mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-04 18:13:44 +00:00
Merge remote-tracking branch 'origin/main' into storage_fix
This commit is contained in:
commit
08024d44f2
89 changed files with 4786 additions and 3941 deletions
|
|
@ -87,6 +87,7 @@ class Agents(Protocol):
|
|||
"List of guardrails to apply during response generation. Guardrails provide safety and content moderation."
|
||||
),
|
||||
] = None,
|
||||
max_tool_calls: int | None = None,
|
||||
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
|
||||
"""Create a model response.
|
||||
|
||||
|
|
@ -97,6 +98,7 @@ class Agents(Protocol):
|
|||
:param conversation: (Optional) The ID of a conversation to add the response to. Must begin with 'conv_'. Input and output messages will be automatically added to the conversation.
|
||||
:param include: (Optional) Additional fields to include in the response.
|
||||
:param guardrails: (Optional) List of guardrails to apply during response generation. Can be guardrail IDs (strings) or guardrail specifications.
|
||||
:param max_tool_calls: (Optional) Max number of total calls to built-in tools that can be processed in a response.
|
||||
:returns: An OpenAIResponseObject.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -594,6 +594,7 @@ class OpenAIResponseObject(BaseModel):
|
|||
:param truncation: (Optional) Truncation strategy applied to the response
|
||||
:param usage: (Optional) Token usage information for the response
|
||||
:param instructions: (Optional) System message inserted into the model's context
|
||||
:param max_tool_calls: (Optional) Max number of total calls to built-in tools that can be processed in a response
|
||||
"""
|
||||
|
||||
created_at: int
|
||||
|
|
@ -615,6 +616,7 @@ class OpenAIResponseObject(BaseModel):
|
|||
truncation: str | None = None
|
||||
usage: OpenAIResponseUsage | None = None
|
||||
instructions: str | None = None
|
||||
max_tool_calls: int | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
|||
|
|
@ -74,7 +74,7 @@ class Benchmarks(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks", method="POST", level=LLAMA_STACK_API_V1ALPHA)
|
||||
@webmethod(route="/eval/benchmarks", method="POST", level=LLAMA_STACK_API_V1ALPHA, deprecated=True)
|
||||
async def register_benchmark(
|
||||
self,
|
||||
benchmark_id: str,
|
||||
|
|
@ -95,7 +95,7 @@ class Benchmarks(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA)
|
||||
@webmethod(route="/eval/benchmarks/{benchmark_id}", method="DELETE", level=LLAMA_STACK_API_V1ALPHA, deprecated=True)
|
||||
async def unregister_benchmark(self, benchmark_id: str) -> None:
|
||||
"""Unregister a benchmark.
|
||||
|
||||
|
|
|
|||
|
|
@ -146,7 +146,7 @@ class ListDatasetsResponse(BaseModel):
|
|||
|
||||
|
||||
class Datasets(Protocol):
|
||||
@webmethod(route="/datasets", method="POST", level=LLAMA_STACK_API_V1BETA)
|
||||
@webmethod(route="/datasets", method="POST", level=LLAMA_STACK_API_V1BETA, deprecated=True)
|
||||
async def register_dataset(
|
||||
self,
|
||||
purpose: DatasetPurpose,
|
||||
|
|
@ -235,7 +235,7 @@ class Datasets(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", level=LLAMA_STACK_API_V1BETA)
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE", level=LLAMA_STACK_API_V1BETA, deprecated=True)
|
||||
async def unregister_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
|
|
|
|||
|
|
@ -1,43 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
)
|
||||
|
||||
|
||||
class LogEvent:
|
||||
def __init__(
|
||||
self,
|
||||
content: str = "",
|
||||
end: str = "\n",
|
||||
color="white",
|
||||
):
|
||||
self.content = content
|
||||
self.color = color
|
||||
self.end = "\n" if end is None else end
|
||||
|
||||
def print(self, flush=True):
|
||||
cprint(f"{self.content}", color=self.color, end=self.end, flush=flush)
|
||||
|
||||
|
||||
class EventLogger:
|
||||
async def log(self, event_generator):
|
||||
async for chunk in event_generator:
|
||||
if isinstance(chunk, ChatCompletionResponseStreamChunk):
|
||||
event = chunk.event
|
||||
if event.event_type == ChatCompletionResponseEventType.start:
|
||||
yield LogEvent("Assistant> ", color="cyan", end="")
|
||||
elif event.event_type == ChatCompletionResponseEventType.progress:
|
||||
yield LogEvent(event.delta, color="yellow", end="")
|
||||
elif event.event_type == ChatCompletionResponseEventType.complete:
|
||||
yield LogEvent("")
|
||||
else:
|
||||
yield LogEvent("Assistant> ", color="cyan", end="")
|
||||
yield LogEvent(chunk.completion_message.content, color="yellow")
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import AsyncIterator
|
||||
from enum import Enum
|
||||
from enum import Enum, StrEnum
|
||||
from typing import (
|
||||
Annotated,
|
||||
Any,
|
||||
|
|
@ -15,28 +15,18 @@ from typing import (
|
|||
)
|
||||
|
||||
from fastapi import Body
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent
|
||||
from llama_stack.apis.common.responses import MetricResponseMixin, Order
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.common.responses import (
|
||||
Order,
|
||||
)
|
||||
from llama_stack.apis.common.tracing import telemetry_traceable
|
||||
from llama_stack.apis.models import Model
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1, LLAMA_STACK_API_V1ALPHA
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
register_schema(ToolCall)
|
||||
register_schema(ToolDefinition)
|
||||
|
||||
from enum import StrEnum
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class GreedySamplingStrategy(BaseModel):
|
||||
|
|
@ -201,58 +191,6 @@ class ToolResponseMessage(BaseModel):
|
|||
content: InterleavedContent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionMessage(BaseModel):
|
||||
"""A message containing the model's (assistant) response in a chat conversation.
|
||||
|
||||
:param role: Must be "assistant" to identify this as the model's response
|
||||
:param content: The content of the model's response
|
||||
:param stop_reason: Reason why the model stopped generating. Options are:
|
||||
- `StopReason.end_of_turn`: The model finished generating the entire response.
|
||||
- `StopReason.end_of_message`: The model finished generating but generated a partial response -- usually, a tool call. The user may call the tool and continue the conversation with the tool's response.
|
||||
- `StopReason.out_of_tokens`: The model ran out of token budget.
|
||||
:param tool_calls: List of tool calls. Each tool call is a ToolCall object.
|
||||
"""
|
||||
|
||||
role: Literal["assistant"] = "assistant"
|
||||
content: InterleavedContent
|
||||
stop_reason: StopReason
|
||||
tool_calls: list[ToolCall] | None = Field(default_factory=lambda: [])
|
||||
|
||||
|
||||
Message = Annotated[
|
||||
UserMessage | SystemMessage | ToolResponseMessage | CompletionMessage,
|
||||
Field(discriminator="role"),
|
||||
]
|
||||
register_schema(Message, name="Message")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolResponse(BaseModel):
|
||||
"""Response from a tool invocation.
|
||||
|
||||
:param call_id: Unique identifier for the tool call this response is for
|
||||
:param tool_name: Name of the tool that was invoked
|
||||
:param content: The response content from the tool
|
||||
:param metadata: (Optional) Additional metadata about the tool response
|
||||
"""
|
||||
|
||||
call_id: str
|
||||
tool_name: BuiltinTool | str
|
||||
content: InterleavedContent
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
@field_validator("tool_name", mode="before")
|
||||
@classmethod
|
||||
def validate_field(cls, v):
|
||||
if isinstance(v, str):
|
||||
try:
|
||||
return BuiltinTool(v)
|
||||
except ValueError:
|
||||
return v
|
||||
return v
|
||||
|
||||
|
||||
class ToolChoice(Enum):
|
||||
"""Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model.
|
||||
|
||||
|
|
@ -289,22 +227,6 @@ class ChatCompletionResponseEventType(Enum):
|
|||
progress = "progress"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseEvent(BaseModel):
|
||||
"""An event during chat completion generation.
|
||||
|
||||
:param event_type: Type of the event
|
||||
:param delta: Content generated since last event. This can be one or more tokens, or a tool call.
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
:param stop_reason: Optional reason why generation stopped, if complete
|
||||
"""
|
||||
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: ContentDelta
|
||||
logprobs: list[TokenLogProbs] | None = None
|
||||
stop_reason: StopReason | None = None
|
||||
|
||||
|
||||
class ResponseFormatType(StrEnum):
|
||||
"""Types of formats for structured (guided) decoding.
|
||||
|
||||
|
|
@ -357,34 +279,6 @@ class CompletionRequest(BaseModel):
|
|||
logprobs: LogProbConfig | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponse(MetricResponseMixin):
|
||||
"""Response from a completion request.
|
||||
|
||||
:param content: The generated completion text
|
||||
:param stop_reason: Reason why generation stopped
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
content: str
|
||||
stop_reason: StopReason
|
||||
logprobs: list[TokenLogProbs] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class CompletionResponseStreamChunk(MetricResponseMixin):
|
||||
"""A chunk of a streamed completion response.
|
||||
|
||||
:param delta: New content generated since last chunk. This can be one or more tokens.
|
||||
:param stop_reason: Optional reason why generation stopped, if complete
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
delta: str
|
||||
stop_reason: StopReason | None = None
|
||||
logprobs: list[TokenLogProbs] | None = None
|
||||
|
||||
|
||||
class SystemMessageBehavior(Enum):
|
||||
"""Config for how to override the default system prompt.
|
||||
|
||||
|
|
@ -398,70 +292,6 @@ class SystemMessageBehavior(Enum):
|
|||
replace = "replace"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolConfig(BaseModel):
|
||||
"""Configuration for tool use.
|
||||
|
||||
:param tool_choice: (Optional) Whether tool use is automatic, required, or none. Can also specify a tool name to use a specific tool. Defaults to ToolChoice.auto.
|
||||
:param tool_prompt_format: (Optional) Instructs the model how to format tool calls. By default, Llama Stack will attempt to use a format that is best adapted to the model.
|
||||
- `ToolPromptFormat.json`: The tool calls are formatted as a JSON object.
|
||||
- `ToolPromptFormat.function_tag`: The tool calls are enclosed in a <function=function_name> tag.
|
||||
- `ToolPromptFormat.python_list`: The tool calls are output as Python syntax -- a list of function calls.
|
||||
:param system_message_behavior: (Optional) Config for how to override the default system prompt.
|
||||
- `SystemMessageBehavior.append`: Appends the provided system message to the default system prompt.
|
||||
- `SystemMessageBehavior.replace`: Replaces the default system prompt with the provided system message. The system message can include the string
|
||||
'{{function_definitions}}' to indicate where the function definitions should be inserted.
|
||||
"""
|
||||
|
||||
tool_choice: ToolChoice | str | None = Field(default=ToolChoice.auto)
|
||||
tool_prompt_format: ToolPromptFormat | None = Field(default=None)
|
||||
system_message_behavior: SystemMessageBehavior | None = Field(default=SystemMessageBehavior.append)
|
||||
|
||||
def model_post_init(self, __context: Any) -> None:
|
||||
if isinstance(self.tool_choice, str):
|
||||
try:
|
||||
self.tool_choice = ToolChoice[self.tool_choice]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
|
||||
# This is an internally used class
|
||||
@json_schema_type
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: list[Message]
|
||||
sampling_params: SamplingParams | None = Field(default_factory=SamplingParams)
|
||||
|
||||
tools: list[ToolDefinition] | None = Field(default_factory=lambda: [])
|
||||
tool_config: ToolConfig | None = Field(default_factory=ToolConfig)
|
||||
|
||||
response_format: ResponseFormat | None = None
|
||||
stream: bool | None = False
|
||||
logprobs: LogProbConfig | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponseStreamChunk(MetricResponseMixin):
|
||||
"""A chunk of a streamed chat completion response.
|
||||
|
||||
:param event: The event containing the new content
|
||||
"""
|
||||
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ChatCompletionResponse(MetricResponseMixin):
|
||||
"""Response from a chat completion request.
|
||||
|
||||
:param completion_message: The complete response message
|
||||
:param logprobs: Optional log probabilities for generated tokens
|
||||
"""
|
||||
|
||||
completion_message: CompletionMessage
|
||||
logprobs: list[TokenLogProbs] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
"""Response containing generated embeddings.
|
||||
|
|
|
|||
|
|
@ -76,7 +76,7 @@ class Inspect(Protocol):
|
|||
|
||||
List all available API routes with their methods and implementing providers.
|
||||
|
||||
:param api_filter: Optional filter to control which routes are returned. Can be an API level ('v1', 'v1alpha', 'v1beta') to show non-deprecated routes at that level, or 'deprecated' to show deprecated routes across all levels. If not specified, returns only non-deprecated v1 routes.
|
||||
:param api_filter: Optional filter to control which routes are returned. Can be an API level ('v1', 'v1alpha', 'v1beta') to show non-deprecated routes at that level, or 'deprecated' to show deprecated routes across all levels. If not specified, returns all non-deprecated routes.
|
||||
:returns: Response containing information about all available routes.
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -136,7 +136,7 @@ class Models(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/models", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/models", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def register_model(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -158,7 +158,7 @@ class Models(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/models/{model_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/models/{model_id:path}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def unregister_model(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
|
|||
|
|
@ -178,7 +178,7 @@ class ScoringFunctions(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/scoring-functions", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/scoring-functions", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def register_scoring_function(
|
||||
self,
|
||||
scoring_fn_id: str,
|
||||
|
|
@ -199,7 +199,9 @@ class ScoringFunctions(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/scoring-functions/{scoring_fn_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(
|
||||
route="/scoring-functions/{scoring_fn_id:path}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True
|
||||
)
|
||||
async def unregister_scoring_function(self, scoring_fn_id: str) -> None:
|
||||
"""Unregister a scoring function.
|
||||
|
||||
|
|
|
|||
|
|
@ -67,7 +67,7 @@ class Shields(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/shields", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/shields", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def register_shield(
|
||||
self,
|
||||
shield_id: str,
|
||||
|
|
@ -85,7 +85,7 @@ class Shields(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/shields/{identifier:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/shields/{identifier:path}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def unregister_shield(self, identifier: str) -> None:
|
||||
"""Unregister a shield.
|
||||
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ class ListToolDefsResponse(BaseModel):
|
|||
@runtime_checkable
|
||||
@telemetry_traceable
|
||||
class ToolGroups(Protocol):
|
||||
@webmethod(route="/toolgroups", method="POST", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/toolgroups", method="POST", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def register_tool_group(
|
||||
self,
|
||||
toolgroup_id: str,
|
||||
|
|
@ -167,7 +167,7 @@ class ToolGroups(Protocol):
|
|||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/toolgroups/{toolgroup_id:path}", method="DELETE", level=LLAMA_STACK_API_V1)
|
||||
@webmethod(route="/toolgroups/{toolgroup_id:path}", method="DELETE", level=LLAMA_STACK_API_V1, deprecated=True)
|
||||
async def unregister_toolgroup(
|
||||
self,
|
||||
toolgroup_id: str,
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@
|
|||
# the root directory of this source tree.
|
||||
from typing import Annotated, Any, Literal, Protocol, runtime_checkable
|
||||
|
||||
from fastapi import Body
|
||||
from fastapi import Body, Query
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.common.tracing import telemetry_traceable
|
||||
|
|
@ -224,10 +224,16 @@ class VectorStoreContent(BaseModel):
|
|||
|
||||
:param type: Content type, currently only "text" is supported
|
||||
:param text: The actual text content
|
||||
:param embedding: Optional embedding vector for this content chunk
|
||||
:param chunk_metadata: Optional chunk metadata
|
||||
:param metadata: Optional user-defined metadata
|
||||
"""
|
||||
|
||||
type: Literal["text"]
|
||||
text: str
|
||||
embedding: list[float] | None = None
|
||||
chunk_metadata: ChunkMetadata | None = None
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
@ -280,6 +286,22 @@ class VectorStoreDeleteResponse(BaseModel):
|
|||
deleted: bool = True
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileContentResponse(BaseModel):
|
||||
"""Represents the parsed content of a vector store file.
|
||||
|
||||
:param object: The object type, which is always `vector_store.file_content.page`
|
||||
:param data: Parsed content of the file
|
||||
:param has_more: Indicates if there are more content pages to fetch
|
||||
:param next_page: The token for the next page, if any
|
||||
"""
|
||||
|
||||
object: Literal["vector_store.file_content.page"] = "vector_store.file_content.page"
|
||||
data: list[VectorStoreContent]
|
||||
has_more: bool = False
|
||||
next_page: str | None = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreChunkingStrategyAuto(BaseModel):
|
||||
"""Automatic chunking strategy for vector store files.
|
||||
|
|
@ -395,22 +417,6 @@ class VectorStoreListFilesResponse(BaseModel):
|
|||
has_more: bool = False
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileContentsResponse(BaseModel):
|
||||
"""Response from retrieving the contents of a vector store file.
|
||||
|
||||
:param file_id: Unique identifier for the file
|
||||
:param filename: Name of the file
|
||||
:param attributes: Key-value attributes associated with the file
|
||||
:param content: List of content items from the file
|
||||
"""
|
||||
|
||||
file_id: str
|
||||
filename: str
|
||||
attributes: dict[str, Any]
|
||||
content: list[VectorStoreContent]
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class VectorStoreFileDeleteResponse(BaseModel):
|
||||
"""Response from deleting a vector store file.
|
||||
|
|
@ -732,12 +738,16 @@ class VectorIO(Protocol):
|
|||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
include_embeddings: Annotated[bool | None, Query(default=False)] = False,
|
||||
include_metadata: Annotated[bool | None, Query(default=False)] = False,
|
||||
) -> VectorStoreFileContentResponse:
|
||||
"""Retrieves the contents of a vector store file.
|
||||
|
||||
:param vector_store_id: The ID of the vector store containing the file to retrieve.
|
||||
:param file_id: The ID of the file to retrieve.
|
||||
:returns: A list of InterleavedContent representing the file contents.
|
||||
:param include_embeddings: Whether to include embedding vectors in the response.
|
||||
:param include_metadata: Whether to include chunk metadata in the response.
|
||||
:returns: File contents, optionally with embeddings and metadata based on query parameters.
|
||||
"""
|
||||
...
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import importlib.resources
|
||||
import sys
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
|
@ -12,9 +11,6 @@ from termcolor import cprint
|
|||
|
||||
from llama_stack.core.datatypes import BuildConfig
|
||||
from llama_stack.core.distribution import get_provider_registry
|
||||
from llama_stack.core.external import load_external_apis
|
||||
from llama_stack.core.utils.exec import run_command
|
||||
from llama_stack.core.utils.image_types import LlamaStackImageType
|
||||
from llama_stack.distributions.template import DistributionTemplate
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
|
@ -101,64 +97,3 @@ def print_pip_install_help(config: BuildConfig):
|
|||
for special_dep in special_deps:
|
||||
cprint(f"uv pip install {special_dep}", color="yellow", file=sys.stderr)
|
||||
print()
|
||||
|
||||
|
||||
def build_image(
|
||||
build_config: BuildConfig,
|
||||
image_name: str,
|
||||
distro_or_config: str,
|
||||
run_config: str | None = None,
|
||||
):
|
||||
container_base = build_config.distribution_spec.container_image or "python:3.12-slim"
|
||||
|
||||
normal_deps, special_deps, external_provider_deps = get_provider_dependencies(build_config)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
if build_config.external_apis_dir:
|
||||
external_apis = load_external_apis(build_config)
|
||||
if external_apis:
|
||||
for _, api_spec in external_apis.items():
|
||||
normal_deps.extend(api_spec.pip_packages)
|
||||
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
|
||||
script = str(importlib.resources.files("llama_stack") / "core/build_container.sh")
|
||||
args = [
|
||||
script,
|
||||
"--distro-or-config",
|
||||
distro_or_config,
|
||||
"--image-name",
|
||||
image_name,
|
||||
"--container-base",
|
||||
container_base,
|
||||
"--normal-deps",
|
||||
" ".join(normal_deps),
|
||||
]
|
||||
# When building from a config file (not a template), include the run config path in the
|
||||
# build arguments
|
||||
if run_config is not None:
|
||||
args.extend(["--run-config", run_config])
|
||||
else:
|
||||
script = str(importlib.resources.files("llama_stack") / "core/build_venv.sh")
|
||||
args = [
|
||||
script,
|
||||
"--env-name",
|
||||
str(image_name),
|
||||
"--normal-deps",
|
||||
" ".join(normal_deps),
|
||||
]
|
||||
|
||||
# Always pass both arguments, even if empty, to maintain consistent positional arguments
|
||||
if special_deps:
|
||||
args.extend(["--optional-deps", "#".join(special_deps)])
|
||||
if external_provider_deps:
|
||||
args.extend(
|
||||
["--external-provider-deps", "#".join(external_provider_deps)]
|
||||
) # the script will install external provider module, get its deps, and install those too.
|
||||
|
||||
return_code = run_command(args)
|
||||
|
||||
if return_code != 0:
|
||||
log.error(
|
||||
f"Failed to build target {image_name} with return code {return_code}",
|
||||
)
|
||||
|
||||
return return_code
|
||||
|
|
|
|||
|
|
@ -15,7 +15,6 @@ from llama_stack.apis.inspect import (
|
|||
RouteInfo,
|
||||
VersionInfo,
|
||||
)
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.core.datatypes import StackRunConfig
|
||||
from llama_stack.core.external import load_external_apis
|
||||
from llama_stack.core.server.routes import get_all_api_routes
|
||||
|
|
@ -46,8 +45,8 @@ class DistributionInspectImpl(Inspect):
|
|||
# Helper function to determine if a route should be included based on api_filter
|
||||
def should_include_route(webmethod) -> bool:
|
||||
if api_filter is None:
|
||||
# Default: only non-deprecated v1 APIs
|
||||
return not webmethod.deprecated and webmethod.level == LLAMA_STACK_API_V1
|
||||
# Default: only non-deprecated APIs
|
||||
return not webmethod.deprecated
|
||||
elif api_filter == "deprecated":
|
||||
# Special filter: show deprecated routes regardless of their actual level
|
||||
return bool(webmethod.deprecated)
|
||||
|
|
|
|||
|
|
@ -389,6 +389,12 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|||
matched_func, path_params, route_path, webmethod = find_matching_route(options.method, path, self.route_impls)
|
||||
body |= path_params
|
||||
|
||||
# Pass through params that aren't already handled as path params
|
||||
if options.params:
|
||||
extra_query_params = {k: v for k, v in options.params.items() if k not in path_params}
|
||||
if extra_query_params:
|
||||
body["extra_query"] = extra_query_params
|
||||
|
||||
body, field_names = self._handle_file_uploads(options, body)
|
||||
|
||||
body = self._convert_body(matched_func, body, exclude_params=set(field_names))
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import Message
|
||||
from llama_stack.apis.inference import OpenAIMessageParam
|
||||
from llama_stack.apis.safety import RunShieldResponse, Safety
|
||||
from llama_stack.apis.safety.safety import ModerationObject
|
||||
from llama_stack.apis.shields import Shield
|
||||
|
|
@ -52,7 +52,7 @@ class SafetyRouter(Safety):
|
|||
async def run_shield(
|
||||
self,
|
||||
shield_id: str,
|
||||
messages: list[Message],
|
||||
messages: list[OpenAIMessageParam],
|
||||
params: dict[str, Any] = None,
|
||||
) -> RunShieldResponse:
|
||||
logger.debug(f"SafetyRouter.run_shield: {shield_id}")
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreChunkingStrategyStaticConfig,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileBatchObject,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileContentResponse,
|
||||
VectorStoreFileDeleteResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFilesListInBatchResponse,
|
||||
|
|
@ -247,6 +247,13 @@ class VectorIORouter(VectorIO):
|
|||
metadata: dict[str, Any] | None = None,
|
||||
) -> VectorStoreObject:
|
||||
logger.debug(f"VectorIORouter.openai_update_vector_store: {vector_store_id}")
|
||||
|
||||
# Check if provider_id is being changed (not supported)
|
||||
if metadata and "provider_id" in metadata:
|
||||
current_store = await self.routing_table.get_object_by_identifier("vector_store", vector_store_id)
|
||||
if current_store and current_store.provider_id != metadata["provider_id"]:
|
||||
raise ValueError("provider_id cannot be changed after vector store creation")
|
||||
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_update_vector_store(
|
||||
vector_store_id=vector_store_id,
|
||||
|
|
@ -338,12 +345,19 @@ class VectorIORouter(VectorIO):
|
|||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
logger.debug(f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}")
|
||||
provider = await self.routing_table.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_contents(
|
||||
include_embeddings: bool | None = False,
|
||||
include_metadata: bool | None = False,
|
||||
) -> VectorStoreFileContentResponse:
|
||||
logger.debug(
|
||||
f"VectorIORouter.openai_retrieve_vector_store_file_contents: {vector_store_id}, {file_id}, "
|
||||
f"include_embeddings={include_embeddings}, include_metadata={include_metadata}"
|
||||
)
|
||||
|
||||
return await self.routing_table.openai_retrieve_vector_store_file_contents(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
include_embeddings=include_embeddings,
|
||||
include_metadata=include_metadata,
|
||||
)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ from llama_stack.apis.vector_io.vector_io import (
|
|||
SearchRankingOptions,
|
||||
VectorStoreChunkingStrategy,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileContentResponse,
|
||||
VectorStoreFileDeleteResponse,
|
||||
VectorStoreFileObject,
|
||||
VectorStoreFileStatus,
|
||||
|
|
@ -195,12 +195,17 @@ class VectorStoresRoutingTable(CommonRoutingTableImpl):
|
|||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
include_embeddings: bool | None = False,
|
||||
include_metadata: bool | None = False,
|
||||
) -> VectorStoreFileContentResponse:
|
||||
await self.assert_action_allowed("read", "vector_store", vector_store_id)
|
||||
|
||||
provider = await self.get_provider_impl(vector_store_id)
|
||||
return await provider.openai_retrieve_vector_store_file_contents(
|
||||
vector_store_id=vector_store_id,
|
||||
file_id=file_id,
|
||||
include_embeddings=include_embeddings,
|
||||
include_metadata=include_metadata,
|
||||
)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
|
|
|
|||
7
src/llama_stack/distributions/oci/__init__.py
Normal file
7
src/llama_stack/distributions/oci/__init__.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .oci import get_distribution_template # noqa: F401
|
||||
35
src/llama_stack/distributions/oci/build.yaml
Normal file
35
src/llama_stack/distributions/oci/build.yaml
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
version: 2
|
||||
distribution_spec:
|
||||
description: Use Oracle Cloud Infrastructure (OCI) Generative AI for running LLM
|
||||
inference with scalable cloud services
|
||||
providers:
|
||||
inference:
|
||||
- provider_type: remote::oci
|
||||
vector_io:
|
||||
- provider_type: inline::faiss
|
||||
- provider_type: remote::chromadb
|
||||
- provider_type: remote::pgvector
|
||||
safety:
|
||||
- provider_type: inline::llama-guard
|
||||
agents:
|
||||
- provider_type: inline::meta-reference
|
||||
eval:
|
||||
- provider_type: inline::meta-reference
|
||||
datasetio:
|
||||
- provider_type: remote::huggingface
|
||||
- provider_type: inline::localfs
|
||||
scoring:
|
||||
- provider_type: inline::basic
|
||||
- provider_type: inline::llm-as-judge
|
||||
- provider_type: inline::braintrust
|
||||
tool_runtime:
|
||||
- provider_type: remote::brave-search
|
||||
- provider_type: remote::tavily-search
|
||||
- provider_type: inline::rag-runtime
|
||||
- provider_type: remote::model-context-protocol
|
||||
files:
|
||||
- provider_type: inline::localfs
|
||||
image_type: venv
|
||||
additional_pip_packages:
|
||||
- aiosqlite
|
||||
- sqlalchemy[asyncio]
|
||||
140
src/llama_stack/distributions/oci/doc_template.md
Normal file
140
src/llama_stack/distributions/oci/doc_template.md
Normal file
|
|
@ -0,0 +1,140 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# OCI Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }} {{ model.doc_string }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
## Prerequisites
|
||||
### Oracle Cloud Infrastructure Setup
|
||||
|
||||
Before using the OCI Generative AI distribution, ensure you have:
|
||||
|
||||
1. **Oracle Cloud Infrastructure Account**: Sign up at [Oracle Cloud Infrastructure](https://cloud.oracle.com/)
|
||||
2. **Generative AI Service Access**: Enable the Generative AI service in your OCI tenancy
|
||||
3. **Compartment**: Create or identify a compartment where you'll deploy Generative AI models
|
||||
4. **Authentication**: Configure authentication using either:
|
||||
- **Instance Principal** (recommended for cloud-hosted deployments)
|
||||
- **API Key** (for on-premises or development environments)
|
||||
|
||||
### Authentication Methods
|
||||
|
||||
#### Instance Principal Authentication (Recommended)
|
||||
Instance Principal authentication allows OCI resources to authenticate using the identity of the compute instance they're running on. This is the most secure method for production deployments.
|
||||
|
||||
Requirements:
|
||||
- Instance must be running in an Oracle Cloud Infrastructure compartment
|
||||
- Instance must have appropriate IAM policies to access Generative AI services
|
||||
|
||||
#### API Key Authentication
|
||||
For development or on-premises deployments, follow [this doc](https://docs.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm) to learn how to create your API signing key for your config file.
|
||||
|
||||
### Required IAM Policies
|
||||
|
||||
Ensure your OCI user or instance has the following policy statements:
|
||||
|
||||
```
|
||||
Allow group <group_name> to use generative-ai-inference-endpoints in compartment <compartment_name>
|
||||
Allow group <group_name> to manage generative-ai-inference-endpoints in compartment <compartment_name>
|
||||
```
|
||||
|
||||
## Supported Services
|
||||
|
||||
### Inference: OCI Generative AI
|
||||
Oracle Cloud Infrastructure Generative AI provides access to high-performance AI models through OCI's Platform-as-a-Service offering. The service supports:
|
||||
|
||||
- **Chat Completions**: Conversational AI with context awareness
|
||||
- **Text Generation**: Complete prompts and generate text content
|
||||
|
||||
#### Available Models
|
||||
Common OCI Generative AI models include access to Meta, Cohere, OpenAI, Grok, and more models.
|
||||
|
||||
### Safety: Llama Guard
|
||||
For content safety and moderation, this distribution uses Meta's LlamaGuard model through the OCI Generative AI service to provide:
|
||||
- Content filtering and moderation
|
||||
- Policy compliance checking
|
||||
- Harmful content detection
|
||||
|
||||
### Vector Storage: Multiple Options
|
||||
The distribution supports several vector storage providers:
|
||||
- **FAISS**: Local in-memory vector search
|
||||
- **ChromaDB**: Distributed vector database
|
||||
- **PGVector**: PostgreSQL with vector extensions
|
||||
|
||||
### Additional Services
|
||||
- **Dataset I/O**: Local filesystem and Hugging Face integration
|
||||
- **Tool Runtime**: Web search (Brave, Tavily) and RAG capabilities
|
||||
- **Evaluation**: Meta reference evaluation framework
|
||||
|
||||
## Running Llama Stack with OCI
|
||||
|
||||
You can run the OCI distribution via Docker or local virtual environment.
|
||||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also build the image using your local virtual environment.
|
||||
|
||||
```bash
|
||||
OCI_AUTH=$OCI_AUTH_TYPE OCI_REGION=$OCI_REGION OCI_COMPARTMENT_OCID=$OCI_COMPARTMENT_OCID llama stack run --port 8321 oci
|
||||
```
|
||||
|
||||
### Configuration Examples
|
||||
|
||||
#### Using Instance Principal (Recommended for Production)
|
||||
```bash
|
||||
export OCI_AUTH_TYPE=instance_principal
|
||||
export OCI_REGION=us-chicago-1
|
||||
export OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..<your-compartment-id>
|
||||
```
|
||||
|
||||
#### Using API Key Authentication (Development)
|
||||
```bash
|
||||
export OCI_AUTH_TYPE=config_file
|
||||
export OCI_CONFIG_FILE_PATH=~/.oci/config
|
||||
export OCI_CLI_PROFILE=DEFAULT
|
||||
export OCI_REGION=us-chicago-1
|
||||
export OCI_COMPARTMENT_OCID=ocid1.compartment.oc1..your-compartment-id
|
||||
```
|
||||
|
||||
## Regional Endpoints
|
||||
|
||||
OCI Generative AI is available in multiple regions. The service automatically routes to the appropriate regional endpoint based on your configuration. For a full list of regional model availability, visit:
|
||||
|
||||
https://docs.oracle.com/en-us/iaas/Content/generative-ai/overview.htm#regions
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Authentication Errors**: Verify your OCI credentials and IAM policies
|
||||
2. **Model Not Found**: Ensure the model OCID is correct and the model is available in your region
|
||||
3. **Permission Denied**: Check compartment permissions and Generative AI service access
|
||||
4. **Region Unavailable**: Verify the specified region supports Generative AI services
|
||||
|
||||
### Getting Help
|
||||
|
||||
For additional support:
|
||||
- [OCI Generative AI Documentation](https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm)
|
||||
- [Llama Stack Issues](https://github.com/meta-llama/llama-stack/issues)
|
||||
108
src/llama_stack/distributions/oci/oci.py
Normal file
108
src/llama_stack/distributions/oci/oci.py
Normal file
|
|
@ -0,0 +1,108 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.core.datatypes import BuildProvider, Provider, ToolGroupInput
|
||||
from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings
|
||||
from llama_stack.providers.inline.files.localfs.config import LocalfsFilesImplConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.oci.config import OCIConfig
|
||||
|
||||
|
||||
def get_distribution_template(name: str = "oci") -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": [BuildProvider(provider_type="remote::oci")],
|
||||
"vector_io": [
|
||||
BuildProvider(provider_type="inline::faiss"),
|
||||
BuildProvider(provider_type="remote::chromadb"),
|
||||
BuildProvider(provider_type="remote::pgvector"),
|
||||
],
|
||||
"safety": [BuildProvider(provider_type="inline::llama-guard")],
|
||||
"agents": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"eval": [BuildProvider(provider_type="inline::meta-reference")],
|
||||
"datasetio": [
|
||||
BuildProvider(provider_type="remote::huggingface"),
|
||||
BuildProvider(provider_type="inline::localfs"),
|
||||
],
|
||||
"scoring": [
|
||||
BuildProvider(provider_type="inline::basic"),
|
||||
BuildProvider(provider_type="inline::llm-as-judge"),
|
||||
BuildProvider(provider_type="inline::braintrust"),
|
||||
],
|
||||
"tool_runtime": [
|
||||
BuildProvider(provider_type="remote::brave-search"),
|
||||
BuildProvider(provider_type="remote::tavily-search"),
|
||||
BuildProvider(provider_type="inline::rag-runtime"),
|
||||
BuildProvider(provider_type="remote::model-context-protocol"),
|
||||
],
|
||||
"files": [BuildProvider(provider_type="inline::localfs")],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="oci",
|
||||
provider_type="remote::oci",
|
||||
config=OCIConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
vector_io_provider = Provider(
|
||||
provider_id="faiss",
|
||||
provider_type="inline::faiss",
|
||||
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
|
||||
files_provider = Provider(
|
||||
provider_id="meta-reference-files",
|
||||
provider_type="inline::localfs",
|
||||
config=LocalfsFilesImplConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
)
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="remote_hosted",
|
||||
description="Use Oracle Cloud Infrastructure (OCI) Generative AI for running LLM inference with scalable cloud services",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
"vector_io": [vector_io_provider],
|
||||
"files": [files_provider],
|
||||
},
|
||||
default_tool_groups=default_tool_groups,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"OCI_AUTH_TYPE": (
|
||||
"instance_principal",
|
||||
"OCI authentication type (instance_principal or config_file)",
|
||||
),
|
||||
"OCI_REGION": (
|
||||
"",
|
||||
"OCI region (e.g., us-ashburn-1, us-chicago-1, us-phoenix-1, eu-frankfurt-1)",
|
||||
),
|
||||
"OCI_COMPARTMENT_OCID": (
|
||||
"",
|
||||
"OCI compartment ID for the Generative AI service",
|
||||
),
|
||||
"OCI_CONFIG_FILE_PATH": (
|
||||
"~/.oci/config",
|
||||
"OCI config file path (required if OCI_AUTH_TYPE is config_file)",
|
||||
),
|
||||
"OCI_CLI_PROFILE": (
|
||||
"DEFAULT",
|
||||
"OCI CLI profile name to use from config file",
|
||||
),
|
||||
},
|
||||
)
|
||||
136
src/llama_stack/distributions/oci/run.yaml
Normal file
136
src/llama_stack/distributions/oci/run.yaml
Normal file
|
|
@ -0,0 +1,136 @@
|
|||
version: 2
|
||||
image_name: oci
|
||||
apis:
|
||||
- agents
|
||||
- datasetio
|
||||
- eval
|
||||
- files
|
||||
- inference
|
||||
- safety
|
||||
- scoring
|
||||
- tool_runtime
|
||||
- vector_io
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: oci
|
||||
provider_type: remote::oci
|
||||
config:
|
||||
oci_auth_type: ${env.OCI_AUTH_TYPE:=instance_principal}
|
||||
oci_config_file_path: ${env.OCI_CONFIG_FILE_PATH:=~/.oci/config}
|
||||
oci_config_profile: ${env.OCI_CLI_PROFILE:=DEFAULT}
|
||||
oci_region: ${env.OCI_REGION:=us-ashburn-1}
|
||||
oci_compartment_id: ${env.OCI_COMPARTMENT_OCID:=}
|
||||
vector_io:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
persistence:
|
||||
namespace: vector_io::faiss
|
||||
backend: kv_default
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
excluded_categories: []
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence:
|
||||
agent_state:
|
||||
namespace: agents
|
||||
backend: kv_default
|
||||
responses:
|
||||
table_name: responses
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
eval:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
kvstore:
|
||||
namespace: eval
|
||||
backend: kv_default
|
||||
datasetio:
|
||||
- provider_id: huggingface
|
||||
provider_type: remote::huggingface
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::huggingface
|
||||
backend: kv_default
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
namespace: datasetio::localfs
|
||||
backend: kv_default
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
- provider_id: llm-as-judge
|
||||
provider_type: inline::llm-as-judge
|
||||
- provider_id: braintrust
|
||||
provider_type: inline::braintrust
|
||||
config:
|
||||
openai_api_key: ${env.OPENAI_API_KEY:=}
|
||||
tool_runtime:
|
||||
- provider_id: brave-search
|
||||
provider_type: remote::brave-search
|
||||
config:
|
||||
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: tavily-search
|
||||
provider_type: remote::tavily-search
|
||||
config:
|
||||
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
||||
max_results: 3
|
||||
- provider_id: rag-runtime
|
||||
provider_type: inline::rag-runtime
|
||||
- provider_id: model-context-protocol
|
||||
provider_type: remote::model-context-protocol
|
||||
files:
|
||||
- provider_id: meta-reference-files
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/oci/files}
|
||||
metadata_store:
|
||||
table_name: files_metadata
|
||||
backend: sql_default
|
||||
storage:
|
||||
backends:
|
||||
kv_default:
|
||||
type: kv_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/oci}/kvstore.db
|
||||
sql_default:
|
||||
type: sql_sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/oci}/sql_store.db
|
||||
stores:
|
||||
metadata:
|
||||
namespace: registry
|
||||
backend: kv_default
|
||||
inference:
|
||||
table_name: inference_store
|
||||
backend: sql_default
|
||||
max_write_queue_size: 10000
|
||||
num_writers: 4
|
||||
conversations:
|
||||
table_name: openai_conversations
|
||||
backend: sql_default
|
||||
prompts:
|
||||
namespace: prompts
|
||||
backend: kv_default
|
||||
registered_resources:
|
||||
models: []
|
||||
shields: []
|
||||
vector_dbs: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
benchmarks: []
|
||||
tool_groups:
|
||||
- toolgroup_id: builtin::websearch
|
||||
provider_id: tavily-search
|
||||
server:
|
||||
port: 8321
|
||||
telemetry:
|
||||
enabled: true
|
||||
|
|
@ -26,8 +26,10 @@ from fairscale.nn.model_parallel.initialize import (
|
|||
)
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.models.llama.datatypes import ToolPromptFormat
|
||||
|
||||
from ..checkpoint import maybe_reshard_state_dict
|
||||
from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage, ToolPromptFormat
|
||||
from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage
|
||||
from .args import ModelArgs
|
||||
from .chat_format import ChatFormat, LLMInput
|
||||
from .model import Transformer
|
||||
|
|
|
|||
|
|
@ -15,13 +15,10 @@ from pathlib import Path
|
|||
|
||||
from termcolor import colored
|
||||
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall, ToolDefinition, ToolPromptFormat
|
||||
|
||||
from ..datatypes import (
|
||||
BuiltinTool,
|
||||
RawMessage,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from . import template_data
|
||||
from .chat_format import ChatFormat
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ import textwrap
|
|||
from datetime import datetime
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
ToolDefinition,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -8,8 +8,9 @@ import json
|
|||
import re
|
||||
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, ToolCall, ToolPromptFormat
|
||||
|
||||
from ..datatypes import BuiltinTool, RecursiveType, ToolCall, ToolPromptFormat
|
||||
from ..datatypes import RecursiveType
|
||||
|
||||
logger = get_logger(name=__name__, category="models::llama")
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
import textwrap
|
||||
|
||||
from llama_stack.apis.inference import ToolDefinition
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition
|
||||
from llama_stack.models.llama.llama3.prompt_templates.base import (
|
||||
PromptTemplate,
|
||||
PromptTemplateGeneratorBase,
|
||||
|
|
|
|||
|
|
@ -102,6 +102,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
guardrails: list[ResponseGuardrail] | None = None,
|
||||
max_tool_calls: int | None = None,
|
||||
) -> OpenAIResponseObject:
|
||||
assert self.openai_responses_impl is not None, "OpenAI responses not initialized"
|
||||
result = await self.openai_responses_impl.create_openai_response(
|
||||
|
|
@ -119,6 +120,7 @@ class MetaReferenceAgentsImpl(Agents):
|
|||
include,
|
||||
max_infer_iters,
|
||||
guardrails,
|
||||
max_tool_calls,
|
||||
)
|
||||
return result # type: ignore[no-any-return]
|
||||
|
||||
|
|
|
|||
|
|
@ -255,6 +255,7 @@ class OpenAIResponsesImpl:
|
|||
include: list[str] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
guardrails: list[str | ResponseGuardrailSpec] | None = None,
|
||||
max_tool_calls: int | None = None,
|
||||
):
|
||||
stream = bool(stream)
|
||||
text = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")) if text is None else text
|
||||
|
|
@ -270,6 +271,9 @@ class OpenAIResponsesImpl:
|
|||
if not conversation.startswith("conv_"):
|
||||
raise InvalidConversationIdError(conversation)
|
||||
|
||||
if max_tool_calls is not None and max_tool_calls < 1:
|
||||
raise ValueError(f"Invalid {max_tool_calls=}; should be >= 1")
|
||||
|
||||
stream_gen = self._create_streaming_response(
|
||||
input=input,
|
||||
conversation=conversation,
|
||||
|
|
@ -282,6 +286,7 @@ class OpenAIResponsesImpl:
|
|||
tools=tools,
|
||||
max_infer_iters=max_infer_iters,
|
||||
guardrail_ids=guardrail_ids,
|
||||
max_tool_calls=max_tool_calls,
|
||||
)
|
||||
|
||||
if stream:
|
||||
|
|
@ -331,6 +336,7 @@ class OpenAIResponsesImpl:
|
|||
tools: list[OpenAIResponseInputTool] | None = None,
|
||||
max_infer_iters: int | None = 10,
|
||||
guardrail_ids: list[str] | None = None,
|
||||
max_tool_calls: int | None = None,
|
||||
) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
# These should never be None when called from create_openai_response (which sets defaults)
|
||||
# but we assert here to help mypy understand the types
|
||||
|
|
@ -373,6 +379,7 @@ class OpenAIResponsesImpl:
|
|||
safety_api=self.safety_api,
|
||||
guardrail_ids=guardrail_ids,
|
||||
instructions=instructions,
|
||||
max_tool_calls=max_tool_calls,
|
||||
)
|
||||
|
||||
# Stream the response
|
||||
|
|
|
|||
|
|
@ -115,6 +115,7 @@ class StreamingResponseOrchestrator:
|
|||
safety_api,
|
||||
guardrail_ids: list[str] | None = None,
|
||||
prompt: OpenAIResponsePrompt | None = None,
|
||||
max_tool_calls: int | None = None,
|
||||
):
|
||||
self.inference_api = inference_api
|
||||
self.ctx = ctx
|
||||
|
|
@ -126,6 +127,10 @@ class StreamingResponseOrchestrator:
|
|||
self.safety_api = safety_api
|
||||
self.guardrail_ids = guardrail_ids or []
|
||||
self.prompt = prompt
|
||||
# System message that is inserted into the model's context
|
||||
self.instructions = instructions
|
||||
# Max number of total calls to built-in tools that can be processed in a response
|
||||
self.max_tool_calls = max_tool_calls
|
||||
self.sequence_number = 0
|
||||
# Store MCP tool mapping that gets built during tool processing
|
||||
self.mcp_tool_to_server: dict[str, OpenAIResponseInputToolMCP] = (
|
||||
|
|
@ -139,8 +144,8 @@ class StreamingResponseOrchestrator:
|
|||
self.accumulated_usage: OpenAIResponseUsage | None = None
|
||||
# Track if we've sent a refusal response
|
||||
self.violation_detected = False
|
||||
# system message that is inserted into the model's context
|
||||
self.instructions = instructions
|
||||
# Track total calls made to built-in tools
|
||||
self.accumulated_builtin_tool_calls = 0
|
||||
|
||||
async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream:
|
||||
"""Create a refusal response to replace streaming content."""
|
||||
|
|
@ -186,6 +191,7 @@ class StreamingResponseOrchestrator:
|
|||
usage=self.accumulated_usage,
|
||||
instructions=self.instructions,
|
||||
prompt=self.prompt,
|
||||
max_tool_calls=self.max_tool_calls,
|
||||
)
|
||||
|
||||
async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]:
|
||||
|
|
@ -894,6 +900,11 @@ class StreamingResponseOrchestrator:
|
|||
"""Coordinate execution of both function and non-function tool calls."""
|
||||
# Execute non-function tool calls
|
||||
for tool_call in non_function_tool_calls:
|
||||
# Check if total calls made to built-in and mcp tools exceed max_tool_calls
|
||||
if self.max_tool_calls is not None and self.accumulated_builtin_tool_calls >= self.max_tool_calls:
|
||||
logger.info(f"Ignoring built-in and mcp tool call since reached the limit of {self.max_tool_calls=}.")
|
||||
break
|
||||
|
||||
# Find the item_id for this tool call
|
||||
matching_item_id = None
|
||||
for index, item_id in completion_result_data.tool_call_item_ids.items():
|
||||
|
|
@ -974,6 +985,9 @@ class StreamingResponseOrchestrator:
|
|||
if tool_response_message:
|
||||
next_turn_messages.append(tool_response_message)
|
||||
|
||||
# Track number of calls made to built-in and mcp tools
|
||||
self.accumulated_builtin_tool_calls += 1
|
||||
|
||||
# Execute function tool calls (client-side)
|
||||
for tool_call in function_tool_calls:
|
||||
# Find the item_id for this tool call from our tracking dictionary
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import math
|
||||
from collections.abc import Generator
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
|
@ -14,21 +13,19 @@ from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerToken
|
|||
from llama_stack.apis.inference import (
|
||||
GreedySamplingStrategy,
|
||||
JsonSchemaResponseFormat,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAIResponseFormatJSONSchema,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SamplingParams,
|
||||
TopPSamplingStrategy,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import QuantizationMode
|
||||
from llama_stack.models.llama.datatypes import QuantizationMode, ToolPromptFormat
|
||||
from llama_stack.models.llama.llama3.generation import Llama3
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
||||
from llama_stack.models.llama.llama4.generation import Llama4
|
||||
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
||||
from llama_stack.models.llama.sku_types import Model, ModelFamily
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
get_default_tool_prompt_format,
|
||||
)
|
||||
|
||||
from .common import model_checkpoint_dir
|
||||
from .config import MetaReferenceInferenceConfig
|
||||
|
|
@ -106,14 +103,6 @@ def _infer_sampling_params(sampling_params: SamplingParams):
|
|||
return temperature, top_p
|
||||
|
||||
|
||||
def _infer_tool_prompt_format(request: ChatCompletionRequestWithRawContent):
|
||||
tool_config = request.tool_config
|
||||
if tool_config is not None and tool_config.tool_prompt_format is not None:
|
||||
return tool_config.tool_prompt_format
|
||||
else:
|
||||
return get_default_tool_prompt_format(request.model)
|
||||
|
||||
|
||||
class LlamaGenerator:
|
||||
def __init__(
|
||||
self,
|
||||
|
|
@ -157,55 +146,56 @@ class LlamaGenerator:
|
|||
self.args = self.inner_generator.args
|
||||
self.formatter = self.inner_generator.formatter
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request_batch: list[CompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
first_request = request_batch[0]
|
||||
sampling_params = first_request.sampling_params or SamplingParams()
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
yield from self.inner_generator.generate(
|
||||
llm_inputs=[self.formatter.encode_content(request.content) for request in request_batch],
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(first_request.logprobs),
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
first_request.response_format,
|
||||
),
|
||||
)
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request_batch: list[ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
first_request = request_batch[0]
|
||||
sampling_params = first_request.sampling_params or SamplingParams()
|
||||
request: OpenAIChatCompletionRequestWithExtraBody,
|
||||
raw_messages: list,
|
||||
):
|
||||
"""Generate chat completion using OpenAI request format.
|
||||
|
||||
Args:
|
||||
request: OpenAI chat completion request
|
||||
raw_messages: Pre-converted list of RawMessage objects
|
||||
"""
|
||||
|
||||
# Determine tool prompt format
|
||||
tool_prompt_format = ToolPromptFormat.json if request.tools else ToolPromptFormat.json
|
||||
|
||||
# Prepare sampling params
|
||||
sampling_params = SamplingParams()
|
||||
if request.temperature is not None or request.top_p is not None:
|
||||
sampling_params.strategy = TopPSamplingStrategy(
|
||||
temperature=request.temperature if request.temperature is not None else 1.0,
|
||||
top_p=request.top_p if request.top_p is not None else 1.0,
|
||||
)
|
||||
if request.max_tokens:
|
||||
sampling_params.max_tokens = request.max_tokens
|
||||
|
||||
max_gen_len = sampling_params.max_tokens
|
||||
if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len:
|
||||
max_gen_len = self.args.max_seq_len - 1
|
||||
|
||||
temperature, top_p = _infer_sampling_params(sampling_params)
|
||||
|
||||
# Get logits processor for response format
|
||||
logits_processor = None
|
||||
if request.response_format:
|
||||
if isinstance(request.response_format, OpenAIResponseFormatJSONSchema):
|
||||
# Extract the actual schema from OpenAIJSONSchema TypedDict
|
||||
schema_dict = request.response_format.json_schema.get("schema") or {}
|
||||
json_schema_format = JsonSchemaResponseFormat(
|
||||
type=ResponseFormatType.json_schema,
|
||||
json_schema=schema_dict,
|
||||
)
|
||||
logits_processor = get_logits_processor(self.tokenizer, self.args.vocab_size, json_schema_format)
|
||||
|
||||
# Generate
|
||||
yield from self.inner_generator.generate(
|
||||
llm_inputs=[
|
||||
self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))
|
||||
for request in request_batch
|
||||
],
|
||||
llm_inputs=[self.formatter.encode_dialog_prompt(raw_messages, tool_prompt_format)],
|
||||
max_gen_len=max_gen_len,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
logprobs=bool(first_request.logprobs),
|
||||
logprobs=False,
|
||||
echo=False,
|
||||
logits_processor=get_logits_processor(
|
||||
self.tokenizer,
|
||||
self.args.vocab_size,
|
||||
first_request.response_format,
|
||||
),
|
||||
logits_processor=logits_processor,
|
||||
)
|
||||
|
|
|
|||
|
|
@ -5,12 +5,19 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import time
|
||||
import uuid
|
||||
from collections.abc import AsyncIterator
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
InferenceProvider,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
OpenAIChatCompletionUsage,
|
||||
OpenAIChoice,
|
||||
OpenAICompletionRequestWithExtraBody,
|
||||
OpenAIUserMessageParam,
|
||||
ToolChoice,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIChatCompletion,
|
||||
|
|
@ -19,12 +26,20 @@ from llama_stack.apis.inference.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import RawMessage, RawTextItem, ToolDefinition
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
||||
from llama_stack.models.llama.llama3.prompt_templates import (
|
||||
JsonCustomToolGenerator,
|
||||
SystemDefaultGenerator,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
||||
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
||||
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
|
||||
PythonListCustomToolGenerator as PythonListCustomToolGeneratorLlama4,
|
||||
)
|
||||
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.models.llama.sku_types import ModelFamily
|
||||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
|
|
@ -44,6 +59,170 @@ log = get_logger(__name__, category="inference")
|
|||
SEMAPHORE = asyncio.Semaphore(1)
|
||||
|
||||
|
||||
def _convert_openai_tool_to_tool_definition(tool) -> ToolDefinition:
|
||||
"""Convert OpenAI tool format to ToolDefinition format."""
