mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-09 11:20:58 +00:00
introduce openai_compat with the completions (not chat-completions) API
This keeps the prompt encoding layer in our control (see `chat_completion_request_to_prompt()` method)
This commit is contained in:
parent
0c9eb3341c
commit
05e73d12b3
6 changed files with 354 additions and 513 deletions
|
|
@ -8,7 +8,7 @@ from typing import AsyncGenerator
|
|||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message, StopReason
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from together import Together
|
||||
|
|
@ -16,9 +16,14 @@ from together import Together
|
|||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.augment_messages import (
|
||||
augment_messages_for_tools,
|
||||
chat_completion_request_to_prompt,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
process_chat_completion_response,
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
|
||||
from .config import TogetherImplConfig
|
||||
|
||||
|
|
@ -41,8 +46,7 @@ class TogetherInferenceAdapter(
|
|||
self, stack_to_provider_models_map=TOGETHER_SUPPORTED_MODELS
|
||||
)
|
||||
self.config = config
|
||||
self.tokenizer = Tokenizer.get_instance()
|
||||
self.formatter = ChatFormat(self.tokenizer)
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
@property
|
||||
def client(self) -> Together:
|
||||
|
|
@ -64,16 +68,7 @@ class TogetherInferenceAdapter(
|
|||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_together_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if request.sampling_params is not None:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(request.sampling_params, attr):
|
||||
options[attr] = getattr(request.sampling_params, attr)
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
|
|
@ -84,7 +79,6 @@ class TogetherInferenceAdapter(
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
|
||||
together_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
together_api_key = self.config.api_key
|
||||
|
|
@ -109,148 +103,39 @@ class TogetherInferenceAdapter(
|
|||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
# accumulate sampling params and other options to pass to together
|
||||
options = self.get_together_chat_options(request)
|
||||
together_model = self.map_to_provider_model(request.model)
|
||||
messages = augment_messages_for_tools(request)
|
||||
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||
prompt = self.tokenizer.decode(model_input.tokens)
|
||||
|
||||
if not request.stream:
|
||||
# TODO: might need to add back an async here
|
||||
r = client.completions.create(
|
||||
model=together_model,
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
**options,
|
||||
)
|
||||
stop_reason = None
|
||||
choice = r.choices[0]
|
||||
if choice.finish_reason:
|
||||
if choice.finish_reason in ["stop", "eos"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif choice.finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||
choice.text, stop_reason
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
return self._nonstream_chat_completion(request, client)
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
) -> ChatCompletionResponse:
|
||||
params = self._get_params(request)
|
||||
r = client.completions.create(**params)
|
||||
return process_chat_completion_response(request, r, self.formatter)
|
||||
|
||||
for chunk in client.completions.create(
|
||||
model=together_model,
|
||||
prompt=prompt,
|
||||
stream=True,
|
||||
**options,
|
||||
):
|
||||
choice = chunk.choices[0]
|
||||
if finish_reason := choice.finish_reason:
|
||||
if stop_reason is None and finish_reason in ["stop", "eos"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif stop_reason is None and finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Together
|
||||
) -> AsyncGenerator:
|
||||
params = self._get_params(request)
|
||||
|
||||
text = choice.delta.content
|
||||
if text is None:
|
||||
continue
|
||||
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
||||
async def _to_async_generator():
|
||||
s = client.completions.create(**params)
|
||||
for chunk in s:
|
||||
yield chunk
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer += text
|
||||
continue
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
request, stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = self.formatter.decode_assistant_message_from_content(
|
||||
buffer, stop_reason
|
||||
)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request),
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue