[Agentic Eval] add ability to run agents generation (#469)

# What does this PR do?

- add ability to run agents generation for full eval (generate +
scoring)
- pre-register SimpleQA  benchmark llm-as-judge scoring function in code


## Test Plan


![image](https://github.com/user-attachments/assets/b4b6f086-1be4-4c2a-8ab0-6839f0067c0a)


![image](https://github.com/user-attachments/assets/05bb7a09-2d7a-4031-8eb6-e1ca670ee439)


#### Simple QA w/ Search

![image](https://github.com/user-attachments/assets/0a51e3f3-9fc7-479b-8295-89aed63496e0)

- eval_task_config_simpleqa_search.json
```json
{
    "type": "benchmark",
    "eval_candidate": {
        "type": "agent",
        "config": {
            "model": "Llama3.1-405B-Instruct",
            "instructions": "Please use the search tool to answer the question.",
            "sampling_params": {
                "strategy": "greedy",
                "temperature": 1.0,
                "top_p": 0.9
            },
            "tools": [
                {
                    "type": "brave_search",
                    "engine": "brave",
                    "api_key": "API_KEY"
                }
            ],
            "tool_choice": "auto",
            "tool_prompt_format": "json",
            "input_shields": [],
            "output_shields": [],
            "enable_session_persistence": false
        }
    }
}
```

#### SimpleQA w/o Search

![image](https://github.com/user-attachments/assets/6301feef-2abb-4bee-b50c-97da1c90482b)


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2024-11-18 11:43:03 -08:00 committed by GitHub
parent f1b9578f8d
commit 0784284ab5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 159 additions and 11 deletions

View file

@ -9,6 +9,7 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.common.type_system import * # noqa: F403
from llama_stack.apis.agents import Agents
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval_tasks import EvalTask
@ -39,12 +40,14 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
datasets_api: Datasets,
scoring_api: Scoring,
inference_api: Inference,
agents_api: Agents,
) -> None:
self.config = config
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.scoring_api = scoring_api
self.inference_api = inference_api
self.agents_api = agents_api
# TODO: assume sync job, will need jobs API for async scheduling
self.jobs = {}
@ -126,18 +129,50 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
self.jobs[job_id] = res
return Job(job_id=job_id)
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
async def _run_agent_generation(
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
if candidate.type == "agent":
raise NotImplementedError(
"Evaluation with generation has not been implemented for agents"
create_response = await self.agents_api.create_agent(candidate.config)
agent_id = create_response.agent_id
generations = []
for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = eval(str(x[ColumnName.chat_completion_input.value]))
input_messages = [UserMessage(**x) for x in input_messages]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
session_create_response = await self.agents_api.create_agent_session(
agent_id, f"session-{i}"
)
session_id = session_create_response.session_id
turn_request = dict(
agent_id=agent_id,
session_id=session_id,
messages=input_messages,
stream=True,
)
turn_response = [
chunk
async for chunk in await self.agents_api.create_agent_turn(
**turn_request
)
]
final_event = turn_response[-1].event.payload
generations.append(
{
ColumnName.generated_answer.value: final_event.turn.output_message.content
}
)
return generations
async def _run_model_generation(
self, input_rows: List[Dict[str, Any]], task_config: EvalTaskConfig
) -> List[Dict[str, Any]]:
candidate = task_config.eval_candidate
assert (
candidate.sampling_params.max_tokens is not None
), "SamplingParams.max_tokens must be provided"
@ -179,6 +214,23 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
else:
raise ValueError("Invalid input row")
return generations
async def evaluate_rows(
self,
task_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
task_config: EvalTaskConfig,
) -> EvaluateResponse:
candidate = task_config.eval_candidate
if candidate.type == "agent":
generations = await self._run_agent_generation(input_rows, task_config)
elif candidate.type == "model":
generations = await self._run_model_generation(input_rows, task_config)
else:
raise ValueError(f"Invalid candidate type: {candidate.type}")
# scoring with generated_answer
score_input_rows = [
input_r | generated_r