mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-22 12:37:53 +00:00
feat: make training config fields optional (#1861)
# What does this PR do? Today, supervised_fine_tune itself and the `TrainingConfig` class have a bunch of required fields that a provider implementation might not need. for example, if a provider wants to handle hyperparameters in its configuration as well as any type of dataset retrieval, optimizer or LoRA config, a user will still need to pass in a virtually empty `DataConfig`, `OptimizerConfig` and `AlgorithmConfig` in some cases. Many of these fields are intended to work specifically with llama models and knobs intended for customizing inline. Adding remote post_training providers will require loosening these arguments, or forcing users to pass in empty objects to satisfy the pydantic models. Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
parent
70a7e4d51e
commit
0751a960a5
4 changed files with 29 additions and 21 deletions
7
docs/_static/llama-stack-spec.yaml
vendored
7
docs/_static/llama-stack-spec.yaml
vendored
|
@ -6744,10 +6744,13 @@ components:
|
|||
type: integer
|
||||
max_steps_per_epoch:
|
||||
type: integer
|
||||
default: 1
|
||||
gradient_accumulation_steps:
|
||||
type: integer
|
||||
default: 1
|
||||
max_validation_steps:
|
||||
type: integer
|
||||
default: 1
|
||||
data_config:
|
||||
$ref: '#/components/schemas/DataConfig'
|
||||
optimizer_config:
|
||||
|
@ -6762,9 +6765,6 @@ components:
|
|||
- n_epochs
|
||||
- max_steps_per_epoch
|
||||
- gradient_accumulation_steps
|
||||
- max_validation_steps
|
||||
- data_config
|
||||
- optimizer_config
|
||||
title: TrainingConfig
|
||||
PreferenceOptimizeRequest:
|
||||
type: object
|
||||
|
@ -7498,7 +7498,6 @@ components:
|
|||
- training_config
|
||||
- hyperparam_search_config
|
||||
- logger_config
|
||||
- model
|
||||
title: SupervisedFineTuneRequest
|
||||
SyntheticDataGenerateRequest:
|
||||
type: object
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue