This commit is contained in:
Mustafa Elbehery 2025-09-15 09:52:04 +02:00 committed by GitHub
commit 040ff976a3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -5,7 +5,6 @@
# the root directory of this source tree.
import os
import unittest
from unittest.mock import MagicMock, patch
import pytest
@ -13,6 +12,8 @@ import pytest
from llama_stack.apis.benchmarks import Benchmark
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.eval.eval import BenchmarkConfig, EvaluateResponse, ModelCandidate, SamplingParams
from llama_stack.apis.inference.inference import TopPSamplingStrategy
from llama_stack.apis.resource import ResourceType
from llama_stack.models.llama.sku_types import CoreModelId
from llama_stack.providers.remote.eval.nvidia.config import NVIDIAEvalConfig
from llama_stack.providers.remote.eval.nvidia.eval import NVIDIAEvalImpl
@ -21,181 +22,205 @@ MOCK_DATASET_ID = "default/test-dataset"
MOCK_BENCHMARK_ID = "test-benchmark"
class TestNVIDIAEvalImpl(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_EVALUATOR_URL"] = "http://nemo.test"
@pytest.fixture
def nvidia_eval_setup():
"""Set up the NVIDIA eval implementation with mocked dependencies."""
os.environ["NVIDIA_EVALUATOR_URL"] = "http://nemo.test"
# Create mock APIs
self.datasetio_api = MagicMock()
self.datasets_api = MagicMock()
self.scoring_api = MagicMock()
self.inference_api = MagicMock()
self.agents_api = MagicMock()
# Create mock APIs
datasetio_api = MagicMock()
datasets_api = MagicMock()
scoring_api = MagicMock()
inference_api = MagicMock()
agents_api = MagicMock()
self.config = NVIDIAEvalConfig(
evaluator_url=os.environ["NVIDIA_EVALUATOR_URL"],
)
config = NVIDIAEvalConfig(
evaluator_url=os.environ["NVIDIA_EVALUATOR_URL"],
)
self.eval_impl = NVIDIAEvalImpl(
config=self.config,
datasetio_api=self.datasetio_api,
datasets_api=self.datasets_api,
scoring_api=self.scoring_api,
inference_api=self.inference_api,
agents_api=self.agents_api,
)
eval_impl = NVIDIAEvalImpl(
config=config,
datasetio_api=datasetio_api,
datasets_api=datasets_api,
scoring_api=scoring_api,
inference_api=inference_api,
agents_api=agents_api,
)
# Mock the HTTP request methods
self.evaluator_get_patcher = patch(
"llama_stack.providers.remote.eval.nvidia.eval.NVIDIAEvalImpl._evaluator_get"
)
self.evaluator_post_patcher = patch(
"llama_stack.providers.remote.eval.nvidia.eval.NVIDIAEvalImpl._evaluator_post"
)
self.mock_evaluator_get = self.evaluator_get_patcher.start()
self.mock_evaluator_post = self.evaluator_post_patcher.start()
def tearDown(self):
"""Clean up after each test."""
self.evaluator_get_patcher.stop()
self.evaluator_post_patcher.stop()
def _assert_request_body(self, expected_json):
"""Helper method to verify request body in Evaluator POST request is correct"""
call_args = self.mock_evaluator_post.call_args
actual_json = call_args[0][1]
# Check that all expected keys contain the expected values in the actual JSON
for key, value in expected_json.items():
assert key in actual_json, f"Key '{key}' missing in actual JSON"
if isinstance(value, dict):
for nested_key, nested_value in value.items():
assert nested_key in actual_json[key], f"Nested key '{nested_key}' missing in actual JSON['{key}']"
assert actual_json[key][nested_key] == nested_value, f"Value mismatch for '{key}.{nested_key}'"
else:
assert actual_json[key] == value, f"Value mismatch for '{key}'"
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def test_register_benchmark(self):
eval_config = {
"type": "custom",
"params": {"parallelism": 8},
"tasks": {
"qa": {
"type": "completion",
"params": {"template": {"prompt": "{{prompt}}", "max_tokens": 200}},
"dataset": {"files_url": f"hf://datasets/{MOCK_DATASET_ID}/testing/testing.jsonl"},
"metrics": {"bleu": {"type": "bleu", "params": {"references": ["{{ideal_response}}"]}}},
}
},
# Mock the HTTP request methods
with (
patch("llama_stack.providers.remote.eval.nvidia.eval.NVIDIAEvalImpl._evaluator_get") as mock_evaluator_get,
patch("llama_stack.providers.remote.eval.nvidia.eval.NVIDIAEvalImpl._evaluator_post") as mock_evaluator_post,
):
yield {
"eval_impl": eval_impl,
"mock_evaluator_get": mock_evaluator_get,
"mock_evaluator_post": mock_evaluator_post,
"datasetio_api": datasetio_api,
"datasets_api": datasets_api,
"scoring_api": scoring_api,
"inference_api": inference_api,
"agents_api": agents_api,
}
benchmark = Benchmark(
provider_id="nvidia",
type="benchmark",
identifier=MOCK_BENCHMARK_ID,
dataset_id=MOCK_DATASET_ID,
scoring_functions=["basic::equality"],
metadata=eval_config,
)
# Mock Evaluator API response
mock_evaluator_response = {"id": MOCK_BENCHMARK_ID, "status": "created"}
self.mock_evaluator_post.return_value = mock_evaluator_response
def _assert_request_body(mock_evaluator_post, expected_json):
"""Helper method to verify request body in Evaluator POST request is correct"""
call_args = mock_evaluator_post.call_args
actual_json = call_args[0][1]
# Register the benchmark
self.run_async(self.eval_impl.register_benchmark(benchmark))
# Check that all expected keys contain the expected values in the actual JSON
for key, value in expected_json.items():
assert key in actual_json, f"Key '{key}' missing in actual JSON"
# Verify the Evaluator API was called correctly
self.mock_evaluator_post.assert_called_once()
self._assert_request_body({"namespace": benchmark.provider_id, "name": benchmark.identifier, **eval_config})
if isinstance(value, dict):
for nested_key, nested_value in value.items():
assert nested_key in actual_json[key], f"Nested key '{nested_key}' missing in actual JSON['{key}']"
assert actual_json[key][nested_key] == nested_value, f"Value mismatch for '{key}.{nested_key}'"
else:
assert actual_json[key] == value, f"Value mismatch for '{key}'"
def test_run_eval(self):
benchmark_config = BenchmarkConfig(
eval_candidate=ModelCandidate(
type="model",
model=CoreModelId.llama3_1_8b_instruct.value,
sampling_params=SamplingParams(max_tokens=100, temperature=0.7),
)
)
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "created"}
self.mock_evaluator_post.return_value = mock_evaluator_response
@pytest.mark.asyncio
async def test_register_benchmark(nvidia_eval_setup):
eval_impl = nvidia_eval_setup["eval_impl"]
mock_evaluator_post = nvidia_eval_setup["mock_evaluator_post"]
# Run the Evaluation job
result = self.run_async(
self.eval_impl.run_eval(benchmark_id=MOCK_BENCHMARK_ID, benchmark_config=benchmark_config)
)
# Verify the Evaluator API was called correctly
self.mock_evaluator_post.assert_called_once()
self._assert_request_body(
{
"config": f"nvidia/{MOCK_BENCHMARK_ID}",
"target": {"type": "model", "model": "meta/llama-3.1-8b-instruct"},
eval_config = {
"type": "custom",
"params": {"parallelism": 8},
"tasks": {
"qa": {
"type": "completion",
"params": {"template": {"prompt": "{{prompt}}", "max_tokens": 200}},
"dataset": {"files_url": f"hf://datasets/{MOCK_DATASET_ID}/testing/testing.jsonl"},
"metrics": {"bleu": {"type": "bleu", "params": {"references": ["{{ideal_response}}"]}}},
}
},
}
benchmark = Benchmark(
provider_id="nvidia",
type=ResourceType.benchmark,
identifier=MOCK_BENCHMARK_ID,
dataset_id=MOCK_DATASET_ID,
scoring_functions=["basic::equality"],
metadata=eval_config,
)
# Mock Evaluator API response
mock_evaluator_response = {"id": MOCK_BENCHMARK_ID, "status": "created"}
mock_evaluator_post.return_value = mock_evaluator_response
# Register the benchmark
await eval_impl.register_benchmark(benchmark)
# Verify the Evaluator API was called correctly
mock_evaluator_post.assert_called_once()
_assert_request_body(
mock_evaluator_post, {"namespace": benchmark.provider_id, "name": benchmark.identifier, **eval_config}
)
@pytest.mark.asyncio
async def test_run_eval(nvidia_eval_setup):
eval_impl = nvidia_eval_setup["eval_impl"]
mock_evaluator_post = nvidia_eval_setup["mock_evaluator_post"]
benchmark_config = BenchmarkConfig(
eval_candidate=ModelCandidate(
type="model",
model=CoreModelId.llama3_1_8b_instruct.value,
sampling_params=SamplingParams(max_tokens=100, strategy=TopPSamplingStrategy(temperature=0.7)),
)
)
# Verify the result
assert isinstance(result, Job)
assert result.job_id == "job-123"
assert result.status == JobStatus.in_progress
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "created"}
mock_evaluator_post.return_value = mock_evaluator_response
def test_job_status(self):
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "completed"}
self.mock_evaluator_get.return_value = mock_evaluator_response
# Run the Evaluation job
result = await eval_impl.run_eval(benchmark_id=MOCK_BENCHMARK_ID, benchmark_config=benchmark_config)
# Get the Evaluation job
result = self.run_async(self.eval_impl.job_status(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123"))
# Verify the Evaluator API was called correctly
mock_evaluator_post.assert_called_once()
_assert_request_body(
mock_evaluator_post,
{
"config": f"nvidia/{MOCK_BENCHMARK_ID}",
"target": {"type": "model", "model": "meta/llama-3.1-8b-instruct"},
},
)
# Verify the result
assert isinstance(result, Job)
assert result.job_id == "job-123"
assert result.status == JobStatus.completed
# Verify the result
assert isinstance(result, Job)
assert result.job_id == "job-123"
assert result.status == JobStatus.in_progress
# Verify the API was called correctly
self.mock_evaluator_get.assert_called_once_with(f"/v1/evaluation/jobs/{result.job_id}")
def test_job_cancel(self):
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "cancelled"}
self.mock_evaluator_post.return_value = mock_evaluator_response
@pytest.mark.asyncio
async def test_job_status(nvidia_eval_setup):
eval_impl = nvidia_eval_setup["eval_impl"]
mock_evaluator_get = nvidia_eval_setup["mock_evaluator_get"]
# Cancel the Evaluation job
self.run_async(self.eval_impl.job_cancel(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123"))
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "completed"}
mock_evaluator_get.return_value = mock_evaluator_response
# Verify the API was called correctly
self.mock_evaluator_post.assert_called_once_with("/v1/evaluation/jobs/job-123/cancel", {})
# Get the Evaluation job
result = await eval_impl.job_status(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123")
def test_job_result(self):
# Mock Evaluator API responses
mock_job_status_response = {"id": "job-123", "status": "completed"}
mock_job_results_response = {
"id": "job-123",
"status": "completed",
"results": {MOCK_BENCHMARK_ID: {"score": 0.85, "details": {"accuracy": 0.85, "f1": 0.84}}},
}
self.mock_evaluator_get.side_effect = [
mock_job_status_response, # First call to retrieve job
mock_job_results_response, # Second call to retrieve job results
]
# Verify the result
assert isinstance(result, Job)
assert result.job_id == "job-123"
assert result.status == JobStatus.completed
# Get the Evaluation job results
result = self.run_async(self.eval_impl.job_result(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123"))
# Verify the API was called correctly
mock_evaluator_get.assert_called_once_with(f"/v1/evaluation/jobs/{result.job_id}")
# Verify the result
assert isinstance(result, EvaluateResponse)
assert MOCK_BENCHMARK_ID in result.scores
assert result.scores[MOCK_BENCHMARK_ID].aggregated_results["results"][MOCK_BENCHMARK_ID]["score"] == 0.85
# Verify the API was called correctly
assert self.mock_evaluator_get.call_count == 2
self.mock_evaluator_get.assert_any_call("/v1/evaluation/jobs/job-123")
self.mock_evaluator_get.assert_any_call("/v1/evaluation/jobs/job-123/results")
@pytest.mark.asyncio
async def test_job_cancel(nvidia_eval_setup):
eval_impl = nvidia_eval_setup["eval_impl"]
mock_evaluator_post = nvidia_eval_setup["mock_evaluator_post"]
# Mock Evaluator API response
mock_evaluator_response = {"id": "job-123", "status": "cancelled"}
mock_evaluator_post.return_value = mock_evaluator_response
# Cancel the Evaluation job
await eval_impl.job_cancel(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123")
# Verify the API was called correctly
mock_evaluator_post.assert_called_once_with("/v1/evaluation/jobs/job-123/cancel", {})
@pytest.mark.asyncio
async def test_job_result(nvidia_eval_setup):
eval_impl = nvidia_eval_setup["eval_impl"]
mock_evaluator_get = nvidia_eval_setup["mock_evaluator_get"]
# Mock Evaluator API responses
mock_job_status_response = {"id": "job-123", "status": "completed"}
mock_job_results_response = {
"id": "job-123",
"status": "completed",
"results": {MOCK_BENCHMARK_ID: {"score": 0.85, "details": {"accuracy": 0.85, "f1": 0.84}}},
}
mock_evaluator_get.side_effect = [
mock_job_status_response, # First call to retrieve job
mock_job_results_response, # Second call to retrieve job results
]
# Get the Evaluation job results
result = await eval_impl.job_result(benchmark_id=MOCK_BENCHMARK_ID, job_id="job-123")
# Verify the result
assert isinstance(result, EvaluateResponse)
assert MOCK_BENCHMARK_ID in result.scores
assert result.scores[MOCK_BENCHMARK_ID].aggregated_results["results"][MOCK_BENCHMARK_ID]["score"] == 0.85
# Verify the API was called correctly
assert mock_evaluator_get.call_count == 2
mock_evaluator_get.assert_any_call("/v1/evaluation/jobs/job-123")
mock_evaluator_get.assert_any_call("/v1/evaluation/jobs/job-123/results")