mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
Merge branch 'main' into agents-openai-migration
This commit is contained in:
commit
0327ef3daf
169 changed files with 66293 additions and 47432 deletions
|
@ -472,20 +472,23 @@ class AgentStepResponse(BaseModel):
|
|||
|
||||
@runtime_checkable
|
||||
class Agents(Protocol):
|
||||
"""Agents API for creating and interacting with agentic systems.
|
||||
"""Agents
|
||||
|
||||
Main functionalities provided by this API:
|
||||
- Create agents with specific instructions and ability to use tools.
|
||||
- Interactions with agents are grouped into sessions ("threads"), and each interaction is called a "turn".
|
||||
- Agents can be provided with various tools (see the ToolGroups and ToolRuntime APIs for more details).
|
||||
- Agents can be provided with various shields (see the Safety API for more details).
|
||||
- Agents can also use Memory to retrieve information from knowledge bases. See the RAG Tool and Vector IO APIs for more details.
|
||||
"""
|
||||
APIs for creating and interacting with agentic systems."""
|
||||
|
||||
@webmethod(
|
||||
route="/agents", method="POST", descriptive_name="create_agent", deprecated=True, level=LLAMA_STACK_API_V1
|
||||
route="/agents",
|
||||
method="POST",
|
||||
descriptive_name="create_agent",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents",
|
||||
method="POST",
|
||||
descriptive_name="create_agent",
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
@webmethod(route="/agents", method="POST", descriptive_name="create_agent", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def create_agent(
|
||||
self,
|
||||
agent_config: AgentConfig,
|
||||
|
@ -648,8 +651,17 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_agents_session(
|
||||
self,
|
||||
session_id: str,
|
||||
|
@ -666,9 +678,16 @@ class Agents(Protocol):
|
|||
...
|
||||
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}", method="DELETE", deprecated=True, level=LLAMA_STACK_API_V1
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="DELETE",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/session/{session_id}",
|
||||
method="DELETE",
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}/session/{session_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def delete_agents_session(
|
||||
self,
|
||||
session_id: str,
|
||||
|
@ -681,7 +700,12 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}", method="DELETE", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}",
|
||||
method="DELETE",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def delete_agent(
|
||||
self,
|
||||
|
@ -704,7 +728,12 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def get_agent(self, agent_id: str) -> Agent:
|
||||
"""Describe an agent by its ID.
|
||||
|
@ -714,7 +743,12 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/agents/{agent_id}/sessions", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/agents/{agent_id}/sessions",
|
||||
method="GET",
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/agents/{agent_id}/sessions", method="GET", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def list_agent_sessions(
|
||||
self,
|
||||
|
@ -793,7 +827,11 @@ class Agents(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/responses/{response_id}/input_items",
|
||||
method="GET",
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
async def list_openai_response_input_items(
|
||||
self,
|
||||
response_id: str,
|
||||
|
|
|
@ -8,7 +8,7 @@ from typing import Any, Protocol, runtime_checkable
|
|||
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.schema_utils import webmethod
|
||||
|
||||
|
||||
|
@ -21,7 +21,8 @@ class DatasetIO(Protocol):
|
|||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def iterrows(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
@ -45,7 +46,10 @@ class DatasetIO(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/datasetio/append-rows/{dataset_id:path}", method="POST", deprecated=True, level=LLAMA_STACK_API_V1
|
||||
)
|
||||
@webmethod(route="/datasetio/append-rows/{dataset_id:path}", method="POST", level=LLAMA_STACK_API_V1BETA)
|
||||
async def append_rows(self, dataset_id: str, rows: list[dict[str, Any]]) -> None:
|
||||
"""Append rows to a dataset.
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ from typing import Annotated, Any, Literal, Protocol
|
|||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.resource import Resource, ResourceType
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1BETA
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
|
@ -146,7 +146,8 @@ class ListDatasetsResponse(BaseModel):
|
|||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="POST", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="POST", level=LLAMA_STACK_API_V1BETA)
|
||||
async def register_dataset(
|
||||
self,
|
||||
purpose: DatasetPurpose,
|
||||
|
@ -215,7 +216,8 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def get_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
@ -227,7 +229,8 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets", method="GET", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="GET", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets", method="GET", level=LLAMA_STACK_API_V1BETA)
|
||||
async def list_datasets(self) -> ListDatasetsResponse:
|
||||
"""List all datasets.
|
||||
|
||||
|
@ -235,7 +238,8 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", level=LLAMA_STACK_API_V1BETA)
|
||||
async def unregister_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
@ -1008,28 +1008,6 @@ class InferenceProvider(Protocol):
|
|||
|
||||
model_store: ModelStore | None = None
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
|
||||
"""Generate a completion for the given content using the specified model.
|
||||
|
||||
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
|
||||
:param content: The content to generate a completion for.
|
||||
:param sampling_params: (Optional) Parameters to control the sampling strategy.
|
||||
:param response_format: (Optional) Grammar specification for guided (structured) decoding.
|
||||
:param stream: (Optional) If True, generate an SSE event stream of the response. Defaults to False.
|
||||
:param logprobs: (Optional) If specified, log probabilities for each token position will be returned.
|
||||
:returns: If stream=False, returns a CompletionResponse with the full completion.
|
||||
If stream=True, returns an SSE event stream of CompletionResponseStreamChunk.
|
||||
"""
|
||||
...
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -16,7 +16,7 @@ from typing import (
|
|||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.models.llama.datatypes import Primitive
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
@ -426,7 +426,14 @@ class Telemetry(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/telemetry/traces", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/telemetry/traces",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/telemetry/traces", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def query_traces(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition] | None = None,
|
||||
|
@ -445,7 +452,17 @@ class Telemetry(Protocol):
|
|||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}", method="GET", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1
|
||||
route="/telemetry/traces/{trace_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_trace(self, trace_id: str) -> Trace:
|
||||
"""Get a trace by its ID.
|
||||
|
@ -459,8 +476,15 @@ class Telemetry(Protocol):
|
|||
route="/telemetry/traces/{trace_id:path}/spans/{span_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/traces/{trace_id:path}/spans/{span_id:path}",
|
||||
method="GET",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_span(self, trace_id: str, span_id: str) -> Span:
|
||||
"""Get a span by its ID.
|
||||
|
||||
|
@ -473,9 +497,16 @@ class Telemetry(Protocol):
|
|||
@webmethod(
|
||||
route="/telemetry/spans/{span_id:path}/tree",
|
||||
method="POST",
|
||||
deprecated=True,
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/spans/{span_id:path}/tree",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def get_span_tree(
|
||||
self,
|
||||
span_id: str,
|
||||
|
@ -491,7 +522,14 @@ class Telemetry(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/telemetry/spans", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/telemetry/spans",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(route="/telemetry/spans", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def query_spans(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition],
|
||||
|
@ -507,7 +545,8 @@ class Telemetry(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/telemetry/spans/export", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/telemetry/spans/export", method="POST", deprecated=True, level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/telemetry/spans/export", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
async def save_spans_to_dataset(
|
||||
self,
|
||||
attribute_filters: list[QueryCondition],
|
||||
|
@ -525,7 +564,17 @@ class Telemetry(Protocol):
|
|||
...
|
||||
|
||||
@webmethod(
|
||||
route="/telemetry/metrics/{metric_name}", method="POST", required_scope=REQUIRED_SCOPE, level=LLAMA_STACK_API_V1
|
||||
route="/telemetry/metrics/{metric_name}",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
deprecated=True,
|
||||
level=LLAMA_STACK_API_V1,
|
||||
)
|
||||
@webmethod(
|
||||
route="/telemetry/metrics/{metric_name}",
|
||||
method="POST",
|
||||
required_scope=REQUIRED_SCOPE,
|
||||
level=LLAMA_STACK_API_V1ALPHA,
|
||||
)
|
||||
async def query_metrics(
|
||||
self,
|
||||
|
|
|
@ -267,47 +267,6 @@ class InferenceRouter(Inference):
|
|||
)
|
||||
return response
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
logger.debug(
|
||||
f"InferenceRouter.completion: {model_id=}, {stream=}, {content=}, {sampling_params=}, {response_format=}",
|
||||
)
|
||||
model = await self._get_model(model_id, ModelType.llm)
|
||||
provider = await self.routing_table.get_provider_impl(model_id)
|
||||
params = dict(
|
||||
model_id=model_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
prompt_tokens = await self._count_tokens(content)
|
||||
response = await provider.completion(**params)
|
||||
if stream:
|
||||
return self.stream_tokens_and_compute_metrics(
|
||||
response=response,
|
||||
prompt_tokens=prompt_tokens,
|
||||
model=model,
|
||||
)
|
||||
|
||||
metrics = await self.count_tokens_and_compute_metrics(
|
||||
response=response, prompt_tokens=prompt_tokens, model=model
|
||||
)
|
||||
response.metrics = metrics if response.metrics is None else response.metrics + metrics
|
||||
|
||||
return response
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -159,7 +159,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
post_training:
|
||||
|
|
|
@ -50,7 +50,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -46,7 +46,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -61,7 +61,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -51,7 +51,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -53,7 +53,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -48,7 +48,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -81,7 +81,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
eval:
|
||||
|
|
|
@ -159,7 +159,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
post_training:
|
||||
|
|
|
@ -159,7 +159,7 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
||||
sinks: ${env.TELEMETRY_SINKS:=console,sqlite}
|
||||
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/trace_store.db
|
||||
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
||||
post_training:
|
||||
|
|
|
@ -247,7 +247,16 @@ def get_logger(
|
|||
_category_levels.update(parse_yaml_config(config))
|
||||
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(_category_levels.get(category, DEFAULT_LOG_LEVEL))
|
||||
if category in _category_levels:
|
||||
log_level = _category_levels[category]
|
||||
else:
|
||||
root_category = category.split("::")[0]
|
||||
if root_category in _category_levels:
|
||||
log_level = _category_levels[root_category]
|
||||
else:
|
||||
log_level = _category_levels.get("root", DEFAULT_LOG_LEVEL)
|
||||
logging.warning(f"Unknown logging category: {category}. Falling back to default 'root' level: {log_level}")
|
||||
logger.setLevel(log_level)
|
||||
return logging.LoggerAdapter(logger, {"category": category})
|
||||
|
||||
|
||||
|
|
|
@ -129,13 +129,16 @@ class StreamingResponseOrchestrator:
|
|||
messages = self.ctx.messages.copy()
|
||||
|
||||
while True:
|
||||
# Text is the default response format for chat completion so don't need to pass it
|
||||
# (some providers don't support non-empty response_format when tools are present)
|
||||
response_format = None if self.ctx.response_format.type == "text" else self.ctx.response_format
|
||||
completion_result = await self.inference_api.openai_chat_completion(
|
||||
model=self.ctx.model,
|
||||
messages=messages,
|
||||
tools=self.ctx.chat_tools,
|
||||
stream=True,
|
||||
temperature=self.ctx.temperature,
|
||||
response_format=self.ctx.response_format,
|
||||
response_format=response_format,
|
||||
)
|
||||
|
||||
# Process streaming chunks and build complete response
|
||||
|
@ -352,8 +355,11 @@ class StreamingResponseOrchestrator:
|
|||
|
||||
# Emit arguments.done events for completed tool calls (differentiate between MCP and function calls)
|
||||
for tool_call_index in sorted(chat_response_tool_calls.keys()):
|
||||
tool_call = chat_response_tool_calls[tool_call_index]
|
||||
# Ensure that arguments, if sent back to the inference provider, are not None
|
||||
tool_call.function.arguments = tool_call.function.arguments or "{}"
|
||||
tool_call_item_id = tool_call_item_ids[tool_call_index]
|
||||
final_arguments = chat_response_tool_calls[tool_call_index].function.arguments or ""
|
||||
final_arguments = tool_call.function.arguments
|
||||
tool_call_name = chat_response_tool_calls[tool_call_index].function.name
|
||||
|
||||
# Check if this is an MCP tool call
|
||||
|
|
|
@ -24,11 +24,7 @@ from llama_stack.apis.inference import (
|
|||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
InferenceProvider,
|
||||
InterleavedContent,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
ResponseFormat,
|
||||
|
@ -59,10 +55,8 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
augment_content_with_response_format_prompt,
|
||||
chat_completion_request_to_messages,
|
||||
convert_request_to_raw,
|
||||
)
|
||||
|
@ -82,7 +76,6 @@ def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_
|
|||
|
||||
|
||||
class MetaReferenceInferenceImpl(
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
InferenceProvider,
|
||||
|
@ -100,6 +93,9 @@ class MetaReferenceInferenceImpl(
|
|||
if self.config.create_distributed_process_group:
|
||||
self.generator.stop()
|
||||
|
||||
async def openai_completion(self, *args, **kwargs):
|
||||
raise NotImplementedError("OpenAI completion not supported by meta reference provider")
|
||||
|
||||
async def should_refresh_models(self) -> bool:
|
||||
return False
|
||||
|
||||
|
@ -165,11 +161,6 @@ class MetaReferenceInferenceImpl(
|
|||
self.llama_model = llama_model
|
||||
|
||||
log.info("Warming up...")
|
||||
await self.completion(
|
||||
model_id=model_id,
|
||||
content="Hello, world!",
|
||||
sampling_params=SamplingParams(max_tokens=10),
|
||||
)
|
||||
await self.chat_completion(
|
||||
model_id=model_id,
|
||||
messages=[UserMessage(content="Hi how are you?")],
|
||||
|
@ -185,137 +176,6 @@ class MetaReferenceInferenceImpl(
|
|||
elif request.model != self.model_id:
|
||||
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | CompletionResponseStreamChunk:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if logprobs:
|
||||
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
|
||||
|
||||
content = augment_content_with_response_format_prompt(response_format, content)
|
||||
request = CompletionRequest(
|
||||
model=model_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
self.check_model(request)
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
if request.stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
results = await self._nonstream_completion([request])
|
||||
return results[0]
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
tokenizer = self.generator.formatter.tokenizer
|
||||
|
||||
def impl():
|
||||
stop_reason = None
|
||||
|
||||
for token_results in self.generator.completion([request]):
|
||||
token_result = token_results[0]
|
||||
if token_result.token == tokenizer.eot_id:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.token == tokenizer.eom_id:
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
logprobs = None
|
||||
if stop_reason is None:
|
||||
if request.logprobs:
|
||||
assert len(token_result.logprobs) == 1
|
||||
|
||||
logprobs = [TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})]
|
||||
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
logprobs=logprobs if request.logprobs else None,
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
yield CompletionResponseStreamChunk(
|
||||
delta="",
|
||||
stop_reason=StopReason.out_of_tokens,
|
||||
)
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
for x in impl():
|
||||
yield x
|
||||
else:
|
||||
for x in impl():
|
||||
yield x
|
||||
|
||||
async def _nonstream_completion(self, request_batch: list[CompletionRequest]) -> list[CompletionResponse]:
|
||||
tokenizer = self.generator.formatter.tokenizer
|
||||
|
||||
first_request = request_batch[0]
|
||||
|
||||
class ItemState(BaseModel):
|
||||
tokens: list[int] = []
|
||||
logprobs: list[TokenLogProbs] = []
|
||||
stop_reason: StopReason | None = None
|
||||
finished: bool = False
|
||||
|
||||
def impl():
|
||||
states = [ItemState() for _ in request_batch]
|
||||
|
||||
results = []
|
||||
for token_results in self.generator.completion(request_batch):
|
||||
for result in token_results:
|
||||
idx = result.batch_idx
|
||||
state = states[idx]
|
||||
if state.finished or result.ignore_token:
|
||||
continue
|
||||
|
||||
state.finished = result.finished
|
||||
if first_request.logprobs:
|
||||
state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]}))
|
||||
|
||||
state.tokens.append(result.token)
|
||||
if result.token == tokenizer.eot_id:
|
||||
state.stop_reason = StopReason.end_of_turn
|
||||
elif result.token == tokenizer.eom_id:
|
||||
state.stop_reason = StopReason.end_of_message
|
||||
|
||||
for state in states:
|
||||
if state.stop_reason is None:
|
||||
state.stop_reason = StopReason.out_of_tokens
|
||||
|
||||
if state.tokens[-1] in self.generator.formatter.tokenizer.stop_tokens:
|
||||
state.tokens = state.tokens[:-1]
|
||||
content = self.generator.formatter.tokenizer.decode(state.tokens)
|
||||
results.append(
|
||||
CompletionResponse(
|
||||
content=content,
|
||||
stop_reason=state.stop_reason,
|
||||
logprobs=state.logprobs if first_request.logprobs else None,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
if self.config.create_distributed_process_group:
|
||||
async with SEMAPHORE:
|
||||
return impl()
|
||||
else:
|
||||
return impl()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -27,8 +27,6 @@ class ModelRunner:
|
|||
def __call__(self, task: Any):
|
||||
if task[0] == "chat_completion":
|
||||
return self.llama.chat_completion(task[1])
|
||||
elif task[0] == "completion":
|
||||
return self.llama.completion(task[1])
|
||||
else:
|
||||
raise ValueError(f"Unexpected task type {task[0]}")
|
||||
|
||||
|
|
|
@ -5,9 +5,9 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
CompletionResponse,
|
||||
InferenceProvider,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -18,6 +18,7 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAICompletion
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
||||
|
@ -26,7 +27,6 @@ from llama_stack.providers.utils.inference.embedding_mixin import (
|
|||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
)
|
||||
|
||||
from .config import SentenceTransformersInferenceConfig
|
||||
|
@ -36,7 +36,6 @@ log = get_logger(name=__name__, category="inference")
|
|||
|
||||
class SentenceTransformersInferenceImpl(
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
|
@ -74,17 +73,6 @@ class SentenceTransformersInferenceImpl(
|
|||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: str,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncGenerator:
|
||||
raise ValueError("Sentence transformers don't support completion")
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -99,3 +87,31 @@ class SentenceTransformersInferenceImpl(
|
|||
tool_config: ToolConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise ValueError("Sentence transformers don't support chat completion")
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by sentence transformers provider")
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
import re
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import Inference, UserMessage
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.scoring import ScoringResultRow
|
||||
from llama_stack.apis.scoring_functions import ScoringFnParams
|
||||
from llama_stack.providers.utils.scoring.base_scoring_fn import RegisteredBaseScoringFn
|
||||
|
@ -55,15 +55,16 @@ class LlmAsJudgeScoringFn(RegisteredBaseScoringFn):
|
|||
generated_answer=generated_answer,
|
||||
)
|
||||
|
||||
judge_response = await self.inference_api.chat_completion(
|
||||
model_id=fn_def.params.judge_model,
|
||||
judge_response = await self.inference_api.openai_chat_completion(
|
||||
model=fn_def.params.judge_model,
|
||||
messages=[
|
||||
UserMessage(
|
||||
content=judge_input_msg,
|
||||
),
|
||||
{
|
||||
"role": "user",
|
||||
"content": judge_input_msg,
|
||||
}
|
||||
],
|
||||
)
|
||||
content = judge_response.completion_message.content
|
||||
content = judge_response.choices[0].message.content
|
||||
rating_regexes = fn_def.params.judge_score_regexes
|
||||
|
||||
judge_rating = None
|
||||
|
|
|
@ -30,7 +30,7 @@ class TelemetryConfig(BaseModel):
|
|||
description="The service name to use for telemetry",
|
||||
)
|
||||
sinks: list[TelemetrySink] = Field(
|
||||
default=[TelemetrySink.CONSOLE, TelemetrySink.SQLITE],
|
||||
default=[TelemetrySink.SQLITE],
|
||||
description="List of telemetry sinks to enable (possible values: otel_trace, otel_metric, sqlite, console)",
|
||||
)
|
||||
sqlite_db_path: str = Field(
|
||||
|
@ -49,7 +49,7 @@ class TelemetryConfig(BaseModel):
|
|||
def sample_run_config(cls, __distro_dir__: str, db_name: str = "trace_store.db") -> dict[str, Any]:
|
||||
return {
|
||||
"service_name": "${env.OTEL_SERVICE_NAME:=\u200b}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:=console,sqlite}",
|
||||
"sinks": "${env.TELEMETRY_SINKS:=sqlite}",
|
||||
"sqlite_db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name,
|
||||
"otel_exporter_otlp_endpoint": "${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}",
|
||||
}
|
||||
|
|
|
@ -6,12 +6,10 @@
|
|||
|
||||
import json
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
from botocore.client import BaseClient
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
|
@ -27,6 +25,7 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAICompletion
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
|
@ -36,7 +35,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompatCompletionChoice,
|
||||
OpenAICompatCompletionResponse,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
get_sampling_strategy_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
|
@ -89,7 +87,6 @@ class BedrockInferenceAdapter(
|
|||
ModelRegistryHelper,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
):
|
||||
def __init__(self, config: BedrockConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
||||
|
@ -109,17 +106,6 @@ class BedrockInferenceAdapter(
|
|||
if self._client is not None:
|
||||
self._client.close()
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -221,3 +207,31 @@ class BedrockInferenceAdapter(
|
|||
user: str | None = None,
|
||||
) -> OpenAIEmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
# Standard OpenAI completion parameters
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
# vLLM-specific parameters
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
# for fill-in-the-middle type completion
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
|
||||
|
|
|
@ -9,9 +9,6 @@ from urllib.parse import urljoin
|
|||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
|
@ -35,8 +32,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
|
@ -73,48 +68,6 @@ class CerebrasInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(
|
||||
request,
|
||||
)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
|
||||
r = await self._cerebras_client.completions.create(**params)
|
||||
|
||||
return process_completion_response(r)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self._cerebras_client.completions.create(**params)
|
||||
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -9,14 +9,9 @@ from typing import Any
|
|||
|
||||
from databricks.sdk import WorkspaceClient
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -63,17 +58,6 @@ class DatabricksInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -8,14 +8,9 @@ from collections.abc import AsyncGenerator
|
|||
|
||||
from fireworks.client import Fireworks
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -37,13 +32,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -94,79 +86,6 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
|
|||
return prompt[len("<|begin_of_text|>") :]
|
||||
return prompt
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self._get_client().completion.acreate(**params)
|
||||
return process_completion_response(r)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
# Wrapper for async generator similar
|
||||
async def _to_async_generator():
|
||||
stream = self._get_client().completion.create(**params)
|
||||
for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
fmt: ResponseFormat,
|
||||
logprobs: LogProbConfig | None,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
options["logprobs"] = logprobs.top_k
|
||||
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
|
||||
raise ValueError("Required range: 0 < top_k < 5")
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -222,22 +141,46 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
fmt: ResponseFormat | None,
|
||||
logprobs: LogProbConfig | None,
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
if logprobs and logprobs.top_k:
|
||||
options["logprobs"] = logprobs.top_k
|
||||
if options["logprobs"] <= 0 or options["logprobs"] >= 5:
|
||||
raise ValueError("Required range: 0 < top_k < 5")
|
||||
|
||||
return options
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
# TODO: tools are never added to the request, so we need to add them here
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict(m, download=True) for m in request.messages
|
||||
]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
# TODO: tools are never added to the request, so we need to add them here
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
else:
|
||||
assert not media_present, "Fireworks does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if "prompt" in input_dict:
|
||||
|
|
|
@ -9,16 +9,10 @@ from collections.abc import AsyncIterator
|
|||
|
||||
from openai import NOT_GIVEN, APIConnectionError
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -37,14 +31,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
convert_openai_chat_completion_stream,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import content_has_media
|
||||
|
||||
from . import NVIDIAConfig
|
||||
from .openai_utils import (
|
||||
convert_chat_completion_request,
|
||||
convert_completion_request,
|
||||
convert_openai_completion_choice,
|
||||
convert_openai_completion_stream,
|
||||
)
|
||||
from .utils import _is_nvidia_hosted
|
||||
|
||||
|
@ -109,48 +99,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin, Inference):
|
|||
"""
|
||||
return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
if content_has_media(content):
|
||||
raise NotImplementedError("Media is not supported")
|
||||
|
||||
# ToDo: check health of NeMo endpoints and enable this
|
||||
# removing this health check as NeMo customizer endpoint health check is returning 404
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
model=provider_model_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
),
|
||||
n=1,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self.client.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e
|
||||
|
||||
if stream:
|
||||
return convert_openai_completion_stream(response)
|
||||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_completion_choice(response.choices[0])
|
||||
|
||||
async def openai_embeddings(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -13,7 +13,6 @@ from ollama import AsyncClient as AsyncOllamaClient
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
InterleavedContent,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.common.errors import UnsupportedModelError
|
||||
|
@ -21,9 +20,6 @@ from llama_stack.apis.inference import (
|
|||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
GrammarResponseFormat,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
|
@ -55,13 +51,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
convert_image_content_to_url,
|
||||
request_has_media,
|
||||
)
|
||||
|
@ -168,67 +161,6 @@ class OllamaInferenceAdapter(
|
|||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model_id} has no provider_resource_id set")
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.ollama_client.generate(**params)
|
||||
async for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
||||
text=chunk["response"],
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await self.ollama_client.generate(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r["done_reason"] if r["done"] else None,
|
||||
text=r["response"],
|
||||
)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
return process_completion_response(response)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -262,7 +194,7 @@ class OllamaInferenceAdapter(
|
|||
else:
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
sampling_options = get_sampling_options(request.sampling_params)
|
||||
# This is needed since the Ollama API expects num_predict to be set
|
||||
# for early truncation instead of max_tokens.
|
||||
|
@ -272,21 +204,16 @@ class OllamaInferenceAdapter(
|
|||
input_dict: dict[str, Any] = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present or not llama_model:
|
||||
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
|
||||
# flatten the list of lists
|
||||
input_dict["messages"] = [item for sublist in contents for item in sublist]
|
||||
else:
|
||||
input_dict["raw"] = True
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
||||
request,
|
||||
llama_model,
|
||||
)
|
||||
if media_present or not llama_model:
|
||||
contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages]
|
||||
# flatten the list of lists
|
||||
input_dict["messages"] = [item for sublist in contents for item in sublist]
|
||||
else:
|
||||
assert not media_present, "Ollama does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
input_dict["raw"] = True
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
||||
request,
|
||||
llama_model,
|
||||
)
|
||||
|
||||
if fmt := request.response_format:
|
||||
if isinstance(fmt, JsonSchemaResponseFormat):
|
||||
|
|
|
@ -9,7 +9,6 @@ from typing import Any
|
|||
|
||||
from llama_stack_client import AsyncLlamaStackClient
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
|
@ -86,37 +85,6 @@ class PassthroughInferenceAdapter(Inference):
|
|||
provider_data=provider_data,
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
client = self._get_client()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
request_params = {
|
||||
"model_id": model.provider_resource_id,
|
||||
"content": content,
|
||||
"sampling_params": sampling_params,
|
||||
"response_format": response_format,
|
||||
"stream": stream,
|
||||
"logprobs": logprobs,
|
||||
}
|
||||
|
||||
request_params = {key: value for key, value in request_params.items() if value is not None}
|
||||
|
||||
# cast everything to json dict
|
||||
json_params = self.cast_value_to_json_dict(request_params)
|
||||
|
||||
# only pass through the not None params
|
||||
return await client.inference.completion(**json_params)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -14,7 +14,6 @@ from llama_stack.apis.inference import OpenAIEmbeddingsResponse
|
|||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, build_hf_repo_model_entry
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
|
@ -55,7 +54,6 @@ class RunpodInferenceAdapter(
|
|||
ModelRegistryHelper,
|
||||
Inference,
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
OpenAICompletionToLlamaStackMixin,
|
||||
):
|
||||
def __init__(self, config: RunpodImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
|
||||
|
@ -67,17 +65,6 @@ class RunpodInferenceAdapter(
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
|
|
@ -10,13 +10,9 @@ from collections.abc import AsyncGenerator
|
|||
from huggingface_hub import AsyncInferenceClient, HfApi
|
||||
from pydantic import SecretStr
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -44,13 +40,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_model_input_info,
|
||||
completion_request_to_prompt_model_input_info,
|
||||
)
|
||||
|
||||
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
||||
|
@ -122,31 +115,6 @@ class _HfAdapter(
|
|||
async def unregister_model(self, model_id: str) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_max_new_tokens(self, sampling_params, input_tokens):
|
||||
return min(
|
||||
sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
||||
|
@ -180,53 +148,6 @@ class _HfAdapter(
|
|||
|
||||
return options
|
||||
|
||||
async def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
||||
prompt, input_tokens = await completion_request_to_prompt_model_input_info(request)
|
||||
|
||||
return dict(
|
||||
prompt=prompt,
|
||||
stream=request.stream,
|
||||
details=True,
|
||||
max_new_tokens=self._get_max_new_tokens(request.sampling_params, input_tokens),
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params_for_completion(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = await self.hf_client.text_generation(**params)
|
||||
async for chunk in s:
|
||||
token_result = chunk.token
|
||||
finish_reason = None
|
||||
if chunk.details:
|
||||
finish_reason = chunk.details.finish_reason
|
||||
|
||||
choice = OpenAICompatCompletionChoice(text=token_result.text, finish_reason=finish_reason)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params_for_completion(request)
|
||||
r = await self.hf_client.text_generation(**params)
|
||||
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=r.details.finish_reason,
|
||||
text="".join(t.text for t in r.details.tokens),
|
||||
)
|
||||
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
return process_completion_response(response)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -10,13 +10,9 @@ from openai import AsyncOpenAI
|
|||
from together import AsyncTogether
|
||||
from together.constants import BASE_URL
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
Message,
|
||||
|
@ -39,13 +35,10 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
|
@ -81,31 +74,6 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self) -> AsyncTogether:
|
||||
together_api_key = None
|
||||
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
||||
|
@ -127,19 +95,6 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
api_key=together_client.api_key,
|
||||
)
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
client = self._get_client()
|
||||
r = await client.completions.create(**params)
|
||||
return process_completion_response(r)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
client = self._get_client()
|
||||
stream = await client.completions.create(**params)
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self,
|
||||
sampling_params: SamplingParams | None,
|
||||
|
@ -219,18 +174,14 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
|
|||
async for chunk in process_chat_completion_stream_response(stream, request):
|
||||
yield chunk
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
input_dict = {}
|
||||
media_present = request_has_media(request)
|
||||
llama_model = self.get_llama_model(request.model)
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
||||
else:
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
if media_present or not llama_model:
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
||||
else:
|
||||
assert not media_present, "Together does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
||||
|
||||
params = {
|
||||
"model": request.model,
|
||||
|
|
|
@ -15,7 +15,6 @@ from openai.types.chat.chat_completion_chunk import (
|
|||
)
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
|
@ -27,9 +26,6 @@ from llama_stack.apis.inference import (
|
|||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionMessage,
|
||||
CompletionRequest,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
GrammarResponseFormat,
|
||||
Inference,
|
||||
JsonSchemaResponseFormat,
|
||||
|
@ -64,14 +60,8 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
convert_tool_call,
|
||||
get_sampling_options,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
completion_request_to_prompt,
|
||||
request_has_media,
|
||||
)
|
||||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
@ -363,33 +353,6 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
def get_extra_client_params(self):
|
||||
return {"http_client": httpx.AsyncClient(verify=self.config.tls_verify)}
|
||||
|
||||
async def completion( # type: ignore[override] # Return type more specific than base class which is allows for both streaming and non-streaming responses.
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
if model.provider_resource_id is None:
|
||||
raise ValueError(f"Model {model_id} has no provider_resource_id set")
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -474,24 +437,6 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
async for chunk in res:
|
||||
yield chunk
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse:
|
||||
if self.client is None:
|
||||
raise RuntimeError("Client is not initialized")
|
||||
params = await self._get_params(request)
|
||||
r = await self.client.completions.create(**params)
|
||||
return process_completion_response(r)
|
||||
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest
|
||||
) -> AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
if self.client is None:
|
||||
raise RuntimeError("Client is not initialized")
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = await self.client.completions.create(**params)
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
try:
|
||||
model = await self.register_helper.register_model(model)
|
||||
|
@ -511,7 +456,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
)
|
||||
return model
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
if "max_tokens" not in options:
|
||||
options["max_tokens"] = self.config.max_tokens
|
||||
|
@ -521,11 +466,7 @@ class VLLMInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin, Inference, ModelsPro
|
|||
if isinstance(request, ChatCompletionRequest) and request.tools:
|
||||
input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)}
|
||||
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
else:
|
||||
assert not request_has_media(request), "vLLM does not support media for Completion requests"
|
||||
input_dict["prompt"] = await completion_request_to_prompt(request)
|
||||
input_dict["messages"] = [await convert_message_to_openai_dict(m, download=True) for m in request.messages]
|
||||
|
||||
if fmt := request.response_format:
|
||||
if isinstance(fmt, JsonSchemaResponseFormat):
|
||||
|
|
|
@ -11,7 +11,6 @@ from ibm_watsonx_ai.foundation_models import Model
|
|||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
|
@ -43,8 +42,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
|
|||
prepare_openai_completion_params,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
process_completion_response,
|
||||
process_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
chat_completion_request_to_prompt,
|
||||
|
@ -87,31 +84,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self.model_store.get_model(model_id)
|
||||
request = CompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
content=content,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
def _get_client(self, model_id) -> Model:
|
||||
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
|
||||
config_url = self._config.url
|
||||
|
@ -128,40 +100,6 @@ class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
)
|
||||
return self._openai_client
|
||||
|
||||
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = self._get_client(request.model).generate(**params)
|
||||
choices = []
|
||||
if "results" in r:
|
||||
for result in r["results"]:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
||||
text=result["generated_text"],
|
||||
)
|
||||
choices.append(choice)
|
||||
response = OpenAICompatCompletionResponse(
|
||||
choices=choices,
|
||||
)
|
||||
return process_completion_response(response)
|
||||
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
async def _generate_and_convert_to_openai_compat():
|
||||
s = self._get_client(request.model).generate_text_stream(**params)
|
||||
for chunk in s:
|
||||
choice = OpenAICompatCompletionChoice(
|
||||
finish_reason=None,
|
||||
text=chunk,
|
||||
)
|
||||
yield OpenAICompatCompletionResponse(
|
||||
choices=[choice],
|
||||
)
|
||||
|
||||
stream = _generate_and_convert_to_openai_compat()
|
||||
async for chunk in process_completion_stream_response(stream):
|
||||
yield chunk
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -4,14 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncGenerator, AsyncIterator
|
||||
from collections.abc import AsyncIterator
|
||||
from typing import Any
|
||||
|
||||
import litellm
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
|
@ -62,7 +59,7 @@ class LiteLLMOpenAIMixin(
|
|||
self,
|
||||
litellm_provider_name: str,
|
||||
api_key_from_config: str | None,
|
||||
provider_data_api_key_field: str,
|
||||
provider_data_api_key_field: str | None = None,
|
||||
model_entries: list[ProviderModelEntry] | None = None,
|
||||
openai_compat_api_base: str | None = None,
|
||||
download_images: bool = False,
|
||||
|
@ -73,7 +70,7 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
:param model_entries: The model entries to register.
|
||||
:param api_key_from_config: The API key to use from the config.
|
||||
:param provider_data_api_key_field: The field in the provider data that contains the API key.
|
||||
:param provider_data_api_key_field: The field in the provider data that contains the API key (optional).
|
||||
:param litellm_provider_name: The name of the provider, used for model lookups.
|
||||
:param openai_compat_api_base: The base URL for OpenAI compatibility, or None if not using OpenAI compatibility.
|
||||
:param download_images: Whether to download images and convert to base64 for message conversion.
|
||||
|
@ -108,17 +105,6 @@ class LiteLLMOpenAIMixin(
|
|||
else model_id
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: SamplingParams | None = None,
|
||||
response_format: ResponseFormat | None = None,
|
||||
stream: bool | None = False,
|
||||
logprobs: LogProbConfig | None = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError("LiteLLM does not support completion requests")
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
@ -63,7 +63,7 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
model_entries: list[ProviderModelEntry] | None = None,
|
||||
allowed_models: list[str] | None = None,
|
||||
):
|
||||
self.allowed_models = allowed_models
|
||||
self.allowed_models = allowed_models if allowed_models else []
|
||||
|
||||
self.alias_to_provider_id_map = {}
|
||||
self.provider_id_to_llama_model_map = {}
|
||||
|
|
|
@ -103,8 +103,6 @@ from llama_stack.apis.inference import (
|
|||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
OpenAIChatCompletion,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionChoice,
|
||||
OpenAIEmbeddingData,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
|
@ -1281,76 +1279,6 @@ async def prepare_openai_completion_params(**params):
|
|||
return completion_params
|
||||
|
||||
|
||||
class OpenAICompletionToLlamaStackMixin:
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: str | list[str] | list[int] | list[list[int]],
|
||||
best_of: int | None = None,
|
||||
echo: bool | None = None,
|
||||
frequency_penalty: float | None = None,
|
||||
logit_bias: dict[str, float] | None = None,
|
||||
logprobs: bool | None = None,
|
||||
max_tokens: int | None = None,
|
||||
n: int | None = None,
|
||||
presence_penalty: float | None = None,
|
||||
seed: int | None = None,
|
||||
stop: str | list[str] | None = None,
|
||||
stream: bool | None = None,
|
||||
stream_options: dict[str, Any] | None = None,
|
||||
temperature: float | None = None,
|
||||
top_p: float | None = None,
|
||||
user: str | None = None,
|
||||
guided_choice: list[str] | None = None,
|
||||
prompt_logprobs: int | None = None,
|
||||
suffix: str | None = None,
|
||||
) -> OpenAICompletion:
|
||||
if stream:
|
||||
raise ValueError(f"{self.__class__.__name__} doesn't support streaming openai completions")
|
||||
|
||||
# This is a pretty hacky way to do emulate completions -
|
||||
# basically just de-batches them...
|
||||
prompts = [prompt] if not isinstance(prompt, list) else prompt
|
||||
|
||||
sampling_params = _convert_openai_sampling_params(
|
||||
max_tokens=max_tokens,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
)
|
||||
|
||||
choices = []
|
||||
# "n" is the number of completions to generate per prompt
|
||||
n = n or 1
|
||||
for _i in range(0, n):
|
||||
# and we may have multiple prompts, if batching was used
|
||||
|
||||
for prompt in prompts:
|
||||
result = self.completion(
|
||||
model_id=model,
|
||||
content=prompt,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
index = len(choices)
|
||||
text = result.content
|
||||
finish_reason = _convert_stop_reason_to_openai_finish_reason(result.stop_reason)
|
||||
|
||||
choice = OpenAICompletionChoice(
|
||||
index=index,
|
||||
text=text,
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
choices.append(choice)
|
||||
|
||||
return OpenAICompletion(
|
||||
id=f"cmpl-{uuid.uuid4()}",
|
||||
choices=choices,
|
||||
created=int(time.time()),
|
||||
model=model,
|
||||
object="text_completion",
|
||||
)
|
||||
|
||||
|
||||
class OpenAIChatCompletionToLlamaStackMixin:
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
|
|
|
@ -24,6 +24,7 @@ from llama_stack.apis.inference import (
|
|||
OpenAIResponseFormatParam,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
||||
|
@ -32,7 +33,7 @@ from llama_stack.providers.utils.inference.prompt_adapter import localize_image_
|
|||
logger = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class OpenAIMixin(ModelRegistryHelper, ABC):
|
||||
class OpenAIMixin(ModelRegistryHelper, NeedsRequestProviderData, ABC):
|
||||
"""
|
||||
Mixin class that provides OpenAI-specific functionality for inference providers.
|
||||
This class handles direct OpenAI API calls using the AsyncOpenAI client.
|
||||
|
@ -69,6 +70,9 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
|
|||
# List of allowed models for this provider, if empty all models allowed
|
||||
allowed_models: list[str] = []
|
||||
|
||||
# Optional field name in provider data to look for API key, which takes precedence
|
||||
provider_data_api_key_field: str | None = None
|
||||
|
||||
@abstractmethod
|
||||
def get_api_key(self) -> str:
|
||||
"""
|
||||
|
@ -111,9 +115,28 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
|
|||
|
||||
Uses the abstract methods get_api_key() and get_base_url() which must be
|
||||
implemented by child classes.
|
||||
|
||||
Users can also provide the API key via the provider data header, which
|
||||
is used instead of any config API key.
|
||||
"""
|
||||
|
||||
api_key = self.get_api_key()
|
||||
|
||||
if self.provider_data_api_key_field:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data and getattr(provider_data, self.provider_data_api_key_field, None):
|
||||
api_key = getattr(provider_data, self.provider_data_api_key_field)
|
||||
|
||||
if not api_key: # TODO: let get_api_key return None
|
||||
raise ValueError(
|
||||
"API key is not set. Please provide a valid API key in the "
|
||||
"provider data header, e.g. x-llamastack-provider-data: "
|
||||
f'{{"{self.provider_data_api_key_field}": "<API_KEY>"}}, '
|
||||
"or in the provider config."
|
||||
)
|
||||
|
||||
return AsyncOpenAI(
|
||||
api_key=self.get_api_key(),
|
||||
api_key=api_key,
|
||||
base_url=self.get_base_url(),
|
||||
**self.get_extra_client_params(),
|
||||
)
|
||||
|
|
|
@ -229,28 +229,6 @@ async def convert_image_content_to_url(
|
|||
return base64.b64encode(content).decode("utf-8")
|
||||
|
||||
|
||||
async def completion_request_to_prompt(request: CompletionRequest) -> str:
|
||||
content = augment_content_with_response_format_prompt(request.response_format, request.content)
|
||||
request.content = content
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_content(request.content)
|
||||
return formatter.tokenizer.decode(model_input.tokens)
|
||||
|
||||
|
||||
async def completion_request_to_prompt_model_input_info(
|
||||
request: CompletionRequest,
|
||||
) -> tuple[str, int]:
|
||||
content = augment_content_with_response_format_prompt(request.response_format, request.content)
|
||||
request.content = content
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_content(request.content)
|
||||
return (formatter.tokenizer.decode(model_input.tokens), len(model_input.tokens))
|
||||
|
||||
|
||||
def augment_content_with_response_format_prompt(response_format, content):
|
||||
if fmt_prompt := response_format_prompt(response_format):
|
||||
if isinstance(content, list):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue