Merge branch 'main' into fix-chroma

This commit is contained in:
Francisco Arceo 2025-07-24 21:48:51 -04:00 committed by GitHub
commit 062c6a419a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
76 changed files with 2468 additions and 913 deletions

View file

@ -47,6 +47,17 @@ class ModelsProtocolPrivate(Protocol):
async def unregister_model(self, model_id: str) -> None: ...
# the Stack router will query each provider for their list of models
# if a `refresh_interval_seconds` is provided, this method will be called
# periodically to refresh the list of models
#
# NOTE: each model returned will be registered with the model registry. this means
# a callback to the `register_model()` method will be made. this is duplicative and
# may be removed in the future.
async def list_models(self) -> list[Model] | None: ...
async def should_refresh_models(self) -> bool: ...
class ShieldsProtocolPrivate(Protocol):
async def register_shield(self, shield: Shield) -> None: ...

View file

@ -102,6 +102,12 @@ class MetaReferenceInferenceImpl(
if self.config.create_distributed_process_group:
self.generator.stop()
async def should_refresh_models(self) -> bool:
return False
async def list_models(self) -> list[Model] | None:
return None
async def unregister_model(self, model_id: str) -> None:
pass

View file

@ -20,6 +20,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import ModelType
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference.embedding_mixin import (
SentenceTransformerEmbeddingMixin,
@ -41,6 +42,8 @@ class SentenceTransformersInferenceImpl(
InferenceProvider,
ModelsProtocolPrivate,
):
__provider_id__: str
def __init__(self, config: SentenceTransformersInferenceConfig) -> None:
self.config = config
@ -50,6 +53,22 @@ class SentenceTransformersInferenceImpl(
async def shutdown(self) -> None:
pass
async def should_refresh_models(self) -> bool:
return False
async def list_models(self) -> list[Model] | None:
return [
Model(
identifier="all-MiniLM-L6-v2",
provider_resource_id="all-MiniLM-L6-v2",
provider_id=self.__provider_id__,
metadata={
"embedding_dimension": 384,
},
model_type=ModelType.embedding,
),
]
async def register_model(self, model: Model) -> Model:
return model

View file

@ -11,19 +11,9 @@ from opentelemetry.sdk.trace import ReadableSpan
from opentelemetry.sdk.trace.export import SpanProcessor
from opentelemetry.trace.status import StatusCode
# Colors for console output
COLORS = {
"reset": "\033[0m",
"bold": "\033[1m",
"dim": "\033[2m",
"red": "\033[31m",
"green": "\033[32m",
"yellow": "\033[33m",
"blue": "\033[34m",
"magenta": "\033[35m",
"cyan": "\033[36m",
"white": "\033[37m",
}
from llama_stack.log import get_logger
logger = get_logger(name="console_span_processor", category="telemetry")
class ConsoleSpanProcessor(SpanProcessor):
@ -35,34 +25,21 @@ class ConsoleSpanProcessor(SpanProcessor):
return
timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
print(
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[START]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
logger.info(f"[dim]{timestamp}[/dim] [bold magenta][START][/bold magenta] [dim]{span.name}[/dim]")
def on_end(self, span: ReadableSpan) -> None:
if span.attributes and span.attributes.get("__autotraced__"):
return
timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
span_context = (
f"{COLORS['dim']}{timestamp}{COLORS['reset']} "
f"{COLORS['magenta']}[END]{COLORS['reset']} "
f"{COLORS['dim']}{span.name}{COLORS['reset']}"
)
span_context = f"[dim]{timestamp}[/dim] [bold magenta][END][/bold magenta] [dim]{span.name}[/dim]"
if span.status.status_code == StatusCode.ERROR:
span_context += f"{COLORS['reset']} {COLORS['red']}[ERROR]{COLORS['reset']}"
span_context += " [bold red][ERROR][/bold red]"
elif span.status.status_code != StatusCode.UNSET:
span_context += f"{COLORS['reset']} [{span.status.status_code}]"
span_context += f" [{span.status.status_code}]"
duration_ms = (span.end_time - span.start_time) / 1e6
span_context += f"{COLORS['reset']} ({duration_ms:.2f}ms)"
print(span_context)
span_context += f" ({duration_ms:.2f}ms)"
logger.info(span_context)
if self.print_attributes and span.attributes:
for key, value in span.attributes.items():
@ -71,31 +48,26 @@ class ConsoleSpanProcessor(SpanProcessor):
str_value = str(value)
if len(str_value) > 1000:
str_value = str_value[:997] + "..."
print(f" {COLORS['dim']}{key}: {str_value}{COLORS['reset']}")
logger.info(f" [dim]{key}[/dim]: {str_value}")
for event in span.events:
event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3]
severity = event.attributes.get("severity", "info")
message = event.attributes.get("message", event.name)
if isinstance(message, dict | list):
if isinstance(message, dict) or isinstance(message, list):
message = json.dumps(message, indent=2)
severity_colors = {
"error": f"{COLORS['bold']}{COLORS['red']}",
"warn": f"{COLORS['bold']}{COLORS['yellow']}",
"info": COLORS["white"],
"debug": COLORS["dim"],
}
msg_color = severity_colors.get(severity, COLORS["white"])
print(f" {event_time} {msg_color}[{severity.upper()}] {message}{COLORS['reset']}")
severity_color = {
"error": "red",
"warn": "yellow",
"info": "white",
"debug": "dim",
}.get(severity, "white")
logger.info(f" {event_time} [bold {severity_color}][{severity.upper()}][/bold {severity_color}] {message}")
if event.attributes:
for key, value in event.attributes.items():
if key.startswith("__") or key in ["message", "severity"]:
continue
print(f" {COLORS['dim']}{key}: {value}{COLORS['reset']}")
logger.info(f"/r[dim]{key}[/dim]: {value}")
def shutdown(self) -> None:
"""Shutdown the processor."""

View file

@ -6,13 +6,14 @@
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from pydantic import Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class FireworksImplConfig(BaseModel):
class FireworksImplConfig(RemoteInferenceProviderConfig):
url: str = Field(
default="https://api.fireworks.ai/inference/v1",
description="The URL for the Fireworks server",

View file

@ -70,7 +70,7 @@ logger = get_logger(name=__name__, category="inference")
class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
self.config = config
async def initialize(self) -> None:

View file

@ -13,8 +13,10 @@ DEFAULT_OLLAMA_URL = "http://localhost:11434"
class OllamaImplConfig(BaseModel):
url: str = DEFAULT_OLLAMA_URL
refresh_models: bool = Field(default=False, description="refresh and re-register models periodically")
refresh_models_interval: int = Field(default=300, description="interval in seconds to refresh models")
refresh_models: bool = Field(
default=False,
description="Whether to refresh models periodically",
)
@classmethod
def sample_run_config(cls, url: str = "${env.OLLAMA_URL:=http://localhost:11434}", **kwargs) -> dict[str, Any]:

View file

@ -98,14 +98,16 @@ class OllamaInferenceAdapter(
def __init__(self, config: OllamaImplConfig) -> None:
self.register_helper = ModelRegistryHelper(MODEL_ENTRIES)
self.config = config
self._client = None
self._clients: dict[asyncio.AbstractEventLoop, AsyncClient] = {}
self._openai_client = None
@property
def client(self) -> AsyncClient:
if self._client is None:
self._client = AsyncClient(host=self.config.url)
return self._client
# ollama client attaches itself to the current event loop (sadly?)
loop = asyncio.get_running_loop()
if loop not in self._clients:
self._clients[loop] = AsyncClient(host=self.config.url)
return self._clients[loop]
@property
def openai_client(self) -> AsyncOpenAI:
@ -121,59 +123,61 @@ class OllamaInferenceAdapter(
"Ollama Server is not running, make sure to start it using `ollama serve` in a separate terminal"
)
if self.config.refresh_models:
logger.debug("ollama starting background model refresh task")
self._refresh_task = asyncio.create_task(self._refresh_models())
def cb(task):
if task.cancelled():
import traceback
logger.error(f"ollama background refresh task canceled:\n{''.join(traceback.format_stack())}")
elif task.exception():
logger.error(f"ollama background refresh task died: {task.exception()}")
else:
logger.error("ollama background refresh task completed unexpectedly")
self._refresh_task.add_done_callback(cb)
async def _refresh_models(self) -> None:
# Wait for model store to be available (with timeout)
waited_time = 0
while not self.model_store and waited_time < 60:
await asyncio.sleep(1)
waited_time += 1
if not self.model_store:
raise ValueError("Model store not set after waiting 60 seconds")
async def should_refresh_models(self) -> bool:
return self.config.refresh_models
async def list_models(self) -> list[Model] | None:
provider_id = self.__provider_id__
while True:
try:
response = await self.client.list()
except Exception as e:
logger.warning(f"Failed to list models: {str(e)}")
await asyncio.sleep(self.config.refresh_models_interval)
response = await self.client.list()
# always add the two embedding models which can be pulled on demand
models = [
Model(
identifier="all-minilm:l6-v2",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
# add all-minilm alias
Model(
identifier="all-minilm",
provider_resource_id="all-minilm:l6-v2",
provider_id=provider_id,
metadata={
"embedding_dimension": 384,
"context_length": 512,
},
model_type=ModelType.embedding,
),
Model(
identifier="nomic-embed-text",
provider_resource_id="nomic-embed-text",
provider_id=provider_id,
metadata={
"embedding_dimension": 768,
"context_length": 8192,
},
model_type=ModelType.embedding,
),
]
for m in response.models:
# kill embedding models since we don't know dimensions for them
if m.details.family in ["bert"]:
continue
models = []
for m in response.models:
model_type = ModelType.embedding if m.details.family in ["bert"] else ModelType.llm
if model_type == ModelType.embedding:
continue
models.append(
Model(
identifier=m.model,
provider_resource_id=m.model,
provider_id=provider_id,
metadata={},
model_type=model_type,
)
models.append(
Model(
identifier=m.model,
provider_resource_id=m.model,
provider_id=provider_id,
metadata={},
model_type=ModelType.llm,
)
await self.model_store.update_registered_llm_models(provider_id, models)
logger.debug(f"ollama refreshed model list ({len(models)} models)")
await asyncio.sleep(self.config.refresh_models_interval)
)
return models
async def health(self) -> HealthResponse:
"""
@ -190,12 +194,7 @@ class OllamaInferenceAdapter(
return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}")
async def shutdown(self) -> None:
if hasattr(self, "_refresh_task") and not self._refresh_task.done():
logger.debug("ollama cancelling background refresh task")
self._refresh_task.cancel()
self._client = None
self._openai_client = None
self._clients.clear()
async def unregister_model(self, model_id: str) -> None:
pass

View file

@ -12,11 +12,6 @@ from llama_stack.providers.utils.inference.model_registry import (
)
LLM_MODEL_IDS = [
# the models w/ "openai/" prefix are the litellm specific model names.
# they should be deprecated in favor of the canonical openai model names.
"openai/gpt-4o",
"openai/gpt-4o-mini",
"openai/chatgpt-4o-latest",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo",
"gpt-3.5-turbo-instruct",
@ -43,8 +38,6 @@ class EmbeddingModelInfo:
EMBEDDING_MODEL_IDS: dict[str, EmbeddingModelInfo] = {
"openai/text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
"openai/text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
"text-embedding-3-small": EmbeddingModelInfo(1536, 8192),
"text-embedding-3-large": EmbeddingModelInfo(3072, 8192),
}

View file

@ -6,13 +6,14 @@
from typing import Any
from pydantic import BaseModel, Field, SecretStr
from pydantic import Field, SecretStr
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class TogetherImplConfig(BaseModel):
class TogetherImplConfig(RemoteInferenceProviderConfig):
url: str = Field(
default="https://api.together.xyz/v1",
description="The URL for the Together AI server",

View file

@ -66,7 +66,7 @@ logger = get_logger(name=__name__, category="inference")
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
def __init__(self, config: TogetherImplConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
self.config = config
async def initialize(self) -> None:

View file

@ -33,10 +33,6 @@ class VLLMInferenceAdapterConfig(BaseModel):
default=False,
description="Whether to refresh models periodically",
)
refresh_models_interval: int = Field(
default=300,
description="Interval in seconds to refresh models",
)
@field_validator("tls_verify")
@classmethod

View file

@ -3,7 +3,6 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
@ -293,7 +292,6 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
# automatically set by the resolver when instantiating the provider
__provider_id__: str
model_store: ModelStore | None = None
_refresh_task: asyncio.Task | None = None
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
self.register_helper = ModelRegistryHelper(build_hf_repo_model_entries())
@ -301,65 +299,30 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
self.client = None
async def initialize(self) -> None:
if not self.config.url:
# intentionally don't raise an error here, we want to allow the provider to be "dormant"
# or available in distributions like "starter" without causing a ruckus
return
pass
if self.config.refresh_models:
self._refresh_task = asyncio.create_task(self._refresh_models())
def cb(task):
import traceback
if task.cancelled():
log.error(f"vLLM background refresh task canceled:\n{''.join(traceback.format_stack())}")
elif task.exception():
# print the stack trace for the exception
exc = task.exception()
log.error(f"vLLM background refresh task died: {exc}")
traceback.print_exception(exc)
else:
log.error("vLLM background refresh task completed unexpectedly")
self._refresh_task.add_done_callback(cb)
async def _refresh_models(self) -> None:
provider_id = self.__provider_id__
waited_time = 0
while not self.model_store and waited_time < 60:
await asyncio.sleep(1)
waited_time += 1
if not self.model_store:
raise ValueError("Model store not set after waiting 60 seconds")
async def should_refresh_models(self) -> bool:
return self.config.refresh_models
async def list_models(self) -> list[Model] | None:
self._lazy_initialize_client()
assert self.client is not None # mypy
while True:
try:
models = []
async for m in self.client.models.list():
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
models.append(
Model(
identifier=m.id,
provider_resource_id=m.id,
provider_id=provider_id,
metadata={},
model_type=model_type,
)
)
await self.model_store.update_registered_llm_models(provider_id, models)
log.debug(f"vLLM refreshed model list ({len(models)} models)")
except Exception as e:
log.error(f"vLLM background refresh task failed: {e}")
await asyncio.sleep(self.config.refresh_models_interval)
models = []
async for m in self.client.models.list():
model_type = ModelType.llm # unclear how to determine embedding vs. llm models
models.append(
Model(
identifier=m.id,
provider_resource_id=m.id,
provider_id=self.__provider_id__,
metadata={},
model_type=model_type,
)
)
return models
async def shutdown(self) -> None:
if self._refresh_task:
self._refresh_task.cancel()
self._refresh_task = None
pass
async def unregister_model(self, model_id: str) -> None:
pass

View file

@ -20,6 +20,13 @@ from llama_stack.providers.utils.inference import (
logger = get_logger(name=__name__, category="core")
class RemoteInferenceProviderConfig(BaseModel):
allowed_models: list[str] | None = Field(
default=None,
description="List of models that should be registered with the model registry. If None, all models are allowed.",
)
# TODO: this class is more confusing than useful right now. We need to make it
# more closer to the Model class.
class ProviderModelEntry(BaseModel):
@ -65,7 +72,10 @@ def build_model_entry(provider_model_id: str, model_descriptor: str) -> Provider
class ModelRegistryHelper(ModelsProtocolPrivate):
def __init__(self, model_entries: list[ProviderModelEntry]):
__provider_id__: str
def __init__(self, model_entries: list[ProviderModelEntry], allowed_models: list[str] | None = None):
self.allowed_models = allowed_models
self.alias_to_provider_id_map = {}
self.provider_id_to_llama_model_map = {}
for entry in model_entries:
@ -79,6 +89,27 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
self.alias_to_provider_id_map[entry.llama_model] = entry.provider_model_id
self.provider_id_to_llama_model_map[entry.provider_model_id] = entry.llama_model
async def list_models(self) -> list[Model] | None:
models = []
for entry in self.model_entries:
ids = [entry.provider_model_id] + entry.aliases
for id in ids:
if self.allowed_models and id not in self.allowed_models:
continue
models.append(
Model(
model_id=id,
provider_resource_id=entry.provider_model_id,
model_type=ModelType.llm,
metadata=entry.metadata,
provider_id=self.__provider_id__,
)
)
return models
async def should_refresh_models(self) -> bool:
return False
def get_provider_model_id(self, identifier: str) -> str | None:
return self.alias_to_provider_id_map.get(identifier, None)

View file

@ -4,13 +4,16 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from contextlib import asynccontextmanager
from enum import Enum
from typing import Any, cast
import httpx
from mcp import ClientSession
from mcp import ClientSession, McpError
from mcp import types as mcp_types
from mcp.client.sse import sse_client
from mcp.client.streamable_http import streamablehttp_client
from llama_stack.apis.common.content_types import ImageContentItem, InterleavedContentItem, TextContentItem
from llama_stack.apis.tools import (
@ -21,31 +24,61 @@ from llama_stack.apis.tools import (
)
from llama_stack.distribution.datatypes import AuthenticationRequiredError
from llama_stack.log import get_logger
from llama_stack.providers.utils.tools.ttl_dict import TTLDict
logger = get_logger(__name__, category="tools")
protocol_cache = TTLDict(ttl_seconds=3600)
class MCPProtol(Enum):
UNKNOWN = 0
STREAMABLE_HTTP = 1
SSE = 2
@asynccontextmanager
async def sse_client_wrapper(endpoint: str, headers: dict[str, str]):
try:
async with sse_client(endpoint, headers=headers) as streams:
async with ClientSession(*streams) as session:
await session.initialize()
yield session
except* httpx.HTTPStatusError as eg:
for exc in eg.exceptions:
# mypy does not currently narrow the type of `eg.exceptions` based on the `except*` filter,
# so we explicitly cast each item to httpx.HTTPStatusError. This is safe because
# `except* httpx.HTTPStatusError` guarantees all exceptions in `eg.exceptions` are of that type.
err = cast(httpx.HTTPStatusError, exc)
if err.response.status_code == 401:
raise AuthenticationRequiredError(exc) from exc
raise
async def client_wrapper(endpoint: str, headers: dict[str, str]) -> AsyncGenerator[ClientSession, Any]:
# we use a ttl'd dict to cache the happy path protocol for each endpoint
# but, we always fall back to trying the other protocol if we cannot initialize the session
connection_strategies = [MCPProtol.STREAMABLE_HTTP, MCPProtol.SSE]
mcp_protocol = protocol_cache.get(endpoint, default=MCPProtol.UNKNOWN)
if mcp_protocol == MCPProtol.SSE:
connection_strategies = [MCPProtol.SSE, MCPProtol.STREAMABLE_HTTP]
for i, strategy in enumerate(connection_strategies):
try:
client = streamablehttp_client
if strategy == MCPProtol.SSE:
client = sse_client
async with client(endpoint, headers=headers) as client_streams:
async with ClientSession(read_stream=client_streams[0], write_stream=client_streams[1]) as session:
await session.initialize()
protocol_cache[endpoint] = strategy
yield session
return
except* httpx.HTTPStatusError as eg:
for exc in eg.exceptions:
# mypy does not currently narrow the type of `eg.exceptions` based on the `except*` filter,
# so we explicitly cast each item to httpx.HTTPStatusError. This is safe because
# `except* httpx.HTTPStatusError` guarantees all exceptions in `eg.exceptions` are of that type.
err = cast(httpx.HTTPStatusError, exc)
if err.response.status_code == 401:
raise AuthenticationRequiredError(exc) from exc
if i == len(connection_strategies) - 1:
raise
except* McpError:
if i < len(connection_strategies) - 1:
logger.warning(
f"failed to connect via {strategy.name}, falling back to {connection_strategies[i + 1].name}"
)
else:
raise
async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefsResponse:
tools = []
async with sse_client_wrapper(endpoint, headers) as session:
async with client_wrapper(endpoint, headers) as session:
tools_result = await session.list_tools()
for tool in tools_result.tools:
parameters = []
@ -73,7 +106,7 @@ async def list_mcp_tools(endpoint: str, headers: dict[str, str]) -> ListToolDefs
async def invoke_mcp_tool(
endpoint: str, headers: dict[str, str], tool_name: str, kwargs: dict[str, Any]
) -> ToolInvocationResult:
async with sse_client_wrapper(endpoint, headers) as session:
async with client_wrapper(endpoint, headers) as session:
result = await session.call_tool(tool_name, kwargs)
content: list[InterleavedContentItem] = []

View file

@ -0,0 +1,70 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
from threading import RLock
from typing import Any
class TTLDict(dict):
"""
A dictionary with a ttl for each item
"""
def __init__(self, ttl_seconds: float, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ttl_seconds = ttl_seconds
self._expires: dict[Any, Any] = {} # expires holds when an item will expire
self._lock = RLock()
if args or kwargs:
for k, v in self.items():
self.__setitem__(k, v)
def __delitem__(self, key):
with self._lock:
del self._expires[key]
super().__delitem__(key)
def __setitem__(self, key, value):
with self._lock:
self._expires[key] = time.monotonic() + self.ttl_seconds
super().__setitem__(key, value)
def _is_expired(self, key):
if key not in self._expires:
return False
return time.monotonic() > self._expires[key]
def __getitem__(self, key):
with self._lock:
if self._is_expired(key):
del self._expires[key]
super().__delitem__(key)
raise KeyError(f"{key} has expired and was removed")
return super().__getitem__(key)
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def __contains__(self, key):
try:
_ = self[key]
return True
except KeyError:
return False
def __repr__(self):
with self._lock:
for key in self.keys():
if self._is_expired(key):
del self._expires[key]
super().__delitem__(key)
return f"TTLDict({self.ttl_seconds}, {super().__repr__()})"