mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 19:12:09 +00:00
added nvidia as safety provider
This commit is contained in:
parent
07a992ef90
commit
0593408c19
14 changed files with 354 additions and 78 deletions
|
@ -390,16 +390,13 @@
|
|||
],
|
||||
"nvidia": [
|
||||
"aiosqlite",
|
||||
"autoevals",
|
||||
"blobfile",
|
||||
"chardet",
|
||||
"datasets",
|
||||
"faiss-cpu",
|
||||
"fastapi",
|
||||
"fire",
|
||||
"httpx",
|
||||
"matplotlib",
|
||||
"mcp",
|
||||
"nltk",
|
||||
"numpy",
|
||||
"openai",
|
||||
|
|
|
@ -6,13 +6,13 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| datasetio | `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::nvidia` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| safety | `remote::nvidia` |
|
||||
| scoring | `inline::basic` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol` |
|
||||
| tool_runtime | `inline::rag-runtime` |
|
||||
| vector_io | `inline::faiss` |
|
||||
|
||||
|
||||
|
@ -20,8 +20,10 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
||||
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
|
||||
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
|
||||
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
|
||||
|
||||
### Models
|
||||
|
||||
|
|
|
@ -85,4 +85,13 @@ Provider `inline::meta-reference` for API `safety` does not work with the latest
|
|||
config_class="llama_stack.providers.remote.safety.bedrock.BedrockSafetyConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.safety,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=["requests"],
|
||||
module="llama_stack.providers.remote.safety.nvidia",
|
||||
config_class="llama_stack.providers.remote.safety.nvidia.NVIDIASafetyConfig",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
@ -39,7 +39,7 @@ class NVIDIAConfig(BaseModel):
|
|||
default_factory=lambda: os.getenv("NVIDIA_BASE_URL", "https://integrate.api.nvidia.com"),
|
||||
description="A base url for accessing the NVIDIA NIM",
|
||||
)
|
||||
api_key: Optional[SecretStr] = Field(
|
||||
api_key: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key, only needed of using the hosted service",
|
||||
)
|
||||
|
|
|
@ -85,7 +85,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
# make sure the client lives longer than any async calls
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=f"{self._config.url}/v1",
|
||||
api_key=(self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY"),
|
||||
api_key=(self._config.api_key if self._config.api_key else "NO KEY"),
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
|
|
18
llama_stack/providers/remote/safety/nvidia/__init__.py
Normal file
18
llama_stack/providers/remote/safety/nvidia/__init__.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Any
|
||||
|
||||
from .config import NVIDIASafetyConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: NVIDIASafetyConfig, _deps) -> Any:
|
||||
from .nvidia import NVIDIASafetyAdapter
|
||||
|
||||
impl = NVIDIASafetyAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
45
llama_stack/providers/remote/safety/nvidia/config.py
Normal file
45
llama_stack/providers/remote/safety/nvidia/config.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class NVIDIASafetyConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the NVIDIA Guardrail microservice endpoint.
|
||||
|
||||
Attributes:
|
||||
guardrails_service_url (str): A base url for accessing the NVIDIA guardrail endpoint, e.g. http://localhost:8000
|
||||
api_key (str): The access key for the hosted NIM endpoints
|
||||
|
||||
There are two ways to access NVIDIA NIMs -
|
||||
0. Hosted: Preview APIs hosted at https://integrate.api.nvidia.com
|
||||
1. Self-hosted: You can run NVIDIA NIMs on your own infrastructure
|
||||
|
||||
By default the configuration is set to use the hosted APIs. This requires
|
||||
an API key which can be obtained from https://ngc.nvidia.com/.
|
||||
|
||||
By default the configuration will attempt to read the NVIDIA_API_KEY environment
|
||||
variable to set the api_key. Please do not put your API key in code.
|
||||
"""
|
||||
|
||||
guardrails_service_url: str = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_BASE_URL", "http://0.0.0.0:7331"),
|
||||
description="The url for accessing the guardrails service",
|
||||
)
|
||||
config_id: Optional[str] = Field(default="self-check", description="Config ID to use from the config store")
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"guardrails_service_url": "${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}",
|
||||
"config_id": "self-check",
|
||||
}
|
103
llama_stack/providers/remote/safety/nvidia/nvidia.py
Normal file
103
llama_stack/providers/remote/safety/nvidia/nvidia.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import logging
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import requests
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety, SafetyViolation, ViolationLevel
|
||||
from llama_stack.apis.shields import Shield
|
||||
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
|
||||
from llama_stack.providers.datatypes import ShieldsProtocolPrivate
|
||||
|
||||
from .config import NVIDIASafetyConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NVIDIASafetyAdapter(Safety, ShieldsProtocolPrivate):
|
||||
def __init__(self, config: NVIDIASafetyConfig) -> None:
|
||||
print(f"Initializing NVIDIASafetyAdapter({config.guardrails_service_url})...")
|
||||
self.config = config
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_shield(self, shield: Shield) -> None:
|
||||
if not shield.provider_resource_id:
|
||||
raise ValueError("Shield model not provided.")
|
||||
|
||||
async def run_shield(
|
||||
self, shield_id: str, messages: List[Message], params: Dict[str, Any] = None
|
||||
) -> RunShieldResponse:
|
||||
shield = await self.shield_store.get_shield(shield_id)
|
||||
if not shield:
|
||||
raise ValueError(f"Shield {shield_id} not found")
|
||||
|
||||
self.shield = NeMoGuardrails(self.config, shield.shield_id)
|
||||
return await self.shield.run(messages)
|
||||
|
||||
|
||||
class NeMoGuardrails:
|
||||
def __init__(
|
||||
self,
|
||||
config: NVIDIASafetyConfig,
|
||||
model: str,
|
||||
threshold: float = 0.9,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
self.config_id = config.config_id
|
||||
self.model = model
|
||||
assert self.config_id is not None or self.config_store_path is not None, (
|
||||
"Must provide one of config id or config store path"
|
||||
)
|
||||
if temperature <= 0:
|
||||
raise ValueError("Temperature must be greater than 0")
|
||||
|
||||
self.temperature = temperature
|
||||
self.threshold = threshold
|
||||
self.guardrails_service_url = config.guardrails_service_url
|
||||
|
||||
async def run(self, messages: List[Message]) -> RunShieldResponse:
|
||||
headers = {
|
||||
"Accept": "application/json",
|
||||
}
|
||||
request_data = {
|
||||
"model": self.model,
|
||||
"messages": convert_pydantic_to_json_value(messages),
|
||||
"temperature": self.temperature,
|
||||
"top_p": 1,
|
||||
"frequency_penalty": 0,
|
||||
"presence_penalty": 0,
|
||||
"max_tokens": 160,
|
||||
"stream": False,
|
||||
"guardrails": {
|
||||
"config_id": self.config_id,
|
||||
},
|
||||
}
|
||||
response = requests.post(
|
||||
url=f"{self.guardrails_service_url}/v1/guardrail/checks", headers=headers, json=request_data
|
||||
)
|
||||
response.raise_for_status()
|
||||
if "Content-Type" in response.headers and response.headers["Content-Type"].startswith("application/json"):
|
||||
response_json = response.json()
|
||||
if response_json["status"] == "blocked":
|
||||
user_message = "Sorry I cannot do this."
|
||||
metadata = response_json["rails_status"]
|
||||
|
||||
return RunShieldResponse(
|
||||
violation=SafetyViolation(
|
||||
user_message=user_message,
|
||||
violation_level=ViolationLevel.ERROR,
|
||||
metadata=metadata,
|
||||
)
|
||||
)
|
||||
return RunShieldResponse(violation=None)
|
|
@ -51,11 +51,19 @@ DEFAULT_PROVIDER_COMBINATIONS = [
|
|||
id="remote",
|
||||
marks=pytest.mark.remote,
|
||||
),
|
||||
pytest.param(
|
||||
{
|
||||
"inference": "nvidia",
|
||||
"safety": "nvidia",
|
||||
},
|
||||
id="nvidia",
|
||||
marks=pytest.mark.nvidia,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def pytest_configure(config):
|
||||
for mark in ["meta_reference", "ollama", "together", "remote", "bedrock"]:
|
||||
for mark in ["meta_reference", "ollama", "together", "remote", "bedrock", "nvidia"]:
|
||||
config.addinivalue_line(
|
||||
"markers",
|
||||
f"{mark}: marks tests as {mark} specific",
|
||||
|
|
|
@ -13,6 +13,7 @@ from llama_stack.distribution.datatypes import Api, Provider
|
|||
from llama_stack.providers.inline.safety.llama_guard import LlamaGuardConfig
|
||||
from llama_stack.providers.inline.safety.prompt_guard import PromptGuardConfig
|
||||
from llama_stack.providers.remote.safety.bedrock import BedrockSafetyConfig
|
||||
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
|
||||
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
||||
|
||||
from ..conftest import ProviderFixture, remote_stack_fixture
|
||||
|
@ -95,7 +96,20 @@ def safety_bedrock() -> ProviderFixture:
|
|||
)
|
||||
|
||||
|
||||
SAFETY_FIXTURES = ["llama_guard", "bedrock", "remote"]
|
||||
@pytest.fixture(scope="session")
|
||||
def safety_nvidia() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIASafetyConfig().model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
SAFETY_FIXTURES = ["llama_guard", "bedrock", "remote", "nvidia"]
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session")
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
version: '2'
|
||||
distribution_spec:
|
||||
description: Use NVIDIA NIM for running LLM inference
|
||||
description: Use NVIDIA NIM for running LLM inference and safety
|
||||
providers:
|
||||
inference:
|
||||
- remote::nvidia
|
||||
vector_io:
|
||||
- inline::faiss
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
- remote::nvidia
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
|
@ -15,16 +15,9 @@ distribution_spec:
|
|||
eval:
|
||||
- inline::meta-reference
|
||||
datasetio:
|
||||
- remote::huggingface
|
||||
- inline::localfs
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
- inline::braintrust
|
||||
tool_runtime:
|
||||
- remote::brave-search
|
||||
- remote::tavily-search
|
||||
- inline::code-interpreter
|
||||
- inline::rag-runtime
|
||||
- remote::model-context-protocol
|
||||
image_type: conda
|
||||
|
|
|
@ -10,25 +10,23 @@ from llama_stack.distribution.datatypes import Provider, ToolGroupInput
|
|||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::nvidia"],
|
||||
"vector_io": ["inline::faiss"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"safety": ["remote::nvidia"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::code-interpreter",
|
||||
"inline::rag-runtime",
|
||||
"remote::model-context-protocol",
|
||||
],
|
||||
"datasetio": ["inline::localfs"],
|
||||
"scoring": ["inline::basic"],
|
||||
"tool_runtime": ["inline::rag-runtime"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
|
@ -36,30 +34,35 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="remote::nvidia",
|
||||
config=NVIDIAConfig.sample_run_config(),
|
||||
)
|
||||
safety_provider = Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIASafetyConfig.sample_run_config(),
|
||||
)
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="nvidia",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="nvidia",
|
||||
)
|
||||
|
||||
available_models = {
|
||||
"nvidia": MODEL_ENTRIES,
|
||||
}
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code-interpreter",
|
||||
),
|
||||
]
|
||||
|
||||
default_models = get_model_registry(available_models)
|
||||
return DistributionTemplate(
|
||||
name="nvidia",
|
||||
distro_type="remote_hosted",
|
||||
description="Use NVIDIA NIM for running LLM inference",
|
||||
description="Use NVIDIA NIM for running LLM inference and safety",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
|
@ -72,15 +75,34 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
safety_provider,
|
||||
]
|
||||
},
|
||||
default_models=[inference_model, safety_model],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"NVIDIA_API_KEY": (
|
||||
"",
|
||||
"NVIDIA API Key",
|
||||
),
|
||||
"GUARDRAILS_SERVICE_URL": (
|
||||
"http://0.0.0.0:7331",
|
||||
"URL for the NeMo Guardrails Service",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"Llama3.1-8B-Instruct",
|
||||
"Inference model",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
"Name of the model to use for safety",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
|
93
llama_stack/templates/nvidia/run-with-safety.yaml
Normal file
93
llama_stack/templates/nvidia/run-with-safety.yaml
Normal file
|
@ -0,0 +1,93 @@
|
|||
version: '2'
|
||||
image_name: nvidia
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- telemetry
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
url: ${env.NVIDIA_BASE_URL:https://integrate.api.nvidia.com}
|
||||
api_key: ${env.NVIDIA_API_KEY:}
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}
|
||||
config_id: self-check
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}
|
||||
config_id: self-check
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
service_name: ${env.OTEL_SERVICE_NAME:llama-stack}
|
||||
sinks: ${env.TELEMETRY_SINKS:console,sqlite}
|
||||
sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/nvidia/trace_store.db}
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
datasetio:
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config: {}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
tool_runtime:
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
model_type: llm
|
||||
shields:
|
||||
- shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: nvidia
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
server:
|
||||
port: 8321
|
|
@ -26,9 +26,11 @@ providers:
|
|||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config:
|
||||
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:http://localhost:7331}
|
||||
config_id: self-check
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
|
@ -49,9 +51,6 @@ providers:
|
|||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config: {}
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config: {}
|
||||
|
@ -59,33 +58,10 @@ providers:
|
|||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
config: {}
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
config: {}
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:}
|
||||
max_results: 3
|
||||
- provider_id: code-interpreter
|
||||
provider_type: inline::code-interpreter
|
||||
config: {}
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
config: {}
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
config: {}
|
||||
metadata_store:
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/registry.db
|
||||
|
@ -214,11 +190,7 @@ datasets: []
|
|||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
- toolgroup_id: builtin::rag
|
||||
provider_id: rag-runtime
|
||||
- toolgroup_id: builtin::code_interpreter
|
||||
provider_id: code-interpreter
|
||||
server:
|
||||
port: 8321
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue