This commit is contained in:
Omar Abdelwahab 2025-10-01 10:24:03 -07:00 committed by GitHub
commit 0791847a41
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 304 additions and 0 deletions

View file

@ -0,0 +1,303 @@
# Configuring and Launching Llama Stack
This guide walks you through the two primary methods for setting up and running Llama Stack: using Docker containers and configuring the server manually.
## Method 1: Using the Starter Docker Container
The easiest way to get started with Llama Stack is using the pre-built Docker container. This approach eliminates the need for manual dependency management and provides a consistent environment across different systems.
### Prerequisites
- Docker installed and running on your system
- Access to external model providers (e.g., Ollama running locally)
### Basic Docker Usage
Here's an example for spinning up the Llama Stack server using Docker:
```bash
docker run -it \
-v ~/.llama:/root/.llama \
--network=host \
llamastack/distribution-starter \
--e OLLAMA_URL=http://localhost:11434
```
### Docker Command Breakdown
- `-it`: Run in interactive mode with TTY allocation
- `-v ~/.llama:/root/.llama`: Mount your local Llama Stack configuration directory
- `--network=host`: Use host networking to access local services like Ollama
- `llamastack/distribution-starter`: The official Llama Stack Docker image
- `--e OLLAMA_URL=http://localhost:11434`: Set environment variable for Ollama URL
### Advanced Docker Configuration
You can customize the Docker deployment with additional environment variables:
```bash
docker run -it \
-v ~/.llama:/root/.llama \
-p 8321:8321 \
-e OLLAMA_URL=http://localhost:11434 \
-e BRAVE_SEARCH_API_KEY=your_api_key_here \
-e TAVILY_SEARCH_API_KEY=your_api_key_here \
llamastack/distribution-starter \
--port 8321
```
### Environment Variables
Common environment variables you can set:
| Variable | Description | Example |
|----------|-------------|---------|
| `OLLAMA_URL` | URL for Ollama service | `http://localhost:11434` |
| `BRAVE_SEARCH_API_KEY` | API key for Brave search | `your_brave_api_key` |
| `TAVILY_SEARCH_API_KEY` | API key for Tavily search | `your_tavily_api_key` |
| `TOGETHER_API_KEY` | API key for Together AI | `your_together_api_key` |
| `OPENAI_API_KEY` | API key for OpenAI | `your_openai_api_key` |
## Method 2: Manual Server Configuration and Launch
For more control over your Llama Stack deployment, you can configure and run the server manually.
### Prerequisites
1. **Install Llama Stack**:
Using pip:
```bash
pip install llama-stack
```
Using uv (alternative):
```bash
# Initialize a new project (if starting fresh)
uv init
# Add llama-stack as a dependency
uv add llama-stack
# Note: If using uv, prefix subsequent commands with 'uv run'
# Example: uv run llama stack build --list-distros
```
### Step 1: Build a Distribution
Choose a distro and build your Llama Stack distribution:
```bash
# List available distributions
llama stack build --list-distros
# Build with a specific distro
llama stack build --distro watsonx --image-type venv --image-name watsonx-stack
# Or build with a meta-reference distro
llama stack build --distro meta-reference-gpu --image-type venv --image-name meta-reference-gpu-stack
```
#### Advanced: Custom Provider Selection (Step 1.a)
If you know the specific providers you want to use, you can supply them directly on the command-line instead of using a pre-built distribution:
```bash
llama stack build --providers inference=remote::ollama,agents=inline::meta-reference,safety=inline::llama-guard,vector_io=inline::faiss,tool_runtime=inline::rag-runtime --image-type venv --image-name custom-stack
```
**Discover Available Options:**
```bash
# List all available APIs
llama stack list-apis
# List all available providers
llama stack list-providers
```
This approach gives you complete control over which providers are included in your stack, allowing for highly customized configurations tailored to your specific needs.
### Select Available Distributions
- **ci-tests**: CI tests for Llama Stack
- **dell**: Dell's distribution of Llama Stack. TGI inference via Dell's custom container
- **meta-reference-gpu**: Use Meta Reference for running LLM inference
- **nvidia**: Use NVIDIA NIM for running LLM inference, evaluation and safety
- **open-benchmark**: Distribution for running open benchmarks
- **postgres-demo**: Quick start template for running Llama Stack with several popular providers
- **starter**: Quick start template for running Llama Stack with several popular providers. This distribution is intended for CPU-only environments
- **starter-gpu**: Quick start template for running Llama Stack with several popular providers. This distribution is intended for GPU-enabled environments
- **watsonx**: Use watsonx for running LLM inference
### Step 2: Configure Your Stack
After building, you can customize the configuration files:
#### Configuration File Locations
- Build config: `~/.llama/distributions/{stack-name}/{stack-name}-build.yaml`
- Runtime config: `~/.llama/distributions/{stack-name}/{stack-name}-run.yaml`
#### Sample Runtime Configuration
```yaml
version: 2
apis:
- inference
- safety
- embeddings
- tool_runtime
providers:
inference:
- provider_id: ollama
provider_type: remote::ollama
config:
url: http://localhost:11434
safety:
- provider_id: llama-guard
provider_type: remote::ollama
config:
url: http://localhost:11434
embeddings:
- provider_id: ollama-embeddings
provider_type: remote::ollama
config:
url: http://localhost:11434
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
```
### Step 3: Launch the Server
Start your configured Llama Stack server:
```bash
# Run with specific port
llama stack run {stack-name} --port 8321
# Run with environment variables
OLLAMA_URL=http://localhost:11434 llama stack run starter --port 8321
# Run in background
nohup llama stack run starter --port 8321 > llama_stack.log 2>&1 &
```
### Step 4: Verify Installation
Test your Llama Stack server:
#### Basic HTTP Health Checks
```bash
# Check server health
curl http://localhost:8321/health
# List available models
curl http://localhost:8321/v1/models
```
#### Comprehensive Verification (Recommended)
Use the official Llama Stack client for better verification:
```bash
# List all configured providers (recommended)
uv run --with llama-stack-client llama-stack-client providers list
# Alternative if you have llama-stack-client installed
llama-stack-client providers list
```
#### Test Chat Completion
```bash
# Basic HTTP test
curl -X POST http://localhost:8321/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3.1:8b",
"messages": [{"role": "user", "content": "Hello!"}]
}'
# Or using the client (more robust)
uv run --with llama-stack-client llama-stack-client inference chat-completion \
--model llama3.1:8b \
--message "Hello!"
```
## Configuration Management
### Managing Multiple Stacks
You can maintain multiple stack configurations:
```bash
# List all built stacks
llama stack list
# Remove a stack
llama stack rm {stack-name}
# Rebuild with updates
llama stack build --distro starter --image-type venv --image-name starter-v2
```
### Common Configuration Issues
#### Port Conflicts
If port 8321 is already in use:
```bash
# Check what's using the port
netstat -tlnp | grep :8321
# Use a different port
llama stack run starter --port 8322
```
## Troubleshooting
### Common Issues
1. **Docker Permission Denied**:
```bash
sudo docker run -it \
-v ~/.llama:/root/.llama \
--network=host \
llamastack/distribution-starter
```
2. **Provider Connection Issues**:
- Verify external services (Ollama, APIs) are running
- Check network connectivity and firewall settings
- Validate API keys and URLs
### Logs and Debugging
Enable detailed logging:
```bash
# Run with debug logging
llama stack run starter --port 8321 --log-level DEBUG
# Check logs in Docker
docker logs <container-id>
```
## Next Steps
Once your Llama Stack server is running:
1. **Explore the APIs**: Test inference, safety, and embeddings endpoints
2. **Integrate with Applications**: Use the server with LangChain, custom applications, or API clients
3. **Scale Your Deployment**: Consider load balancing and high-availability setups
4. **Monitor Performance**: Set up logging and monitoring for production use
For more advanced configurations and production deployments, refer to the [Advanced Configuration Guide](advanced_configuration.md) and [Production Deployment Guide](production_deployment.md).

View file

@ -46,6 +46,7 @@ Llama Stack consists of a server (with multiple pluggable API providers) and Cli
## Quick Links
- Ready to build? Check out the [Getting Started Guide](https://llama-stack.github.io/getting_started/quickstart) to get started.
- Need help with setup? See the [Configuration and Launch Guide](./getting_started/configuring_and_launching_llama_stack) for detailed Docker and manual installation instructions.
- Want to contribute? See the [Contributing Guide](https://github.com/llamastack/llama-stack/blob/main/CONTRIBUTING.md).
- Explore [Example Applications](https://github.com/llamastack/llama-stack-apps) built with Llama Stack.