|
||||
# OpenAI tools have function.name and function.parameters
|
||||
return ToolDefinition(
|
||||
tool_name=tool.function.name,
|
||||
description=tool.function.description or "",
|
||||
parameters=tool.function.parameters or {},
|
||||
)
|
||||
|
||||
|
||||
def _get_tool_choice_prompt(tool_choice, tools) -> str:
|
||||
"""Generate prompt text for tool_choice behavior."""
|
||||
if not tool_choice or tool_choice == ToolChoice.auto or tool_choice == "auto":
|
||||
return ""
|
||||
elif tool_choice == ToolChoice.required or tool_choice == "required":
|
||||
return "You MUST use one of the provided functions/tools to answer the user query."
|
||||
elif tool_choice == ToolChoice.none or tool_choice == "none":
|
||||
return ""
|
||||
else:
|
||||
# Specific tool specified
|
||||
return f"You MUST use the tool `{tool_choice}` to answer the user query."
|
||||
|
||||
|
||||
def _raw_content_as_str(content) -> str:
|
||||
"""Convert RawContent to string for system messages."""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, RawTextItem):
|
||||
return content.text
|
||||
elif isinstance(content, list):
|
||||
return "\n".join(_raw_content_as_str(c) for c in content)
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
|
||||
def _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages: list[RawMessage],
|
||||
tools: list,
|
||||
tool_choice,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions for Llama 3.1 style models."""
|
||||
messages = raw_messages.copy()
|
||||
existing_system_message = None
|
||||
if messages and messages[0].role == "system":
|
||||
existing_system_message = messages.pop(0)
|
||||
|
||||
sys_content = ""
|
||||
|
||||
# Add tool definitions first (if present)
|
||||
if tools:
|
||||
# Convert OpenAI tools to ToolDefinitions
|
||||
tool_definitions = [_convert_openai_tool_to_tool_definition(t) for t in tools]
|
||||
|
||||
# For OpenAI format, all tools are custom (have string names)
|
||||
tool_gen = JsonCustomToolGenerator()
|
||||
tool_template = tool_gen.gen(tool_definitions)
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
# Add default system prompt
|
||||
default_gen = SystemDefaultGenerator()
|
||||
default_template = default_gen.gen()
|
||||
sys_content += default_template.render()
|
||||
|
||||
# Add existing system message if present
|
||||
if existing_system_message:
|
||||
sys_content += "\n" + _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
# Add tool choice prompt if needed
|
||||
if tool_choice_prompt := _get_tool_choice_prompt(tool_choice, tools):
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
# Create new system message
|
||||
new_system_message = RawMessage(
|
||||
role="system",
|
||||
content=[RawTextItem(text=sys_content.strip())],
|
||||
)
|
||||
|
||||
return [new_system_message] + messages
|
||||
|
||||
|
||||
def _augment_raw_messages_for_tools_llama_4(
|
||||
raw_messages: list[RawMessage],
|
||||
tools: list,
|
||||
tool_choice,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions for Llama 4/3.2/3.3 style models."""
|
||||
messages = raw_messages.copy()
|
||||
existing_system_message = None
|
||||
if messages and messages[0].role == "system":
|
||||
existing_system_message = messages.pop(0)
|
||||
|
||||
sys_content = ""
|
||||
|
||||
# Add tool definitions if present
|
||||
if tools:
|
||||
# Convert OpenAI tools to ToolDefinitions
|
||||
tool_definitions = [_convert_openai_tool_to_tool_definition(t) for t in tools]
|
||||
|
||||
# Use python_list format for Llama 4
|
||||
tool_gen = PythonListCustomToolGeneratorLlama4()
|
||||
system_prompt = None
|
||||
if existing_system_message:
|
||||
system_prompt = _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
tool_template = tool_gen.gen(tool_definitions, system_prompt)
|
||||
sys_content = tool_template.render()
|
||||
elif existing_system_message:
|
||||
# No tools, just use existing system message
|
||||
sys_content = _raw_content_as_str(existing_system_message.content)
|
||||
|
||||
# Add tool choice prompt if needed
|
||||
if tool_choice_prompt := _get_tool_choice_prompt(tool_choice, tools):
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
if sys_content:
|
||||
new_system_message = RawMessage(
|
||||
role="system",
|
||||
content=[RawTextItem(text=sys_content.strip())],
|
||||
)
|
||||
return [new_system_message] + messages
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def augment_raw_messages_for_tools(
|
||||
raw_messages: list[RawMessage],
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
llama_model,
|
||||
) -> list[RawMessage]:
|
||||
"""Augment raw messages with tool definitions based on model family."""
|
||||
if not params.tools:
|
||||
return raw_messages
|
||||
|
||||
# Determine augmentation strategy based on model family
|
||||
if llama_model.model_family == ModelFamily.llama3_1 or (
|
||||
llama_model.model_family == ModelFamily.llama3_2 and is_multimodal(llama_model.core_model_id)
|
||||
):
|
||||
# Llama 3.1 and Llama 3.2 multimodal use JSON format
|
||||
return _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
elif llama_model.model_family in (
|
||||
ModelFamily.llama3_2,
|
||||
ModelFamily.llama3_3,
|
||||
ModelFamily.llama4,
|
||||
):
|
||||
# Llama 3.2/3.3/4 use python_list format
|
||||
return _augment_raw_messages_for_tools_llama_4(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
else:
|
||||
# Default to Llama 3.1 style
|
||||
return _augment_raw_messages_for_tools_llama_3_1(
|
||||
raw_messages,
|
||||
params.tools,
|
||||
params.tool_choice,
|
||||
)
|
||||
|
||||
|
||||
def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> LlamaGenerator:
|
||||
return LlamaGenerator(config, model_id, llama_model)
|
||||
|
||||
|
|
@ -136,10 +315,13 @@ class MetaReferenceInferenceImpl(
|
|||
self.llama_model = llama_model
|
||||
|
||||
log.info("Warming up...")
|
||||
|
||||
await self.openai_chat_completion(
|
||||
model=model_id,
|
||||
messages=[{"role": "user", "content": "Hi how are you?"}],
|
||||
max_tokens=20,
|
||||
params=OpenAIChatCompletionRequestWithExtraBody(
|
||||
model=model_id,
|
||||
messages=[OpenAIUserMessageParam(role="user", content="Hi how are you?")],
|
||||
max_tokens=20,
|
||||
)
|
||||
)
|
||||
log.info("Warmed up!")
|
||||
|
||||
|
|
@ -155,4 +337,207 @@ class MetaReferenceInferenceImpl(
|
|||
self,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")
|
||||
self.check_model(params)
|
||||
|
||||
# Convert OpenAI messages to RawMessages
|
||||
from llama_stack.models.llama.datatypes import StopReason
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_openai_message_to_raw_message,
|
||||
decode_assistant_message,
|
||||
)
|
||||
|
||||
raw_messages = [await convert_openai_message_to_raw_message(msg) for msg in params.messages]
|
||||
|
||||
# Augment messages with tool definitions if tools are present
|
||||
raw_messages = augment_raw_messages_for_tools(raw_messages, params, self.llama_model)
|
||||
|
||||
# Call generator's chat_completion method (works for both single-GPU and model-parallel)
|
||||
if isinstance(self.generator, LlamaGenerator):
|
||||
generator = self.generator.chat_completion(params, raw_messages)
|
||||
else:
|
||||
# Model parallel: submit task to process group
|
||||
generator = self.generator.group.run_inference(("chat_completion", [params, raw_messages]))
|
||||
|
||||
# Check if streaming is requested
|
||||
if params.stream:
|
||||
return self._stream_chat_completion(generator, params)
|
||||
|
||||
# Non-streaming: collect all generated text
|
||||
generated_text = ""
|
||||
for result_batch in generator:
|
||||
for result in result_batch:
|
||||
if not result.ignore_token and result.source == "output":
|
||||
generated_text += result.text
|
||||
|
||||
# Decode assistant message to extract tool calls and determine stop_reason
|
||||
# Default to end_of_turn if generation completed normally
|
||||
decoded_message = decode_assistant_message(generated_text, StopReason.end_of_turn)
|
||||
|
||||
# Convert tool calls to OpenAI format
|
||||
openai_tool_calls = None
|
||||
if decoded_message.tool_calls:
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
)
|
||||
|
||||
openai_tool_calls = [
|
||||
OpenAIChatCompletionToolCall(
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
id=f"call_{uuid.uuid4().hex[:24]}",
|
||||
type="function",
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=str(tc.tool_name),
|
||||
arguments=tc.arguments,
|
||||
),
|
||||
)
|
||||
for tc in decoded_message.tool_calls
|
||||
]
|
||||
|
||||
# Determine finish_reason based on whether tool calls are present
|
||||
finish_reason = "tool_calls" if openai_tool_calls else "stop"
|
||||
|
||||
# Extract content from decoded message
|
||||
content = ""
|
||||
if isinstance(decoded_message.content, str):
|
||||
content = decoded_message.content
|
||||
elif isinstance(decoded_message.content, list):
|
||||
for item in decoded_message.content:
|
||||
if isinstance(item, RawTextItem):
|
||||
content += item.text
|
||||
|
||||
# Create OpenAI response
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
response_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
|
||||
created = int(time.time())
|
||||
|
||||
return OpenAIChatCompletion(
|
||||
id=response_id,
|
||||
object="chat.completion",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
index=0,
|
||||
message=OpenAIAssistantMessageParam(
|
||||
role="assistant",
|
||||
content=content,
|
||||
tool_calls=openai_tool_calls,
|
||||
),
|
||||
finish_reason=finish_reason,
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
usage=OpenAIChatCompletionUsage(
|
||||
prompt_tokens=0, # TODO: calculate properly
|
||||
completion_tokens=0, # TODO: calculate properly
|
||||
total_tokens=0, # TODO: calculate properly
|
||||
),
|
||||
)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self,
|
||||
generator,
|
||||
params: OpenAIChatCompletionRequestWithExtraBody,
|
||||
) -> AsyncIterator[OpenAIChatCompletionChunk]:
|
||||
"""Stream chat completion chunks as they're generated."""
|
||||
from llama_stack.apis.inference import (
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoiceDelta,
|
||||
OpenAIChunkChoice,
|
||||
)
|
||||
from llama_stack.models.llama.datatypes import StopReason
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import decode_assistant_message
|
||||
|
||||
response_id = f"chatcmpl-{uuid.uuid4().hex[:24]}"
|
||||
created = int(time.time())
|
||||
generated_text = ""
|
||||
|
||||
# Yield chunks as tokens are generated
|
||||
for result_batch in generator:
|
||||
for result in result_batch:
|
||||
if result.ignore_token or result.source != "output":
|
||||
continue
|
||||
|
||||
generated_text += result.text
|
||||
|
||||
# Yield delta chunk with the new text
|
||||
chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(
|
||||
role="assistant",
|
||||
content=result.text,
|
||||
),
|
||||
finish_reason="",
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield chunk
|
||||
|
||||
# After generation completes, decode the full message to extract tool calls
|
||||
decoded_message = decode_assistant_message(generated_text, StopReason.end_of_turn)
|
||||
|
||||
# If tool calls are present, yield a final chunk with tool_calls
|
||||
if decoded_message.tool_calls:
|
||||
openai_tool_calls = [
|
||||
OpenAIChatCompletionToolCall(
|
||||
# generate a uuid for the call id. This is the only inline provider that does this, so need to get creative.
|
||||
id=f"call_{uuid.uuid4().hex[:24]}",
|
||||
type="function",
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name=str(tc.tool_name),
|
||||
arguments=tc.arguments,
|
||||
),
|
||||
)
|
||||
for tc in decoded_message.tool_calls
|
||||
]
|
||||
|
||||
# Yield chunk with tool_calls
|
||||
chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(
|
||||
role="assistant",
|
||||
tool_calls=openai_tool_calls,
|
||||
),
|
||||
finish_reason="",
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield chunk
|
||||
|
||||
finish_reason = "tool_calls"
|
||||
else:
|
||||
finish_reason = "stop"
|
||||
|
||||
# Yield final chunk with finish_reason
|
||||
final_chunk = OpenAIChatCompletionChunk(
|
||||
id=response_id,
|
||||
object="chat.completion.chunk",
|
||||
created=created,
|
||||
model=params.model,
|
||||
choices=[
|
||||
OpenAIChunkChoice(
|
||||
index=0,
|
||||
delta=OpenAIChoiceDelta(),
|
||||
finish_reason=finish_reason,
|
||||
logprobs=None,
|
||||
)
|
||||
],
|
||||
)
|
||||
yield final_chunk
|
||||
|
|
|
|||
|
|
@ -4,17 +4,12 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Callable, Generator
|
||||
from copy import deepcopy
|
||||
from collections.abc import Callable
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
||||
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
)
|
||||
|
||||
from .parallel_utils import ModelParallelProcessGroup
|
||||
|
||||
|
|
@ -23,12 +18,14 @@ class ModelRunner:
|
|||
def __init__(self, llama):
|
||||
self.llama = llama
|
||||
|
||||
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
||||
def __call__(self, task: Any):
|
||||
if task[0] == "chat_completion":
|
||||
return self.llama.chat_completion(task[1])
|
||||
task_type = task[0]
|
||||
if task_type == "chat_completion":
|
||||
# task[1] is [params, raw_messages]
|
||||
params, raw_messages = task[1]
|
||||
return self.llama.chat_completion(params, raw_messages)
|
||||
else:
|
||||
raise ValueError(f"Unexpected task type {task[0]}")
|
||||
raise ValueError(f"Unexpected task type {task_type}")
|
||||
|
||||
|
||||
def init_model_cb(
|
||||
|
|
@ -78,19 +75,3 @@ class LlamaModelParallelGenerator:
|
|||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
self.group.stop()
|
||||
|
||||
def completion(
|
||||
self,
|
||||
request_batch: list[CompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
req_obj = deepcopy(request_batch)
|
||||
gen = self.group.run_inference(("completion", req_obj))
|
||||
yield from gen
|
||||
|
||||
def chat_completion(
|
||||
self,
|
||||
request_batch: list[ChatCompletionRequestWithRawContent],
|
||||
) -> Generator:
|
||||
req_obj = deepcopy(request_batch)
|
||||
gen = self.group.run_inference(("chat_completion", req_obj))
|
||||
yield from gen
|
||||
|
|
|
|||
|
|
@ -33,10 +33,6 @@ from torch.distributed.launcher.api import LaunchConfig, elastic_launch
|
|||
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import GenerationResult
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
ChatCompletionRequestWithRawContent,
|
||||
CompletionRequestWithRawContent,
|
||||
)
|
||||
|
||||
log = get_logger(name=__name__, category="inference")
|
||||
|
||||
|
|
@ -69,10 +65,7 @@ class CancelSentinel(BaseModel):
|
|||
|
||||
class TaskRequest(BaseModel):
|
||||
type: Literal[ProcessingMessageName.task_request] = ProcessingMessageName.task_request
|
||||
task: tuple[
|
||||
str,
|
||||
list[CompletionRequestWithRawContent] | list[ChatCompletionRequestWithRawContent],
|
||||
]
|
||||
task: tuple[str, list]
|
||||
|
||||
|
||||
class TaskResponse(BaseModel):
|
||||
|
|
@ -328,10 +321,7 @@ class ModelParallelProcessGroup:
|
|||
|
||||
def run_inference(
|
||||
self,
|
||||
req: tuple[
|
||||
str,
|
||||
list[CompletionRequestWithRawContent] | list[ChatCompletionRequestWithRawContent],
|
||||
],
|
||||
req: tuple[str, list],
|
||||
) -> Generator:
|
||||
assert not self.running, "inference already running"
|
||||
|
||||
|
|
|
|||
|
|
@ -22,9 +22,6 @@ from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|||
from llama_stack.providers.utils.inference.embedding_mixin import (
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
)
|
||||
|
||||
from .config import SentenceTransformersInferenceConfig
|
||||
|
||||
|
|
@ -32,7 +29,6 @@ log = get_logger(name=__name__, category="inference")
|
|||
|
||||
|
||||
class SentenceTransformersInferenceImpl(
|
||||
OpenAIChatCompletionToLlamaStackMixin,
|
||||
SentenceTransformerEmbeddingMixin,
|
||||
InferenceProvider,
|
||||
ModelsProtocolPrivate,
|
||||
|
|
|
|||
|
|
@ -297,6 +297,20 @@ Available Models:
|
|||
Azure OpenAI inference provider for accessing GPT models and other Azure services.
|
||||
Provider documentation
|
||||
https://learn.microsoft.com/en-us/azure/ai-foundry/openai/overview
|
||||
""",
|
||||
),
|
||||
RemoteProviderSpec(
|
||||
api=Api.inference,
|
||||
provider_type="remote::oci",
|
||||
adapter_type="oci",
|
||||
pip_packages=["oci"],
|
||||
module="llama_stack.providers.remote.inference.oci",
|
||||
config_class="llama_stack.providers.remote.inference.oci.config.OCIConfig",
|
||||
provider_data_validator="llama_stack.providers.remote.inference.oci.config.OCIProviderDataValidator",
|
||||
description="""
|
||||
Oracle Cloud Infrastructure (OCI) Generative AI inference provider for accessing OCI's Generative AI Platform-as-a-Service models.
|
||||
Provider documentation
|
||||
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
|
||||
""",
|
||||
),
|
||||
]
|
||||
|
|
|
|||
17
src/llama_stack/providers/remote/inference/oci/__init__.py
Normal file
17
src/llama_stack/providers/remote/inference/oci/__init__.py
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import InferenceProvider
|
||||
|
||||
from .config import OCIConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: OCIConfig, _deps) -> InferenceProvider:
|
||||
from .oci import OCIInferenceAdapter
|
||||
|
||||
adapter = OCIInferenceAdapter(config=config)
|
||||
await adapter.initialize()
|
||||
return adapter
|
||||
79
src/llama_stack/providers/remote/inference/oci/auth.py
Normal file
79
src/llama_stack/providers/remote/inference/oci/auth.py
Normal file
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from collections.abc import Generator, Mapping
|
||||
from typing import Any, override
|
||||
|
||||
import httpx
|
||||
import oci
|
||||
import requests
|
||||
from oci.config import DEFAULT_LOCATION, DEFAULT_PROFILE
|
||||
|
||||
OciAuthSigner = type[oci.signer.AbstractBaseSigner]
|
||||
|
||||
|
||||
class HttpxOciAuth(httpx.Auth):
|
||||
"""
|
||||
Custom HTTPX authentication class that implements OCI request signing.
|
||||
|
||||
This class handles the authentication flow for HTTPX requests by signing them
|
||||
using the OCI Signer, which adds the necessary authentication headers for
|
||||
OCI API calls.
|
||||
|
||||
Attributes:
|
||||
signer (oci.signer.Signer): The OCI signer instance used for request signing
|
||||
"""
|
||||
|
||||
def __init__(self, signer: OciAuthSigner):
|
||||
self.signer = signer
|
||||
|
||||
@override
|
||||
def auth_flow(self, request: httpx.Request) -> Generator[httpx.Request, httpx.Response, None]:
|
||||
# Read the request content to handle streaming requests properly
|
||||
try:
|
||||
content = request.content
|
||||
except httpx.RequestNotRead:
|
||||
# For streaming requests, we need to read the content first
|
||||
content = request.read()
|
||||
|
||||
req = requests.Request(
|
||||
method=request.method,
|
||||
url=str(request.url),
|
||||
headers=dict(request.headers),
|
||||
data=content,
|
||||
)
|
||||
prepared_request = req.prepare()
|
||||
|
||||
# Sign the request using the OCI Signer
|
||||
self.signer.do_request_sign(prepared_request) # type: ignore
|
||||
|
||||
# Update the original HTTPX request with the signed headers
|
||||
request.headers.update(prepared_request.headers)
|
||||
|
||||
yield request
|
||||
|
||||
|
||||
class OciInstancePrincipalAuth(HttpxOciAuth):
|
||||
def __init__(self, **kwargs: Mapping[str, Any]):
|
||||
self.signer = oci.auth.signers.InstancePrincipalsSecurityTokenSigner(**kwargs)
|
||||
|
||||
|
||||
class OciUserPrincipalAuth(HttpxOciAuth):
|
||||
def __init__(self, config_file: str = DEFAULT_LOCATION, profile_name: str = DEFAULT_PROFILE):
|
||||
config = oci.config.from_file(config_file, profile_name)
|
||||
oci.config.validate_config(config) # type: ignore
|
||||
key_content = ""
|
||||
with open(config["key_file"]) as f:
|
||||
key_content = f.read()
|
||||
|
||||
self.signer = oci.signer.Signer(
|
||||
tenancy=config["tenancy"],
|
||||
user=config["user"],
|
||||
fingerprint=config["fingerprint"],
|
||||
private_key_file_location=config.get("key_file"),
|
||||
pass_phrase="none", # type: ignore
|
||||
private_key_content=key_content,
|
||||
)
|
||||
75
src/llama_stack/providers/remote/inference/oci/config.py
Normal file
75
src/llama_stack/providers/remote/inference/oci/config.py
Normal file
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import RemoteInferenceProviderConfig
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
class OCIProviderDataValidator(BaseModel):
|
||||
oci_auth_type: str = Field(
|
||||
description="OCI authentication type (must be one of: instance_principal, config_file)",
|
||||
)
|
||||
oci_region: str = Field(
|
||||
description="OCI region (e.g., us-ashburn-1)",
|
||||
)
|
||||
oci_compartment_id: str = Field(
|
||||
description="OCI compartment ID for the Generative AI service",
|
||||
)
|
||||
oci_config_file_path: str | None = Field(
|
||||
default="~/.oci/config",
|
||||
description="OCI config file path (required if oci_auth_type is config_file)",
|
||||
)
|
||||
oci_config_profile: str | None = Field(
|
||||
default="DEFAULT",
|
||||
description="OCI config profile (required if oci_auth_type is config_file)",
|
||||
)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class OCIConfig(RemoteInferenceProviderConfig):
|
||||
oci_auth_type: str = Field(
|
||||
description="OCI authentication type (must be one of: instance_principal, config_file)",
|
||||
default_factory=lambda: os.getenv("OCI_AUTH_TYPE", "instance_principal"),
|
||||
)
|
||||
oci_region: str = Field(
|
||||
default_factory=lambda: os.getenv("OCI_REGION", "us-ashburn-1"),
|
||||
description="OCI region (e.g., us-ashburn-1)",
|
||||
)
|
||||
oci_compartment_id: str = Field(
|
||||
default_factory=lambda: os.getenv("OCI_COMPARTMENT_OCID", ""),
|
||||
description="OCI compartment ID for the Generative AI service",
|
||||
)
|
||||
oci_config_file_path: str = Field(
|
||||
default_factory=lambda: os.getenv("OCI_CONFIG_FILE_PATH", "~/.oci/config"),
|
||||
description="OCI config file path (required if oci_auth_type is config_file)",
|
||||
)
|
||||
oci_config_profile: str = Field(
|
||||
default_factory=lambda: os.getenv("OCI_CLI_PROFILE", "DEFAULT"),
|
||||
description="OCI config profile (required if oci_auth_type is config_file)",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(
|
||||
cls,
|
||||
oci_auth_type: str = "${env.OCI_AUTH_TYPE:=instance_principal}",
|
||||
oci_config_file_path: str = "${env.OCI_CONFIG_FILE_PATH:=~/.oci/config}",
|
||||
oci_config_profile: str = "${env.OCI_CLI_PROFILE:=DEFAULT}",
|
||||
oci_region: str = "${env.OCI_REGION:=us-ashburn-1}",
|
||||
oci_compartment_id: str = "${env.OCI_COMPARTMENT_OCID:=}",
|
||||
**kwargs,
|
||||
) -> dict[str, Any]:
|
||||
return {
|
||||
"oci_auth_type": oci_auth_type,
|
||||
"oci_config_file_path": oci_config_file_path,
|
||||
"oci_config_profile": oci_config_profile,
|
||||
"oci_region": oci_region,
|
||||
"oci_compartment_id": oci_compartment_id,
|
||||
}
|
||||
140
src/llama_stack/providers/remote/inference/oci/oci.py
Normal file
140
src/llama_stack/providers/remote/inference/oci/oci.py
Normal file
|
|
@ -0,0 +1,140 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
import oci
|
||||
from oci.generative_ai.generative_ai_client import GenerativeAiClient
|
||||
from oci.generative_ai.models import ModelCollection
|
||||
from openai._base_client import DefaultAsyncHttpxClient
|
||||
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
)
|
||||
from llama_stack.apis.models import ModelType
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.remote.inference.oci.auth import OciInstancePrincipalAuth, OciUserPrincipalAuth
|
||||
from llama_stack.providers.remote.inference.oci.config import OCIConfig
|
||||
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
||||
|
||||
logger = get_logger(name=__name__, category="inference::oci")
|
||||
|
||||
OCI_AUTH_TYPE_INSTANCE_PRINCIPAL = "instance_principal"
|
||||
OCI_AUTH_TYPE_CONFIG_FILE = "config_file"
|
||||
VALID_OCI_AUTH_TYPES = [OCI_AUTH_TYPE_INSTANCE_PRINCIPAL, OCI_AUTH_TYPE_CONFIG_FILE]
|
||||
DEFAULT_OCI_REGION = "us-ashburn-1"
|
||||
|
||||
MODEL_CAPABILITIES = ["TEXT_GENERATION", "TEXT_SUMMARIZATION", "TEXT_EMBEDDINGS", "CHAT"]
|
||||
|
||||
|
||||
class OCIInferenceAdapter(OpenAIMixin):
|
||||
config: OCIConfig
|
||||
|
||||
async def initialize(self) -> None:
|
||||
"""Initialize and validate OCI configuration."""
|
||||
if self.config.oci_auth_type not in VALID_OCI_AUTH_TYPES:
|
||||
raise ValueError(
|
||||
f"Invalid OCI authentication type: {self.config.oci_auth_type}."
|
||||
f"Valid types are one of: {VALID_OCI_AUTH_TYPES}"
|
||||
)
|
||||
|
||||
if not self.config.oci_compartment_id:
|
||||
raise ValueError("OCI_COMPARTMENT_OCID is a required parameter. Either set in env variable or config.")
|
||||
|
||||
def get_base_url(self) -> str:
|
||||
region = self.config.oci_region or DEFAULT_OCI_REGION
|
||||
return f"https://inference.generativeai.{region}.oci.oraclecloud.com/20231130/actions/v1"
|
||||
|
||||
def get_api_key(self) -> str | None:
|
||||
# OCI doesn't use API keys, it uses request signing
|
||||
return "<NOTUSED>"
|
||||
|
||||
def get_extra_client_params(self) -> dict[str, Any]:
|
||||
"""
|
||||
Get extra parameters for the AsyncOpenAI client, including OCI-specific auth and headers.
|
||||
"""
|
||||
auth = self._get_auth()
|
||||
compartment_id = self.config.oci_compartment_id or ""
|
||||
|
||||
return {
|
||||
"http_client": DefaultAsyncHttpxClient(
|
||||
auth=auth,
|
||||
headers={
|
||||
"CompartmentId": compartment_id,
|
||||
},
|
||||
),
|
||||
}
|
||||
|
||||
def _get_oci_signer(self) -> oci.signer.AbstractBaseSigner | None:
|
||||
if self.config.oci_auth_type == OCI_AUTH_TYPE_INSTANCE_PRINCIPAL:
|
||||
return oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
|
||||
return None
|
||||
|
||||
def _get_oci_config(self) -> dict:
|
||||
if self.config.oci_auth_type == OCI_AUTH_TYPE_INSTANCE_PRINCIPAL:
|
||||
config = {"region": self.config.oci_region}
|
||||
elif self.config.oci_auth_type == OCI_AUTH_TYPE_CONFIG_FILE:
|
||||
config = oci.config.from_file(self.config.oci_config_file_path, self.config.oci_config_profile)
|
||||
if not config.get("region"):
|
||||
raise ValueError(
|
||||
"Region not specified in config. Please specify in config or with OCI_REGION env variable."
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
def _get_auth(self) -> httpx.Auth:
|
||||
if self.config.oci_auth_type == OCI_AUTH_TYPE_INSTANCE_PRINCIPAL:
|
||||
return OciInstancePrincipalAuth()
|
||||
elif self.config.oci_auth_type == OCI_AUTH_TYPE_CONFIG_FILE:
|
||||
return OciUserPrincipalAuth(
|
||||
config_file=self.config.oci_config_file_path, profile_name=self.config.oci_config_profile
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Invalid OCI authentication type: {self.config.oci_auth_type}")
|
||||
|
||||
async def list_provider_model_ids(self) -> Iterable[str]:
|
||||
"""
|
||||
List available models from OCI Generative AI service.
|
||||
"""
|
||||
oci_config = self._get_oci_config()
|
||||
oci_signer = self._get_oci_signer()
|
||||
compartment_id = self.config.oci_compartment_id or ""
|
||||
|
||||
if oci_signer is None:
|
||||
client = GenerativeAiClient(config=oci_config)
|
||||
else:
|
||||
client = GenerativeAiClient(config=oci_config, signer=oci_signer)
|
||||
|
||||
models: ModelCollection = client.list_models(
|
||||
compartment_id=compartment_id, capability=MODEL_CAPABILITIES, lifecycle_state="ACTIVE"
|
||||
).data
|
||||
|
||||
seen_models = set()
|
||||
model_ids = []
|
||||
for model in models.items:
|
||||
if model.time_deprecated or model.time_on_demand_retired:
|
||||
continue
|
||||
|
||||
if "CHAT" not in model.capabilities or "FINE_TUNE" in model.capabilities:
|
||||
continue
|
||||
|
||||
# Use display_name + model_type as the key to avoid conflicts
|
||||
model_key = (model.display_name, ModelType.llm)
|
||||
if model_key in seen_models:
|
||||
continue
|
||||
|
||||
seen_models.add(model_key)
|
||||
model_ids.append(model.display_name)
|
||||
|
||||
return model_ids
|
||||
|
||||
async def openai_embeddings(self, params: OpenAIEmbeddingsRequestWithExtraBody) -> OpenAIEmbeddingsResponse:
|
||||
# The constructed url is a mask that hits OCI's "chat" action, which is not supported for embeddings.
|
||||
raise NotImplementedError("OCI Provider does not (currently) support embeddings")
|
||||
|
|
@ -11,9 +11,7 @@ from collections.abc import AsyncIterator
|
|||
import litellm
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
InferenceProvider,
|
||||
JsonSchemaResponseFormat,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionChunk,
|
||||
OpenAIChatCompletionRequestWithExtraBody,
|
||||
|
|
@ -23,15 +21,11 @@ from llama_stack.apis.inference import (
|
|||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
OpenAIEmbeddingsResponse,
|
||||
OpenAIEmbeddingUsage,
|
||||
ToolChoice,
|
||||
)
|
||||
from llama_stack.core.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper, ProviderModelEntry
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
convert_message_to_openai_dict_new,
|
||||
convert_tooldef_to_openai_tool,
|
||||
get_sampling_options,
|
||||
prepare_openai_completion_params,
|
||||
)
|
||||
|
||||
|
|
@ -127,51 +121,6 @@ class LiteLLMOpenAIMixin(
|
|||
|
||||
return schema
|
||||
|
||||
async def _get_params(self, request: ChatCompletionRequest) -> dict:
|
||||
from typing import Any
|
||||
|
||||
input_dict: dict[str, Any] = {}
|
||||
|
||||
input_dict["messages"] = [
|
||||
await convert_message_to_openai_dict_new(m, download_images=self.download_images) for m in request.messages
|
||||
]
|
||||
if fmt := request.response_format:
|
||||
if not isinstance(fmt, JsonSchemaResponseFormat):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
# Convert to dict for manipulation
|
||||
fmt_dict = dict(fmt.json_schema)
|
||||
name = fmt_dict["title"]
|
||||
del fmt_dict["title"]
|
||||
fmt_dict["additionalProperties"] = False
|
||||
|
||||
# Apply additionalProperties: False recursively to all objects
|
||||
fmt_dict = self._add_additional_properties_recursive(fmt_dict)
|
||||
|
||||
input_dict["response_format"] = {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": name,
|
||||
"schema": fmt_dict,
|
||||
"strict": self.json_schema_strict,
|
||||
},
|
||||
}
|
||||
if request.tools:
|
||||
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
|
||||
if request.tool_config and (tool_choice := request.tool_config.tool_choice):
|
||||
input_dict["tool_choice"] = tool_choice.value if isinstance(tool_choice, ToolChoice) else tool_choice
|
||||
|
||||
return {
|
||||
"model": request.model,
|
||||
"api_key": self.get_api_key(),
|
||||
"api_base": self.api_base,
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**get_sampling_options(request.sampling_params),
|
||||
}
|
||||
|
||||
def get_api_key(self) -> str:
|
||||
provider_data = self.get_request_provider_data()
|
||||
key_field = self.provider_data_api_key_field
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load diff
|
|
@ -21,19 +21,18 @@ from llama_stack.apis.common.content_types import (
|
|||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
CompletionRequest,
|
||||
Message,
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletionContentPartImageParam,
|
||||
OpenAIChatCompletionContentPartTextParam,
|
||||
OpenAIFile,
|
||||
OpenAIMessageParam,
|
||||
OpenAISystemMessageParam,
|
||||
OpenAIToolMessageParam,
|
||||
OpenAIUserMessageParam,
|
||||
ResponseFormat,
|
||||
ResponseFormatType,
|
||||
SystemMessage,
|
||||
SystemMessageBehavior,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
|
|
@ -42,33 +41,19 @@ from llama_stack.models.llama.datatypes import (
|
|||
RawMediaItem,
|
||||
RawMessage,
|
||||
RawTextItem,
|
||||
Role,
|
||||
StopReason,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.chat_format import ChatFormat
|
||||
from llama_stack.models.llama.llama3.prompt_templates import (
|
||||
BuiltinToolGenerator,
|
||||
FunctionTagCustomToolGenerator,
|
||||
JsonCustomToolGenerator,
|
||||
PythonListCustomToolGenerator,
|
||||
SystemDefaultGenerator,
|
||||
)
|
||||
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
||||
from llama_stack.models.llama.llama4.prompt_templates.system_prompts import (
|
||||
PythonListCustomToolGenerator as PythonListCustomToolGeneratorLlama4,
|
||||
)
|
||||
from llama_stack.models.llama.sku_list import resolve_model
|
||||
from llama_stack.models.llama.sku_types import ModelFamily, is_multimodal
|
||||
from llama_stack.providers.utils.inference import supported_inference_models
|
||||
|
||||
log = get_logger(name=__name__, category="providers::utils")
|
||||
|
||||
|
||||
class ChatCompletionRequestWithRawContent(ChatCompletionRequest):
|
||||
messages: list[RawMessage]
|
||||
|
||||
|
||||
class CompletionRequestWithRawContent(CompletionRequest):
|
||||
content: RawContent
|
||||
|
||||
|
|
@ -103,28 +88,6 @@ def interleaved_content_as_str(
|
|||
return _process(content)
|
||||
|
||||
|
||||
async def convert_request_to_raw(
|
||||
request: ChatCompletionRequest | CompletionRequest,
|
||||
) -> ChatCompletionRequestWithRawContent | CompletionRequestWithRawContent:
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
messages = []
|
||||
for m in request.messages:
|
||||
content = await interleaved_content_convert_to_raw(m.content)
|
||||
d = m.model_dump()
|
||||
d["content"] = content
|
||||
messages.append(RawMessage(**d))
|
||||
|
||||
d = request.model_dump()
|
||||
d["messages"] = messages
|
||||
request = ChatCompletionRequestWithRawContent(**d)
|
||||
else:
|
||||
d = request.model_dump()
|
||||
d["content"] = await interleaved_content_convert_to_raw(request.content)
|
||||
request = CompletionRequestWithRawContent(**d)
|
||||
|
||||
return request
|
||||
|
||||
|
||||
async def interleaved_content_convert_to_raw(
|
||||
content: InterleavedContent,
|
||||
) -> RawContent:
|
||||
|
|
@ -171,6 +134,36 @@ async def interleaved_content_convert_to_raw(
|
|||
return await _localize_single(content)
|
||||
|
||||
|
||||
async def convert_openai_message_to_raw_message(message: OpenAIMessageParam) -> RawMessage:
|
||||
"""Convert OpenAI message format to RawMessage format used by Llama formatters."""
|
||||
if isinstance(message, OpenAIUserMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="user", content=content)
|
||||
elif isinstance(message, OpenAISystemMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="system", content=content)
|
||||
elif isinstance(message, OpenAIAssistantMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content or "") # type: ignore[arg-type]
|
||||
tool_calls = []
|
||||
if message.tool_calls:
|
||||
for tc in message.tool_calls:
|
||||
if tc.function:
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
call_id=tc.id or "",
|
||||
tool_name=tc.function.name or "",
|
||||
arguments=tc.function.arguments or "{}",
|
||||
)
|
||||
)
|
||||
return RawMessage(role="assistant", content=content, tool_calls=tool_calls)
|
||||
elif isinstance(message, OpenAIToolMessageParam):
|
||||
content = await interleaved_content_convert_to_raw(message.content) # type: ignore[arg-type]
|
||||
return RawMessage(role="tool", content=content)
|
||||
else:
|
||||
# Handle OpenAIDeveloperMessageParam if needed
|
||||
raise ValueError(f"Unsupported message type: {type(message)}")
|
||||
|
||||
|
||||
def content_has_media(content: InterleavedContent):
|
||||
def _has_media_content(c):
|
||||
return isinstance(c, ImageContentItem)
|
||||
|
|
@ -181,17 +174,6 @@ def content_has_media(content: InterleavedContent):
|
|||
return _has_media_content(content)
|
||||
|
||||
|
||||
def messages_have_media(messages: list[Message]):
|
||||
return any(content_has_media(m.content) for m in messages)
|
||||
|
||||
|
||||
def request_has_media(request: ChatCompletionRequest | CompletionRequest):
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
return messages_have_media(request.messages)
|
||||
else:
|
||||
return content_has_media(request.content)
|
||||
|
||||
|
||||
async def localize_image_content(uri: str) -> tuple[bytes, str] | None:
|
||||
if uri.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
|
|
@ -253,79 +235,6 @@ def augment_content_with_response_format_prompt(response_format, content):
|
|||
return content
|
||||
|
||||
|
||||
async def chat_completion_request_to_prompt(request: ChatCompletionRequest, llama_model: str) -> str:
|
||||
messages = chat_completion_request_to_messages(request, llama_model)
|
||||
request.messages = messages
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_dialog_prompt(
|
||||
request.messages,
|
||||
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
||||
)
|
||||
return formatter.tokenizer.decode(model_input.tokens)
|
||||
|
||||
|
||||
async def chat_completion_request_to_model_input_info(
|
||||
request: ChatCompletionRequest, llama_model: str
|
||||
) -> tuple[str, int]:
|
||||
messages = chat_completion_request_to_messages(request, llama_model)
|
||||
request.messages = messages
|
||||
request = await convert_request_to_raw(request)
|
||||
|
||||
formatter = ChatFormat(tokenizer=Tokenizer.get_instance())
|
||||
model_input = formatter.encode_dialog_prompt(
|
||||
request.messages,
|
||||
tool_prompt_format=request.tool_config.tool_prompt_format or get_default_tool_prompt_format(llama_model),
|
||||
)
|
||||
return (
|
||||
formatter.tokenizer.decode(model_input.tokens),
|
||||
len(model_input.tokens),
|
||||
)
|
||||
|
||||
|
||||
def chat_completion_request_to_messages(
|
||||
request: ChatCompletionRequest,
|
||||
llama_model: str,
|
||||
) -> list[Message]:
|
||||
"""Reads chat completion request and augments the messages to handle tools.
|
||||
For eg. for llama_3_1, add system message with the appropriate tools or
|
||||
add user messsage for custom tools, etc.
|
||||
"""
|
||||
assert llama_model is not None, "llama_model is required"
|
||||
model = resolve_model(llama_model)
|
||||
if model is None:
|
||||
log.error(f"Could not resolve model {llama_model}")
|
||||
return request.messages
|
||||
|
||||
allowed_models = supported_inference_models()
|
||||
descriptors = [m.descriptor() for m in allowed_models]
|
||||
if model.descriptor() not in descriptors:
|
||||
log.error(f"Unsupported inference model? {model.descriptor()}")
|
||||
return request.messages
|
||||
|
||||
if model.model_family == ModelFamily.llama3_1 or (
|
||||
model.model_family == ModelFamily.llama3_2 and is_multimodal(model.core_model_id)
|
||||
):
|
||||
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama_3_1(request)
|
||||
elif model.model_family in (
|
||||
ModelFamily.llama3_2,
|
||||
ModelFamily.llama3_3,
|
||||
):
|
||||
# llama3.2, llama3.3 follow the same tool prompt format
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGenerator)
|
||||
elif model.model_family == ModelFamily.llama4:
|
||||
messages = augment_messages_for_tools_llama(request, PythonListCustomToolGeneratorLlama4)
|
||||
else:
|
||||
messages = request.messages
|
||||
|
||||
if fmt_prompt := response_format_prompt(request.response_format):
|
||||
messages.append(UserMessage(content=fmt_prompt))
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def response_format_prompt(fmt: ResponseFormat | None):
|
||||
if not fmt:
|
||||
return None
|
||||
|
|
@ -338,128 +247,6 @@ def response_format_prompt(fmt: ResponseFormat | None):
|
|||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
|
||||
def augment_messages_for_tools_llama_3_1(
|
||||
request: ChatCompletionRequest,
|
||||
) -> list[Message]:
|
||||
existing_messages = request.messages
|
||||
existing_system_message = None
|
||||
if existing_messages[0].role == Role.system.value:
|
||||
existing_system_message = existing_messages.pop(0)
|
||||
|
||||
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
||||
|
||||
messages = []
|
||||
|
||||
default_gen = SystemDefaultGenerator()
|
||||
default_template = default_gen.gen()
|
||||
|
||||
sys_content = ""
|
||||
|
||||
tool_template = None
|
||||
if request.tools:
|
||||
tool_gen = BuiltinToolGenerator()
|
||||
tool_template = tool_gen.gen(request.tools)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
sys_content += default_template.render()
|
||||
|
||||
if existing_system_message:
|
||||
# TODO: this fn is needed in many places
|
||||
def _process(c):
|
||||
if isinstance(c, str):
|
||||
return c
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
sys_content += "\n"
|
||||
|
||||
if isinstance(existing_system_message.content, str):
|
||||
sys_content += _process(existing_system_message.content)
|
||||
elif isinstance(existing_system_message.content, list):
|
||||
sys_content += "\n".join([_process(c) for c in existing_system_message.content])
|
||||
|
||||
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
||||
if tool_choice_prompt:
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
messages.append(SystemMessage(content=sys_content))
|
||||
|
||||
has_custom_tools = request.tools is not None and any(isinstance(dfn.tool_name, str) for dfn in request.tools)
|
||||
if has_custom_tools:
|
||||
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.json
|
||||
if fmt == ToolPromptFormat.json:
|
||||
tool_gen = JsonCustomToolGenerator()
|
||||
elif fmt == ToolPromptFormat.function_tag:
|
||||
tool_gen = FunctionTagCustomToolGenerator()
|
||||
else:
|
||||
raise ValueError(f"Non supported ToolPromptFormat {fmt}")
|
||||
|
||||
custom_tools = [t for t in request.tools if isinstance(t.tool_name, str)]
|
||||
custom_template = tool_gen.gen(custom_tools)
|
||||
messages.append(UserMessage(content=custom_template.render()))
|
||||
|
||||
# Add back existing messages from the request
|
||||
messages += existing_messages
|
||||
|
||||
return messages
|
||||
|
||||
|
||||
def augment_messages_for_tools_llama(
|
||||
request: ChatCompletionRequest,
|
||||
custom_tool_prompt_generator,
|
||||
) -> list[Message]:
|
||||
existing_messages = request.messages
|
||||
existing_system_message = None
|
||||
if existing_messages[0].role == Role.system.value:
|
||||
existing_system_message = existing_messages.pop(0)
|
||||
|
||||
assert existing_messages[0].role != Role.system.value, "Should only have 1 system message"
|
||||
|
||||
sys_content = ""
|
||||
custom_tools, builtin_tools = [], []
|
||||
for t in request.tools:
|
||||
if isinstance(t.tool_name, str):
|
||||
custom_tools.append(t)
|
||||
else:
|
||||
builtin_tools.append(t)
|
||||
|
||||
if builtin_tools:
|
||||
tool_gen = BuiltinToolGenerator()
|
||||
tool_template = tool_gen.gen(builtin_tools)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
custom_tools = [dfn for dfn in request.tools if isinstance(dfn.tool_name, str)]
|
||||
if custom_tools:
|
||||
fmt = request.tool_config.tool_prompt_format or ToolPromptFormat.python_list
|
||||
if fmt != ToolPromptFormat.python_list:
|
||||
raise ValueError(f"Non supported ToolPromptFormat {request.tool_config.tool_prompt_format}")
|
||||
|
||||
system_prompt = None
|
||||
if existing_system_message and request.tool_config.system_message_behavior == SystemMessageBehavior.replace:
|
||||
system_prompt = existing_system_message.content
|
||||
|
||||
tool_template = custom_tool_prompt_generator().gen(custom_tools, system_prompt)
|
||||
|
||||
sys_content += tool_template.render()
|
||||
sys_content += "\n"
|
||||
|
||||
if existing_system_message and (
|
||||
request.tool_config.system_message_behavior == SystemMessageBehavior.append or not custom_tools
|
||||
):
|
||||
sys_content += interleaved_content_as_str(existing_system_message.content, sep="\n")
|
||||
|
||||
tool_choice_prompt = _get_tool_choice_prompt(request.tool_config.tool_choice, request.tools)
|
||||
if tool_choice_prompt:
|
||||
sys_content += "\n" + tool_choice_prompt
|
||||
|
||||
messages = [SystemMessage(content=sys_content.strip("\n")), *existing_messages]
|
||||
return messages
|
||||
|
||||
|
||||
def _get_tool_choice_prompt(tool_choice: ToolChoice | str, tools: list[ToolDefinition]) -> str:
|
||||
if tool_choice == ToolChoice.auto:
|
||||
return ""
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreContent,
|
||||
VectorStoreDeleteResponse,
|
||||
VectorStoreFileBatchObject,
|
||||
VectorStoreFileContentsResponse,
|
||||
VectorStoreFileContentResponse,
|
||||
VectorStoreFileCounts,
|
||||
VectorStoreFileDeleteResponse,
|
||||
VectorStoreFileLastError,
|
||||
|
|
@ -704,34 +704,35 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
# Unknown filter type, default to no match
|
||||
raise ValueError(f"Unsupported filter type: {filter_type}")
|
||||
|
||||
def _chunk_to_vector_store_content(self, chunk: Chunk) -> list[VectorStoreContent]:
|
||||
# content is InterleavedContent
|
||||
def _chunk_to_vector_store_content(
|
||||
self, chunk: Chunk, include_embeddings: bool = False, include_metadata: bool = False
|
||||
) -> list[VectorStoreContent]:
|
||||
def extract_fields() -> dict:
|
||||
"""Extract embedding and metadata fields from chunk based on include flags."""
|
||||
return {
|
||||
"embedding": chunk.embedding if include_embeddings else None,
|
||||
"chunk_metadata": chunk.chunk_metadata if include_metadata else None,
|
||||
"metadata": chunk.metadata if include_metadata else None,
|
||||
}
|
||||
|
||||
fields = extract_fields()
|
||||
|
||||
if isinstance(chunk.content, str):
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content,
|
||||
)
|
||||
]
|
||||
content_item = VectorStoreContent(type="text", text=chunk.content, **fields)
|
||||
content = [content_item]
|
||||
elif isinstance(chunk.content, list):
|
||||
# TODO: Add support for other types of content
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=item.text,
|
||||
)
|
||||
for item in chunk.content
|
||||
if item.type == "text"
|
||||
]
|
||||
content = []
|
||||
for item in chunk.content:
|
||||
if item.type == "text":
|
||||
content_item = VectorStoreContent(type="text", text=item.text, **fields)
|
||||
content.append(content_item)
|
||||
else:
|
||||
if chunk.content.type != "text":
|
||||
raise ValueError(f"Unsupported content type: {chunk.content.type}")
|
||||
content = [
|
||||
VectorStoreContent(
|
||||
type="text",
|
||||
text=chunk.content.text,
|
||||
)
|
||||
]
|
||||
|
||||
content_item = VectorStoreContent(type="text", text=chunk.content.text, **fields)
|
||||
content = [content_item]
|
||||
return content
|
||||
|
||||
async def openai_attach_file_to_vector_store(
|
||||
|
|
@ -820,13 +821,12 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
message=str(e),
|
||||
)
|
||||
|
||||
# Create OpenAI vector store file metadata
|
||||
# Save vector store file to persistent storage AFTER insert_chunks
|
||||
# so that chunks include the embeddings that were generated
|
||||
file_info = vector_store_file_object.model_dump(exclude={"last_error"})
|
||||
file_info["filename"] = file_response.filename if file_response else ""
|
||||
|
||||
# Save vector store file to persistent storage (provider-specific)
|
||||
dict_chunks = [c.model_dump() for c in chunks]
|
||||
# This should be updated to include chunk_id
|
||||
await self._save_openai_vector_store_file(vector_store_id, file_id, file_info, dict_chunks)
|
||||
|
||||
# Update file_ids and file_counts in vector store metadata
|
||||
|
|
@ -921,22 +921,27 @@ class OpenAIVectorStoreMixin(ABC):
|
|||
self,
|
||||
vector_store_id: str,
|
||||
file_id: str,
|
||||
) -> VectorStoreFileContentsResponse:
|
||||
include_embeddings: bool | None = False,
|
||||
include_metadata: bool | None = False,
|
||||
) -> VectorStoreFileContentResponse:
|
||||
"""Retrieves the contents of a vector store file."""
|
||||
if vector_store_id not in self.openai_vector_stores:
|
||||
raise VectorStoreNotFoundError(vector_store_id)
|
||||
|
||||
file_info = await self._load_openai_vector_store_file(vector_store_id, file_id)
|
||||
# Parameters are already provided directly
|
||||
# include_embeddings and include_metadata are now function parameters
|
||||
|
||||
dict_chunks = await self._load_openai_vector_store_file_contents(vector_store_id, file_id)
|
||||
chunks = [Chunk.model_validate(c) for c in dict_chunks]
|
||||
content = []
|
||||
for chunk in chunks:
|
||||
content.extend(self._chunk_to_vector_store_content(chunk))
|
||||
return VectorStoreFileContentsResponse(
|
||||
file_id=file_id,
|
||||
filename=file_info.get("filename", ""),
|
||||
attributes=file_info.get("attributes", {}),
|
||||
content=content,
|
||||
content.extend(
|
||||
self._chunk_to_vector_store_content(
|
||||
chunk, include_embeddings=include_embeddings or False, include_metadata=include_metadata or False
|
||||
)
|
||||
)
|
||||
return VectorStoreFileContentResponse(
|
||||
data=content,
|
||||
)
|
||||
|
||||
async def openai_update_vector_store_file(
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue