mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
getting closer to a distro definition, distro install + configure works
This commit is contained in:
parent
dac2b5a1ed
commit
041cafbee3
11 changed files with 471 additions and 130 deletions
|
@ -5,18 +5,24 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import importlib
|
||||
import inspect
|
||||
import shlex
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Annotated, get_args, get_origin, Literal, Union
|
||||
|
||||
import pkg_resources
|
||||
import yaml
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.distribution.registry import all_registered_distributions
|
||||
from llama_toolchain.utils import LLAMA_STACK_CONFIG_DIR
|
||||
from llama_toolchain.distribution.datatypes import Distribution, PassthroughApiAdapter
|
||||
from llama_toolchain.distribution.registry import available_distributions
|
||||
from llama_toolchain.utils import DISTRIBS_BASE_DIR
|
||||
from .utils import run_command
|
||||
|
||||
|
||||
CONFIGS_BASE_DIR = os.path.join(LLAMA_STACK_CONFIG_DIR, "configs")
|
||||
DISTRIBS = available_distributions()
|
||||
|
||||
|
||||
class DistributionConfigure(Subcommand):
|
||||
|
@ -34,59 +40,198 @@ class DistributionConfigure(Subcommand):
|
|||
self.parser.set_defaults(func=self._run_distribution_configure_cmd)
|
||||
|
||||
def _add_arguments(self):
|
||||
distribs = all_registered_distributions()
|
||||
self.parser.add_argument(
|
||||
"--name",
|
||||
type=str,
|
||||
help="Mame of the distribution to configure",
|
||||
default="local-source",
|
||||
choices=[d.name for d in distribs],
|
||||
choices=[d.name for d in available_distributions()],
|
||||
)
|
||||
|
||||
def read_user_inputs(self):
|
||||
checkpoint_dir = input(
|
||||
"Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): "
|
||||
)
|
||||
model_parallel_size = input(
|
||||
"Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): "
|
||||
)
|
||||
assert model_parallel_size.isdigit() and int(model_parallel_size) in {
|
||||
1,
|
||||
8,
|
||||
}, "model parallel size must be 1 or 8"
|
||||
def _run_distribution_configure_cmd(self, args: argparse.Namespace) -> None:
|
||||
dist = None
|
||||
for d in DISTRIBS:
|
||||
if d.name == args.name:
|
||||
dist = d
|
||||
break
|
||||
|
||||
return checkpoint_dir, model_parallel_size
|
||||
if dist is None:
|
||||
self.parser.error(f"Could not find distribution {args.name}")
|
||||
return
|
||||
|
||||
def write_output_yaml(self, checkpoint_dir, model_parallel_size, yaml_output_path):
|
||||
default_conf_path = pkg_resources.resource_filename(
|
||||
"llama_toolchain", "data/default_distribution_config.yaml"
|
||||
)
|
||||
with open(default_conf_path, "r") as f:
|
||||
yaml_content = f.read()
|
||||
env_file = DISTRIBS_BASE_DIR / dist.name / "conda.env"
|
||||
# read this file to get the conda env name
|
||||
assert env_file.exists(), f"Could not find conda env file {env_file}"
|
||||
with open(env_file, "r") as f:
|
||||
conda_env = f.read().strip()
|
||||
|
||||
yaml_content = yaml_content.format(
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
model_parallel_size=model_parallel_size,
|
||||
configure_llama_distribution(dist, conda_env)
|
||||
|
||||
|
||||
def configure_llama_distribution(dist: Distribution, conda_env: str):
|
||||
python_exe = run_command(shlex.split("which python"))
|
||||
# simple check
|
||||
if conda_env not in python_exe:
|
||||
raise ValueError(
|
||||
f"Please re-run configure by activating the `{conda_env}` conda environment"
|
||||
)
|
||||
|
||||
with open(yaml_output_path, "w") as yaml_file:
|
||||
yaml_file.write(yaml_content.strip())
|
||||
adapter_configs = {}
|
||||
for api_surface, adapter in dist.adapters.items():
|
||||
if isinstance(adapter, PassthroughApiAdapter):
|
||||
adapter_configs[api_surface.value] = adapter.dict()
|
||||
else:
|
||||
cprint(
|
||||
f"Configuring API surface: {api_surface.value}", "white", attrs=["bold"]
|
||||
)
|
||||
config_type = instantiate_class_type(adapter.config_class)
|
||||
# TODO: when we are re-configuring, we should read existing values
|
||||
config = prompt_for_config(config_type)
|
||||
adapter_configs[api_surface.value] = config.dict()
|
||||
|
||||
dist_config = {
|
||||
"adapters": adapter_configs,
|
||||
"conda_env": conda_env,
|
||||
}
|
||||
|
||||
yaml_output_path = Path(DISTRIBS_BASE_DIR) / dist.name / "config.yaml"
|
||||
with open(yaml_output_path, "w") as fp:
|
||||
fp.write(yaml.dump(dist_config, sort_keys=False))
|
||||
|
||||
print(f"YAML configuration has been written to {yaml_output_path}")
|
||||
|
||||
def _run_distribution_configure_cmd(self, args: argparse.Namespace) -> None:
|
||||
checkpoint_dir, model_parallel_size = self.read_user_inputs()
|
||||
checkpoint_dir = os.path.expanduser(checkpoint_dir)
|
||||
|
||||
assert (
|
||||
Path(checkpoint_dir).exists() and Path(checkpoint_dir).is_dir()
|
||||
), f"{checkpoint_dir} does not exist or it not a directory"
|
||||
def instantiate_class_type(fully_qualified_name):
|
||||
module_name, class_name = fully_qualified_name.rsplit(".", 1)
|
||||
module = importlib.import_module(module_name)
|
||||
return getattr(module, class_name)
|
||||
|
||||
os.makedirs(CONFIGS_BASE_DIR, exist_ok=True)
|
||||
yaml_output_path = Path(CONFIGS_BASE_DIR) / "distribution.yaml"
|
||||
|
||||
self.write_output_yaml(
|
||||
checkpoint_dir,
|
||||
model_parallel_size,
|
||||
yaml_output_path,
|
||||
def get_literal_values(field):
|
||||
"""Extract literal values from a field if it's a Literal type."""
|
||||
if get_origin(field.annotation) is Literal:
|
||||
return get_args(field.annotation)
|
||||
return None
|
||||
|
||||
|
||||
def is_optional(field_type):
|
||||
"""Check if a field type is Optional."""
|
||||
return get_origin(field_type) is Union and type(None) in get_args(field_type)
|
||||
|
||||
|
||||
def get_non_none_type(field_type):
|
||||
"""Get the non-None type from an Optional type."""
|
||||
return next(arg for arg in get_args(field_type) if arg is not type(None))
|
||||
|
||||
|
||||
def prompt_for_config(config_type: type[BaseModel]) -> BaseModel:
|
||||
"""
|
||||
Recursively prompt the user for configuration values based on a Pydantic BaseModel.
|
||||
|
||||
Args:
|
||||
config_type: A Pydantic BaseModel class representing the configuration structure.
|
||||
|
||||
Returns:
|
||||
An instance of the config_type with user-provided values.
|
||||
"""
|
||||
config_data = {}
|
||||
|
||||
for field_name, field in config_type.__fields__.items():
|
||||
field_type = field.annotation
|
||||
default_value = (
|
||||
field.default if not isinstance(field.default, type(Ellipsis)) else None
|
||||
)
|
||||
is_required = field.required
|
||||
|
||||
# Skip fields with Literal type
|
||||
if get_origin(field_type) is Literal:
|
||||
continue
|
||||
|
||||
# Check if the field is a discriminated union
|
||||
if get_origin(field_type) is Annotated:
|
||||
inner_type = get_args(field_type)[0]
|
||||
if get_origin(inner_type) is Union:
|
||||
discriminator = field.field_info.discriminator
|
||||
if discriminator:
|
||||
union_types = get_args(inner_type)
|
||||
# Find the discriminator field in each union type
|
||||
type_map = {}
|
||||
for t in union_types:
|
||||
disc_field = t.__fields__[discriminator]
|
||||
literal_values = get_literal_values(disc_field)
|
||||
if literal_values:
|
||||
for value in literal_values:
|
||||
type_map[value] = t
|
||||
|
||||
while True:
|
||||
discriminator_value = input(
|
||||
f"Enter the {discriminator} (options: {', '.join(type_map.keys())}): "
|
||||
)
|
||||
if discriminator_value in type_map:
|
||||
chosen_type = type_map[discriminator_value]
|
||||
print(f"\nConfiguring {chosen_type.__name__}:")
|
||||
sub_config = prompt_for_config(chosen_type)
|
||||
config_data[field_name] = sub_config
|
||||
# Set the discriminator field in the sub-config
|
||||
setattr(sub_config, discriminator, discriminator_value)
|
||||
break
|
||||
else:
|
||||
print(f"Invalid {discriminator}. Please try again.")
|
||||
continue
|
||||
|
||||
if inspect.isclass(field_type) and issubclass(field_type, BaseModel):
|
||||
print(f"\nEntering sub-configuration for {field_name}:")
|
||||
config_data[field_name] = prompt_for_config(field_type)
|
||||
else:
|
||||
prompt = f"Enter value for {field_name}"
|
||||
if default_value is not None:
|
||||
prompt += f" (default: {default_value})"
|
||||
if is_optional(field_type):
|
||||
prompt += " (optional)"
|
||||
elif is_required:
|
||||
prompt += " (required)"
|
||||
prompt += ": "
|
||||
|
||||
while True:
|
||||
user_input = input(prompt)
|
||||
if user_input == "":
|
||||
if default_value is not None:
|
||||
config_data[field_name] = default_value
|
||||
break
|
||||
elif is_optional(field_type):
|
||||
config_data[field_name] = None
|
||||
break
|
||||
elif not is_required:
|
||||
config_data[field_name] = None
|
||||
break
|
||||
else:
|
||||
print("This field is required. Please provide a value.")
|
||||
continue
|
||||
|
||||
try:
|
||||
# Handle Optional types
|
||||
if is_optional(field_type):
|
||||
if user_input.lower() == "none":
|
||||
config_data[field_name] = None
|
||||
break
|
||||
field_type = get_non_none_type(field_type)
|
||||
|
||||
# Convert the input to the correct type
|
||||
if inspect.isclass(field_type) and issubclass(
|
||||
field_type, BaseModel
|
||||
):
|
||||
# For nested BaseModels, we assume a dictionary-like string input
|
||||
import ast
|
||||
|
||||
config_data[field_name] = field_type(
|
||||
**ast.literal_eval(user_input)
|
||||
)
|
||||
else:
|
||||
config_data[field_name] = field_type(user_input)
|
||||
break
|
||||
except ValueError:
|
||||
print(
|
||||
f"Invalid input. Expected type: {getattr(field_type, '__name__', str(field_type))}"
|
||||
)
|
||||
|
||||
return config_type(**config_data)
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
import argparse
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
|
||||
from .configure import DistributionConfigure
|
||||
from .create import DistributionCreate
|
||||
from .install import DistributionInstall
|
||||
|
|
|
@ -7,20 +7,16 @@
|
|||
import argparse
|
||||
import os
|
||||
import shlex
|
||||
import subprocess
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import pkg_resources
|
||||
|
||||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.distribution.registry import all_registered_distributions
|
||||
from llama_toolchain.utils import LLAMA_STACK_CONFIG_DIR
|
||||
from llama_toolchain.distribution.datatypes import distribution_dependencies
|
||||
from llama_toolchain.distribution.registry import available_distributions
|
||||
from llama_toolchain.utils import DISTRIBS_BASE_DIR
|
||||
from .utils import run_command, run_with_pty
|
||||
|
||||
|
||||
DISTRIBS_BASE_DIR = Path(LLAMA_STACK_CONFIG_DIR) / "distributions"
|
||||
|
||||
DISTRIBS = all_registered_distributions()
|
||||
DISTRIBS = available_distributions()
|
||||
|
||||
|
||||
class DistributionInstall(Subcommand):
|
||||
|
@ -70,13 +66,19 @@ class DistributionInstall(Subcommand):
|
|||
return
|
||||
|
||||
os.makedirs(DISTRIBS_BASE_DIR / dist.name, exist_ok=True)
|
||||
run_shell_script(script, args.conda_env, " ".join(dist.pip_packages))
|
||||
|
||||
deps = distribution_dependencies(dist)
|
||||
run_command([script, args.conda_env, " ".join(deps)])
|
||||
with open(DISTRIBS_BASE_DIR / dist.name / "conda.env", "w") as f:
|
||||
f.write(f"{args.conda_env}\n")
|
||||
|
||||
|
||||
def run_shell_script(script_path, *args):
|
||||
command_string = f"{script_path} {' '.join(shlex.quote(str(arg)) for arg in args)}"
|
||||
command_list = shlex.split(command_string)
|
||||
print(f"Running command: {command_list}")
|
||||
subprocess.run(command_list, check=True, text=True)
|
||||
# we need to run configure _within_ the conda environment and need to run with
|
||||
# a pty since configure is
|
||||
python_exe = run_command(
|
||||
shlex.split(f"conda run -n {args.conda_env} which python")
|
||||
).strip()
|
||||
run_with_pty(
|
||||
shlex.split(
|
||||
f"{python_exe} -m llama_toolchain.cli.llama distribution configure --name {dist.name}"
|
||||
)
|
||||
)
|
||||
|
|
|
@ -9,7 +9,8 @@ import argparse
|
|||
from llama_toolchain.cli.subcommand import Subcommand
|
||||
from llama_toolchain.cli.table import print_table
|
||||
|
||||
from llama_toolchain.distribution.registry import all_registered_distributions
|
||||
from llama_toolchain.distribution.datatypes import distribution_dependencies
|
||||
from llama_toolchain.distribution.registry import available_distributions
|
||||
|
||||
|
||||
class DistributionList(Subcommand):
|
||||
|
@ -37,12 +38,13 @@ class DistributionList(Subcommand):
|
|||
]
|
||||
|
||||
rows = []
|
||||
for dist in all_registered_distributions():
|
||||
for dist in available_distributions():
|
||||
deps = distribution_dependencies(dist)
|
||||
rows.append(
|
||||
[
|
||||
dist.name,
|
||||
dist.description,
|
||||
", ".join(dist.pip_packages),
|
||||
", ".join(deps),
|
||||
]
|
||||
)
|
||||
print_table(
|
||||
|
|
76
llama_toolchain/cli/distribution/utils.py
Normal file
76
llama_toolchain/cli/distribution/utils.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import errno
|
||||
import os
|
||||
import pty
|
||||
import select
|
||||
import subprocess
|
||||
import sys
|
||||
import termios
|
||||
import tty
|
||||
|
||||
|
||||
def run_with_pty(command):
|
||||
old_settings = termios.tcgetattr(sys.stdin)
|
||||
|
||||
# Create a new pseudo-terminal
|
||||
master, slave = pty.openpty()
|
||||
|
||||
try:
|
||||
# ensure the terminal does not echo input
|
||||
tty.setraw(sys.stdin.fileno())
|
||||
|
||||
process = subprocess.Popen(
|
||||
command,
|
||||
stdin=slave,
|
||||
stdout=slave,
|
||||
stderr=slave,
|
||||
universal_newlines=True,
|
||||
)
|
||||
|
||||
# Close the slave file descriptor as it's now owned by the subprocess
|
||||
os.close(slave)
|
||||
|
||||
def handle_io():
|
||||
while True:
|
||||
rlist, _, _ = select.select([sys.stdin, master], [], [])
|
||||
|
||||
if sys.stdin in rlist:
|
||||
data = os.read(sys.stdin.fileno(), 1024)
|
||||
if not data: # EOF
|
||||
break
|
||||
os.write(master, data)
|
||||
|
||||
if master in rlist:
|
||||
data = os.read(master, 1024)
|
||||
if not data:
|
||||
break
|
||||
os.write(sys.stdout.fileno(), data)
|
||||
|
||||
handle_io()
|
||||
except (EOFError, KeyboardInterrupt):
|
||||
pass
|
||||
except OSError as e:
|
||||
if e.errno != errno.EIO:
|
||||
raise
|
||||
finally:
|
||||
# Restore original terminal settings
|
||||
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)
|
||||
|
||||
process.wait()
|
||||
os.close(master)
|
||||
|
||||
return process.returncode
|
||||
|
||||
|
||||
def run_command(command):
|
||||
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
output, error = process.communicate()
|
||||
if process.returncode != 0:
|
||||
print(f"Error: {error.decode('utf-8')}")
|
||||
sys.exit(1)
|
||||
return output.decode("utf-8")
|
|
@ -32,15 +32,7 @@ class PassthroughApiAdapterConfig(BaseModel):
|
|||
@json_schema_type
|
||||
class PythonImplAdapterConfig(BaseModel):
|
||||
type: Literal[AdapterType.python_impl.value] = AdapterType.python_impl.value
|
||||
pip_packages: List[str] = Field(
|
||||
default_factory=list,
|
||||
description="The pip dependencies needed for this implementation",
|
||||
)
|
||||
module: str = Field(..., description="The name of the module to import")
|
||||
entrypoint: str = Field(
|
||||
...,
|
||||
description="The name of the entrypoint function which creates the implementation for the API",
|
||||
)
|
||||
adapter_id: str
|
||||
kwargs: Dict[str, Any] = Field(
|
||||
default_factory=dict, description="kwargs to pass to the entrypoint"
|
||||
)
|
||||
|
@ -63,21 +55,43 @@ AdapterConfig = Annotated[
|
|||
]
|
||||
|
||||
|
||||
class DistributionConfig(BaseModel):
|
||||
inference: AdapterConfig
|
||||
safety: AdapterConfig
|
||||
|
||||
# configs for each API that the stack provides, e.g.
|
||||
# agentic_system: AdapterConfig
|
||||
# post_training: AdapterConfig
|
||||
@json_schema_type
|
||||
class ApiSurface(Enum):
|
||||
inference = "inference"
|
||||
safety = "safety"
|
||||
|
||||
|
||||
class DistributionConfigDefaults(BaseModel):
|
||||
inference: Dict[str, Any] = Field(
|
||||
default_factory=dict, description="Default kwargs for the inference adapter"
|
||||
@json_schema_type
|
||||
class Adapter(BaseModel):
|
||||
api_surface: ApiSurface
|
||||
adapter_id: str
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SourceAdapter(Adapter):
|
||||
pip_packages: List[str] = Field(
|
||||
default_factory=list,
|
||||
description="The pip dependencies needed for this implementation",
|
||||
)
|
||||
safety: Dict[str, Any] = Field(
|
||||
default_factory=dict, description="Default kwargs for the safety adapter"
|
||||
module: str = Field(
|
||||
...,
|
||||
description="""
|
||||
Fully-qualified name of the module to import. The module is expected to have
|
||||
a `get_adapter_instance()` method which will be passed a validated config object
|
||||
of type `config_class`.""",
|
||||
)
|
||||
config_class: str = Field(
|
||||
...,
|
||||
description="Fully-qualified classname of the config for this adapter",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class PassthroughApiAdapter(Adapter):
|
||||
base_url: str = Field(..., description="The base URL for the llama stack provider")
|
||||
headers: Dict[str, str] = Field(
|
||||
default_factory=dict,
|
||||
description="Headers (e.g., authorization) to send with the request",
|
||||
)
|
||||
|
||||
|
||||
|
@ -85,9 +99,22 @@ class Distribution(BaseModel):
|
|||
name: str
|
||||
description: str
|
||||
|
||||
# you must install the packages to get the functionality needed.
|
||||
# later, we may have a docker image be the main artifact of
|
||||
# a distribution.
|
||||
pip_packages: List[str]
|
||||
adapters: Dict[ApiSurface, Adapter] = Field(
|
||||
default_factory=dict,
|
||||
description="The API surfaces provided by this distribution",
|
||||
)
|
||||
|
||||
config_defaults: DistributionConfigDefaults
|
||||
additional_pip_packages: List[str] = Field(
|
||||
default_factory=list,
|
||||
description="Additional pip packages beyond those required by the adapters",
|
||||
)
|
||||
|
||||
|
||||
def distribution_dependencies(distribution: Distribution) -> List[str]:
|
||||
# only consider SourceAdapters when calculating dependencies
|
||||
return [
|
||||
dep
|
||||
for adapter in distribution.adapters.values()
|
||||
if isinstance(adapter, SourceAdapter)
|
||||
for dep in adapter.pip_packages
|
||||
] + distribution.additional_pip_packages
|
||||
|
|
|
@ -6,30 +6,60 @@
|
|||
|
||||
from typing import List
|
||||
|
||||
from .datatypes import Distribution, DistributionConfigDefaults
|
||||
from llama_toolchain.inference.adapters import available_inference_adapters
|
||||
|
||||
from .datatypes import ApiSurface, Distribution
|
||||
|
||||
# This is currently duplicated from `requirements.txt` with a few minor changes
|
||||
# dev-dependencies like "ufmt" etc. are nuked. A few specialized dependencies
|
||||
# are moved to the appropriate distribution.
|
||||
COMMON_DEPENDENCIES = [
|
||||
"accelerate",
|
||||
"black==24.4.2",
|
||||
"blobfile",
|
||||
"codeshield",
|
||||
"fairscale",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"flake8",
|
||||
"httpx",
|
||||
"huggingface-hub",
|
||||
"hydra-core",
|
||||
"hydra-zen",
|
||||
"json-strong-typing",
|
||||
"llama-models",
|
||||
"omegaconf",
|
||||
"pandas",
|
||||
"Pillow",
|
||||
"pydantic==1.10.13",
|
||||
"pydantic_core==2.18.2",
|
||||
"python-openapi",
|
||||
"requests",
|
||||
"tiktoken",
|
||||
"torch",
|
||||
"transformers",
|
||||
"uvicorn",
|
||||
]
|
||||
|
||||
|
||||
def all_registered_distributions() -> List[Distribution]:
|
||||
def available_distributions() -> List[Distribution]:
|
||||
inference_adapters_by_id = {a.adapter_id: a for a in available_inference_adapters()}
|
||||
|
||||
return [
|
||||
Distribution(
|
||||
name="local-source",
|
||||
description="Use code from `llama_toolchain` itself to serve all llama stack APIs",
|
||||
pip_packages=[],
|
||||
config_defaults=DistributionConfigDefaults(
|
||||
inference={
|
||||
"max_seq_len": 4096,
|
||||
"max_batch_size": 1,
|
||||
additional_pip_packages=COMMON_DEPENDENCIES,
|
||||
adapters={
|
||||
ApiSurface.inference: inference_adapters_by_id["meta-reference"],
|
||||
},
|
||||
safety={},
|
||||
),
|
||||
),
|
||||
Distribution(
|
||||
name="local-ollama",
|
||||
description="Like local-source, but use ollama for running LLM inference",
|
||||
pip_packages=["ollama"],
|
||||
config_defaults=DistributionConfigDefaults(
|
||||
inference={},
|
||||
safety={},
|
||||
),
|
||||
additional_pip_packages=COMMON_DEPENDENCIES,
|
||||
adapters={
|
||||
ApiSurface.inference: inference_adapters_by_id["meta-ollama"],
|
||||
},
|
||||
),
|
||||
]
|
||||
|
|
33
llama_toolchain/inference/adapters.py
Normal file
33
llama_toolchain/inference/adapters.py
Normal file
|
@ -0,0 +1,33 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_toolchain.distribution.datatypes import Adapter, ApiSurface, SourceAdapter
|
||||
|
||||
|
||||
def available_inference_adapters() -> List[Adapter]:
|
||||
return [
|
||||
SourceAdapter(
|
||||
api_surface=ApiSurface.inference,
|
||||
adapter_id="meta-reference",
|
||||
pip_packages=[
|
||||
"torch",
|
||||
"zmq",
|
||||
],
|
||||
module="llama_toolchain.inference.inference",
|
||||
config_class="llama_toolchain.inference.inference.InlineImplConfig",
|
||||
),
|
||||
SourceAdapter(
|
||||
api_surface=ApiSurface.inference,
|
||||
adapter_id="meta-ollama",
|
||||
pip_packages=[
|
||||
"ollama",
|
||||
],
|
||||
module="llama_toolchain.inference.ollama",
|
||||
config_class="llama_toolchain.inference.ollama.OllamaImplConfig",
|
||||
),
|
||||
]
|
|
@ -16,8 +16,8 @@ from .api.datatypes import (
|
|||
ToolCallParseStatus,
|
||||
)
|
||||
from .api.endpoints import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
|
@ -25,6 +25,13 @@ from .api.endpoints import (
|
|||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
||||
|
||||
def get_adapter_impl(config: InlineImplConfig) -> Inference:
|
||||
assert isinstance(
|
||||
config, InlineImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
return InferenceImpl(config)
|
||||
|
||||
|
||||
class InferenceImpl(Inference):
|
||||
|
||||
def __init__(self, config: InlineImplConfig) -> None:
|
||||
|
|
|
@ -1,9 +1,14 @@
|
|||
import httpx
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from ollama import AsyncClient
|
||||
import httpx
|
||||
|
||||
from llama_models.llama3_1.api.datatypes import (
|
||||
BuiltinTool,
|
||||
|
@ -14,6 +19,8 @@ from llama_models.llama3_1.api.datatypes import (
|
|||
)
|
||||
from llama_models.llama3_1.api.tool_utils import ToolUtils
|
||||
|
||||
from ollama import AsyncClient
|
||||
|
||||
from .api.config import OllamaImplConfig
|
||||
from .api.datatypes import (
|
||||
ChatCompletionResponseEvent,
|
||||
|
@ -22,14 +29,20 @@ from .api.datatypes import (
|
|||
ToolCallParseStatus,
|
||||
)
|
||||
from .api.endpoints import (
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionRequest,
|
||||
Inference,
|
||||
)
|
||||
|
||||
|
||||
def get_adapter_impl(config: OllamaImplConfig) -> Inference:
|
||||
assert isinstance(
|
||||
config, OllamaImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
return OllamaInference(config)
|
||||
|
||||
|
||||
class OllamaInference(Inference):
|
||||
|
||||
|
@ -41,9 +54,13 @@ class OllamaInference(Inference):
|
|||
self.client = AsyncClient(host=self.config.url)
|
||||
try:
|
||||
status = await self.client.pull(self.model)
|
||||
assert status['status'] == 'success', f"Failed to pull model {self.model} in ollama"
|
||||
assert (
|
||||
status["status"] == "success"
|
||||
), f"Failed to pull model {self.model} in ollama"
|
||||
except httpx.ConnectError:
|
||||
print("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
|
||||
print(
|
||||
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
||||
)
|
||||
raise
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
|
@ -55,9 +72,7 @@ class OllamaInference(Inference):
|
|||
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
||||
ollama_messages = []
|
||||
for message in messages:
|
||||
ollama_messages.append(
|
||||
{"role": message.role, "content": message.content}
|
||||
)
|
||||
ollama_messages.append({"role": message.role, "content": message.content})
|
||||
|
||||
return ollama_messages
|
||||
|
||||
|
@ -67,16 +82,16 @@ class OllamaInference(Inference):
|
|||
model=self.model,
|
||||
messages=self._messages_to_ollama_messages(request.messages),
|
||||
stream=False,
|
||||
#TODO: add support for options like temp, top_p, max_seq_length, etc
|
||||
# TODO: add support for options like temp, top_p, max_seq_length, etc
|
||||
)
|
||||
if r['done']:
|
||||
if r['done_reason'] == 'stop':
|
||||
if r["done"]:
|
||||
if r["done_reason"] == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif r['done_reason'] == 'length':
|
||||
elif r["done_reason"] == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = decode_assistant_message_from_content(
|
||||
r['message']['content'],
|
||||
r["message"]["content"],
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
|
@ -94,7 +109,7 @@ class OllamaInference(Inference):
|
|||
stream = await self.client.chat(
|
||||
model=self.model,
|
||||
messages=self._messages_to_ollama_messages(request.messages),
|
||||
stream=True
|
||||
stream=True,
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
|
@ -103,14 +118,14 @@ class OllamaInference(Inference):
|
|||
|
||||
async for chunk in stream:
|
||||
# check if ollama is done
|
||||
if chunk['done']:
|
||||
if chunk['done_reason'] == 'stop':
|
||||
if chunk["done"]:
|
||||
if chunk["done_reason"] == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif chunk['done_reason'] == 'length':
|
||||
elif chunk["done_reason"] == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = chunk['message']['content']
|
||||
text = chunk["message"]["content"]
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
|
@ -197,7 +212,7 @@ class OllamaInference(Inference):
|
|||
)
|
||||
|
||||
|
||||
#TODO: Consolidate this with impl in llama-models
|
||||
# TODO: Consolidate this with impl in llama-models
|
||||
def decode_assistant_message_from_content(
|
||||
content: str,
|
||||
stop_reason: StopReason,
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
|
||||
import getpass
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from hydra import compose, initialize, MissingConfigException
|
||||
|
@ -16,6 +17,8 @@ from omegaconf import OmegaConf
|
|||
|
||||
LLAMA_STACK_CONFIG_DIR = os.path.expanduser("~/.llama/")
|
||||
|
||||
DISTRIBS_BASE_DIR = Path(LLAMA_STACK_CONFIG_DIR) / "distributions"
|
||||
|
||||
|
||||
def get_root_directory():
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue