mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-07 11:08:20 +00:00
more tests
This commit is contained in:
parent
4fee3af91f
commit
084bacc029
7 changed files with 51 additions and 126 deletions
|
@ -10,7 +10,7 @@ import pandas
|
||||||
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
|
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
|
||||||
from llama_stack.apis.datasets import Dataset
|
from llama_stack.apis.datasets import Dataset
|
||||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_uri
|
||||||
from llama_stack.providers.utils.kvstore import kvstore_impl
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
||||||
|
|
||||||
from .config import LocalFSDatasetIOConfig
|
from .config import LocalFSDatasetIOConfig
|
||||||
|
@ -40,11 +40,13 @@ class PandasDataframeDataset:
|
||||||
return
|
return
|
||||||
|
|
||||||
if self.dataset_def.source.type == "uri":
|
if self.dataset_def.source.type == "uri":
|
||||||
self.df = get_dataframe_from_url(self.dataset_def.uri)
|
self.df = get_dataframe_from_uri(self.dataset_def.source.uri)
|
||||||
elif self.dataset_def.source.type == "rows":
|
elif self.dataset_def.source.type == "rows":
|
||||||
self.df = pandas.DataFrame(self.dataset_def.source.rows)
|
self.df = pandas.DataFrame(self.dataset_def.source.rows)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported dataset source type: {self.dataset_def.source.type}")
|
raise ValueError(
|
||||||
|
f"Unsupported dataset source type: {self.dataset_def.source.type}"
|
||||||
|
)
|
||||||
|
|
||||||
if self.df is None:
|
if self.df is None:
|
||||||
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
|
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
|
||||||
|
@ -117,4 +119,6 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
||||||
dataset_impl.load()
|
dataset_impl.load()
|
||||||
|
|
||||||
new_rows_df = pandas.DataFrame(rows)
|
new_rows_df = pandas.DataFrame(rows)
|
||||||
dataset_impl.df = pandas.concat([dataset_impl.df, new_rows_df], ignore_index=True)
|
dataset_impl.df = pandas.concat(
|
||||||
|
[dataset_impl.df, new_rows_df], ignore_index=True
|
||||||
|
)
|
||||||
|
|
|
@ -14,14 +14,14 @@ from llama_stack.apis.common.content_types import URL
|
||||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||||
|
|
||||||
|
|
||||||
def get_dataframe_from_url(url: URL):
|
def get_dataframe_from_uri(uri: str):
|
||||||
df = None
|
df = None
|
||||||
if url.uri.endswith(".csv"):
|
if uri.endswith(".csv"):
|
||||||
df = pandas.read_csv(url.uri)
|
df = pandas.read_csv(uri)
|
||||||
elif url.uri.endswith(".xlsx"):
|
elif uri.endswith(".xlsx"):
|
||||||
df = pandas.read_excel(url.uri)
|
df = pandas.read_excel(uri)
|
||||||
elif url.uri.startswith("data:"):
|
elif uri.startswith("data:"):
|
||||||
parts = parse_data_url(url.uri)
|
parts = parse_data_url(uri)
|
||||||
data = parts["data"]
|
data = parts["data"]
|
||||||
if parts["is_base64"]:
|
if parts["is_base64"]:
|
||||||
data = base64.b64decode(data)
|
data = base64.b64decode(data)
|
||||||
|
@ -39,6 +39,6 @@ def get_dataframe_from_url(url: URL):
|
||||||
else:
|
else:
|
||||||
df = pandas.read_excel(data_bytes)
|
df = pandas.read_excel(data_bytes)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported file type: {url}")
|
raise ValueError(f"Unsupported file type: {uri}")
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
|
@ -1,114 +0,0 @@
|
||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
|
||||||
# the root directory of this source tree.
|
|
||||||
|
|
||||||
import base64
|
|
||||||
import mimetypes
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
# How to run this test:
|
|
||||||
#
|
|
||||||
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/datasetio
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def dataset_for_test(llama_stack_client):
|
|
||||||
dataset_id = "test_dataset"
|
|
||||||
register_dataset(llama_stack_client, dataset_id=dataset_id)
|
|
||||||
yield
|
|
||||||
# Teardown - this always runs, even if the test fails
|
|
||||||
try:
|
|
||||||
llama_stack_client.datasets.unregister(dataset_id)
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Warning: Failed to unregister test_dataset: {e}")
|
|
||||||
|
|
||||||
|
|
||||||
def data_url_from_file(file_path: str) -> str:
|
|
||||||
if not os.path.exists(file_path):
|
|
||||||
raise FileNotFoundError(f"File not found: {file_path}")
|
|
||||||
|
|
||||||
with open(file_path, "rb") as file:
|
|
||||||
file_content = file.read()
|
|
||||||
|
|
||||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
|
||||||
mime_type, _ = mimetypes.guess_type(file_path)
|
|
||||||
|
|
||||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
|
||||||
|
|
||||||
return data_url
|
|
||||||
|
|
||||||
|
|
||||||
def register_dataset(llama_stack_client, for_generation=False, for_rag=False, dataset_id="test_dataset"):
|
|
||||||
if for_rag:
|
|
||||||
test_file = Path(os.path.abspath(__file__)).parent / "test_rag_dataset.csv"
|
|
||||||
else:
|
|
||||||
test_file = Path(os.path.abspath(__file__)).parent / "test_dataset.csv"
|
|
||||||
test_url = data_url_from_file(str(test_file))
|
|
||||||
|
|
||||||
if for_generation:
|
|
||||||
dataset_schema = {
|
|
||||||
"expected_answer": {"type": "string"},
|
|
||||||
"input_query": {"type": "string"},
|
|
||||||
"chat_completion_input": {"type": "chat_completion_input"},
|
|
||||||
}
|
|
||||||
elif for_rag:
|
|
||||||
dataset_schema = {
|
|
||||||
"expected_answer": {"type": "string"},
|
|
||||||
"input_query": {"type": "string"},
|
|
||||||
"generated_answer": {"type": "string"},
|
|
||||||
"context": {"type": "string"},
|
|
||||||
}
|
|
||||||
else:
|
|
||||||
dataset_schema = {
|
|
||||||
"expected_answer": {"type": "string"},
|
|
||||||
"input_query": {"type": "string"},
|
|
||||||
"generated_answer": {"type": "string"},
|
|
||||||
}
|
|
||||||
|
|
||||||
dataset_providers = [x for x in llama_stack_client.providers.list() if x.api == "datasetio"]
|
|
||||||
dataset_provider_id = dataset_providers[0].provider_id
|
|
||||||
|
|
||||||
llama_stack_client.datasets.register(
|
|
||||||
dataset_id=dataset_id,
|
|
||||||
dataset_schema=dataset_schema,
|
|
||||||
url=dict(uri=test_url),
|
|
||||||
provider_id=dataset_provider_id,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def test_register_unregister_dataset(llama_stack_client):
|
|
||||||
register_dataset(llama_stack_client)
|
|
||||||
response = llama_stack_client.datasets.list()
|
|
||||||
assert isinstance(response, list)
|
|
||||||
assert len(response) == 1
|
|
||||||
assert response[0].identifier == "test_dataset"
|
|
||||||
|
|
||||||
llama_stack_client.datasets.unregister("test_dataset")
|
|
||||||
response = llama_stack_client.datasets.list()
|
|
||||||
assert isinstance(response, list)
|
|
||||||
assert len(response) == 0
|
|
||||||
|
|
||||||
|
|
||||||
def test_get_rows_paginated(llama_stack_client, dataset_for_test):
|
|
||||||
response = llama_stack_client.datasetio.get_rows_paginated(
|
|
||||||
dataset_id="test_dataset",
|
|
||||||
rows_in_page=3,
|
|
||||||
)
|
|
||||||
assert isinstance(response.rows, list)
|
|
||||||
assert len(response.rows) == 3
|
|
||||||
assert response.next_page_token == "3"
|
|
||||||
|
|
||||||
# iterate over all rows
|
|
||||||
response = llama_stack_client.datasetio.get_rows_paginated(
|
|
||||||
dataset_id="test_dataset",
|
|
||||||
rows_in_page=2,
|
|
||||||
page_token=response.next_page_token,
|
|
||||||
)
|
|
||||||
assert isinstance(response.rows, list)
|
|
||||||
assert len(response.rows) == 2
|
|
||||||
assert response.next_page_token == "5"
|
|
|
@ -5,6 +5,10 @@
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
|
||||||
|
import base64
|
||||||
|
import mimetypes
|
||||||
|
import os
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
# How to run this test:
|
# How to run this test:
|
||||||
|
@ -12,6 +16,21 @@ import pytest
|
||||||
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/datasets
|
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/datasets
|
||||||
|
|
||||||
|
|
||||||
|
def data_url_from_file(file_path: str) -> str:
|
||||||
|
if not os.path.exists(file_path):
|
||||||
|
raise FileNotFoundError(f"File not found: {file_path}")
|
||||||
|
|
||||||
|
with open(file_path, "rb") as file:
|
||||||
|
file_content = file.read()
|
||||||
|
|
||||||
|
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||||
|
mime_type, _ = mimetypes.guess_type(file_path)
|
||||||
|
|
||||||
|
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||||
|
|
||||||
|
return data_url
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"purpose, source, provider_id, limit",
|
"purpose, source, provider_id, limit",
|
||||||
[
|
[
|
||||||
|
@ -67,3 +86,19 @@ def test_register_and_iterrows(llama_stack_client, purpose, source, provider_id,
|
||||||
llama_stack_client.datasets.unregister(dataset.identifier)
|
llama_stack_client.datasets.unregister(dataset.identifier)
|
||||||
dataset_list = llama_stack_client.datasets.list()
|
dataset_list = llama_stack_client.datasets.list()
|
||||||
assert dataset.identifier not in [d.identifier for d in dataset_list]
|
assert dataset.identifier not in [d.identifier for d in dataset_list]
|
||||||
|
|
||||||
|
|
||||||
|
def test_register_and_iterrows_from_base64_data(llama_stack_client):
|
||||||
|
dataset = llama_stack_client.datasets.register(
|
||||||
|
purpose="eval/messages-answer",
|
||||||
|
source={
|
||||||
|
"type": "uri",
|
||||||
|
"uri": data_url_from_file(
|
||||||
|
os.path.join(os.path.dirname(__file__), "test_dataset.csv")
|
||||||
|
),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
assert dataset.identifier is not None
|
||||||
|
assert dataset.provider_id == "localfs"
|
||||||
|
iterrow_response = llama_stack_client.datasets.iterrows(dataset.identifier)
|
||||||
|
assert len(iterrow_response.data) == 5
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue