,9 +136,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
model=provider_model_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
|
|
@ -118,7 +150,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._client.completions.create(**request)
|
||||
response = await self._get_client(provider_model_id).completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
@ -206,6 +238,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
|
|
@ -221,7 +254,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
|
||||
try:
|
||||
response = await self._client.chat.completions.create(**request)
|
||||
response = await self._get_client(provider_model_id).chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
|
|
|
|||
|
|
@ -90,15 +90,12 @@ def _convert_to_vllm_tool_calls_in_response(
|
|||
if not tool_calls:
|
||||
return []
|
||||
|
||||
call_function_arguments = None
|
||||
for call in tool_calls:
|
||||
call_function_arguments = json.loads(call.function.arguments)
|
||||
|
||||
return [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=call_function_arguments,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
arguments_json=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
|
@ -183,6 +180,7 @@ async def _process_vllm_chat_completion_stream_response(
|
|||
call_id=tool_call_buf.call_id,
|
||||
tool_name=tool_call_buf.tool_name,
|
||||
arguments=args,
|
||||
arguments_json=args_str,
|
||||
),
|
||||
parse_status=ToolCallParseStatus.succeeded,
|
||||
),
|
||||
|
|
|
|||
|
|
@ -23,7 +23,6 @@ class QdrantVectorIOConfig(BaseModel):
|
|||
prefix: Optional[str] = None
|
||||
timeout: Optional[int] = None
|
||||
host: Optional[str] = None
|
||||
path: Optional[str] = None
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs: Any) -> Dict[str, Any]:
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from qdrant_client import AsyncQdrantClient, models
|
||||
|
|
@ -16,12 +16,13 @@ from llama_stack.apis.inference import InterleavedContent
|
|||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
||||
from .config import QdrantVectorIOConfig
|
||||
from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
|
@ -99,17 +100,19 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: QdrantVectorIOConfig, inference_api: Api.inference) -> None:
|
||||
def __init__(
|
||||
self, config: Union[RemoteQdrantVectorIOConfig, InlineQdrantVectorIOConfig], inference_api: Api.inference
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
self.client: AsyncQdrantClient = None
|
||||
self.cache = {}
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
await self.client.close()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
|
|
@ -123,6 +126,11 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|||
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id in self.cache:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import io
|
||||
from urllib.parse import unquote
|
||||
|
|
@ -13,12 +14,15 @@ import pandas
|
|||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||
|
||||
|
||||
def get_dataframe_from_uri(uri: str):
|
||||
async def get_dataframe_from_uri(uri: str):
|
||||
df = None
|
||||
if uri.endswith(".csv"):
|
||||
df = pandas.read_csv(uri)
|
||||
# Moving to its own thread to avoid io from blocking the eventloop
|
||||
# This isn't ideal as it moves more then just the IO to a new thread
|
||||
# but it is as close as we can easly get
|
||||
df = await asyncio.to_thread(pandas.read_csv, uri)
|
||||
elif uri.endswith(".xlsx"):
|
||||
df = pandas.read_excel(uri)
|
||||
df = await asyncio.to_thread(pandas.read_excel, uri)
|
||||
elif uri.startswith("data:"):
|
||||
parts = parse_data_url(uri)
|
||||
data = parts["data"]
|
||||
|
|
|
|||
|
|
@ -529,7 +529,11 @@ async def convert_message_to_openai_dict_new(
|
|||
) -> Union[str, Iterable[OpenAIChatCompletionContentPartParam]]:
|
||||
async def impl(
|
||||
content_: InterleavedContent,
|
||||
) -> Union[str, OpenAIChatCompletionContentPartParam, List[OpenAIChatCompletionContentPartParam]]:
|
||||
) -> Union[
|
||||
str,
|
||||
OpenAIChatCompletionContentPartParam,
|
||||
List[OpenAIChatCompletionContentPartParam],
|
||||
]:
|
||||
# Llama Stack and OpenAI spec match for str and text input
|
||||
if isinstance(content_, str):
|
||||
return content_
|
||||
|
|
@ -570,7 +574,7 @@ async def convert_message_to_openai_dict_new(
|
|||
OpenAIChatCompletionMessageToolCall(
|
||||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value,
|
||||
name=(tool.tool_name if not isinstance(tool.tool_name, BuiltinTool) else tool.tool_name.value),
|
||||
arguments=json.dumps(tool.arguments),
|
||||
),
|
||||
type="function",
|
||||
|
|
@ -609,6 +613,7 @@ def convert_tool_call(
|
|||
call_id=tool_call.id,
|
||||
tool_name=tool_call.function.name,
|
||||
arguments=json.loads(tool_call.function.arguments),
|
||||
arguments_json=tool_call.function.arguments,
|
||||
)
|
||||
except Exception:
|
||||
return UnparseableToolCall(
|
||||
|
|
@ -759,6 +764,7 @@ def _convert_openai_tool_calls(
|
|||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
arguments_json=call.function.arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
|
@ -890,7 +896,8 @@ async def convert_openai_chat_completion_stream(
|
|||
# ChatCompletionResponseEvent only supports one per stream
|
||||
if len(choice.delta.tool_calls) > 1:
|
||||
warnings.warn(
|
||||
"multiple tool calls found in a single delta, using the first, ignoring the rest", stacklevel=2
|
||||
"multiple tool calls found in a single delta, using the first, ignoring the rest",
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
if not enable_incremental_tool_calls:
|
||||
|
|
@ -971,6 +978,7 @@ async def convert_openai_chat_completion_stream(
|
|||
call_id=buffer["call_id"],
|
||||
tool_name=buffer["name"],
|
||||
arguments=arguments,
|
||||
arguments_json=buffer["arguments"],
|
||||
)
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue