introduce openai_compat with the completions (not chat-completions) API

This keeps the prompt encoding layer in our control (see
`chat_completion_request_to_prompt()` method)
This commit is contained in:
Ashwin Bharambe 2024-10-08 12:15:55 -07:00 committed by Ashwin Bharambe
parent 0c9eb3341c
commit 05e73d12b3
6 changed files with 354 additions and 513 deletions

View file

@ -8,7 +8,7 @@ from typing import AsyncGenerator
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from together import Together
@ -16,9 +16,14 @@ from together import Together
from llama_stack.apis.inference import * # noqa: F403
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
chat_completion_request_to_prompt,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from .config import TogetherImplConfig
@ -41,8 +46,7 @@ class TogetherInferenceAdapter(
self, stack_to_provider_models_map=TOGETHER_SUPPORTED_MODELS
)
self.config = config
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
self.formatter = ChatFormat(Tokenizer.get_instance())
@property
def client(self) -> Together:
@ -64,16 +68,7 @@ class TogetherInferenceAdapter(
) -> AsyncGenerator:
raise NotImplementedError()
def get_together_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(
def chat_completion(
self,
model: str,
messages: List[Message],
@ -84,7 +79,6 @@ class TogetherInferenceAdapter(
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
together_api_key = None
if self.config.api_key is not None:
together_api_key = self.config.api_key
@ -109,148 +103,39 @@ class TogetherInferenceAdapter(
logprobs=logprobs,
)
# accumulate sampling params and other options to pass to together
options = self.get_together_chat_options(request)
together_model = self.map_to_provider_model(request.model)
messages = augment_messages_for_tools(request)
model_input = self.formatter.encode_dialog_prompt(messages)
prompt = self.tokenizer.decode(model_input.tokens)
if not request.stream:
# TODO: might need to add back an async here
r = client.completions.create(
model=together_model,
prompt=prompt,
stream=False,
**options,
)
stop_reason = None
choice = r.choices[0]
if choice.finish_reason:
if choice.finish_reason in ["stop", "eos"]:
stop_reason = StopReason.end_of_turn
stop_reason = StopReason.end_of_turn
elif choice.finish_reason == "length":
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
choice.text, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
if stream:
return self._stream_chat_completion(request, client)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
return self._nonstream_chat_completion(request, client)
buffer = ""
ipython = False
stop_reason = None
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: Together
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(request, r, self.formatter)
for chunk in client.completions.create(
model=together_model,
prompt=prompt,
stream=True,
**options,
):
choice = chunk.choices[0]
if finish_reason := choice.finish_reason:
if stop_reason is None and finish_reason in ["stop", "eos"]:
stop_reason = StopReason.end_of_turn
elif stop_reason is None and finish_reason == "length":
stop_reason = StopReason.out_of_tokens
break
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: Together
) -> AsyncGenerator:
params = self._get_params(request)
text = choice.delta.content
if text is None:
continue
# if we shift to TogetherAsyncClient, we won't need this wrapper
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
request, stream, self.formatter
):
yield chunk
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": self.map_to_provider_model(request.model),
"prompt": chat_completion_request_to_prompt(request, self.formatter),
"stream": request.stream,
**get_sampling_options(request),
}