mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-09 03:19:20 +00:00
introduce openai_compat with the completions (not chat-completions) API
This keeps the prompt encoding layer in our control (see `chat_completion_request_to_prompt()` method)
This commit is contained in:
parent
0c9eb3341c
commit
05e73d12b3
6 changed files with 354 additions and 513 deletions
|
|
@ -3,6 +3,7 @@
|
|||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from termcolor import cprint
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
|
@ -19,6 +20,14 @@ from llama_models.sku_list import resolve_model
|
|||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
|
||||
def chat_completion_request_to_prompt(
|
||||
request: ChatCompletionRequest, formatter: ChatFormat
|
||||
) -> str:
|
||||
messages = augment_messages_for_tools(request)
|
||||
model_input = formatter.encode_dialog_prompt(messages)
|
||||
return formatter.tokenizer.decode(model_input.tokens)
|
||||
|
||||
|
||||
def augment_messages_for_tools(request: ChatCompletionRequest) -> List[Message]:
|
||||
"""Reads chat completion request and augments the messages to handle tools.
|
||||
For eg. for llama_3_1, add system message with the appropriate tools or
|
||||
|
|
@ -48,7 +57,6 @@ def augment_messages_for_tools(request: ChatCompletionRequest) -> List[Message]:
|
|||
def augment_messages_for_tools_llama_3_1(
|
||||
request: ChatCompletionRequest,
|
||||
) -> List[Message]:
|
||||
|
||||
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
|
||||
|
||||
existing_messages = request.messages
|
||||
|
|
|
|||
187
llama_stack/providers/utils/inference/openai_compat.py
Normal file
187
llama_stack/providers/utils/inference/openai_compat.py
Normal file
|
|
@ -0,0 +1,187 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import AsyncGenerator, Optional
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import StopReason
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class OpenAICompatCompletionChoiceDelta(BaseModel):
|
||||
content: str
|
||||
|
||||
|
||||
class OpenAICompatCompletionChoice(BaseModel):
|
||||
finish_reason: Optional[str] = None
|
||||
text: Optional[str] = None
|
||||
delta: Optional[OpenAICompatCompletionChoiceDelta] = None
|
||||
|
||||
|
||||
class OpenAICompatCompletionResponse(BaseModel):
|
||||
choices: List[OpenAICompatCompletionChoice]
|
||||
|
||||
|
||||
def get_sampling_options(request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if params := request.sampling_params:
|
||||
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
||||
if getattr(params, attr):
|
||||
options[attr] = getattr(params, attr)
|
||||
|
||||
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
||||
options["repeat_penalty"] = params.repetition_penalty
|
||||
|
||||
return options
|
||||
|
||||
|
||||
def text_from_choice(choice) -> str:
|
||||
if hasattr(choice, "delta") and choice.delta:
|
||||
return choice.delta.content
|
||||
|
||||
return choice.text
|
||||
|
||||
|
||||
def process_chat_completion_response(
|
||||
request: ChatCompletionRequest,
|
||||
response: OpenAICompatCompletionResponse,
|
||||
formatter: ChatFormat,
|
||||
) -> ChatCompletionResponse:
|
||||
choice = response.choices[0]
|
||||
|
||||
stop_reason = None
|
||||
if reason := choice.finish_reason:
|
||||
if reason in ["stop", "eos"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = formatter.decode_assistant_message_from_content(
|
||||
text_from_choice(choice), stop_reason
|
||||
)
|
||||
return ChatCompletionResponse(
|
||||
completion_message=completion_message,
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
|
||||
async def process_chat_completion_stream_response(
|
||||
request: ChatCompletionRequest,
|
||||
stream: AsyncGenerator[OpenAICompatCompletionResponse, None],
|
||||
formatter: ChatFormat,
|
||||
) -> AsyncGenerator:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta="",
|
||||
)
|
||||
)
|
||||
|
||||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0]
|
||||
finish_reason = choice.finish_reason
|
||||
|
||||
if finish_reason:
|
||||
if stop_reason is None and finish_reason in ["stop", "eos"]:
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif stop_reason is None and finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
|
||||
text = text_from_choice(choice)
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.started,
|
||||
),
|
||||
)
|
||||
)
|
||||
buffer += text
|
||||
continue
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
|
||||
buffer += text
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=delta,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = formatter.decode_assistant_message_from_content(buffer, stop_reason)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content="",
|
||||
parse_status=ToolCallParseStatus.failure,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
for tool_call in message.tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=ToolCallDelta(
|
||||
content=tool_call,
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
Loading…
Add table
Add a link
Reference in a new issue