mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
eleuther custom tasks
This commit is contained in:
parent
b87bdd0176
commit
0919072a33
7 changed files with 290 additions and 10 deletions
|
@ -6,12 +6,15 @@
|
||||||
|
|
||||||
from llama_stack.apis.inference import * # noqa: F403
|
from llama_stack.apis.inference import * # noqa: F403
|
||||||
from llama_stack.apis.evals import * # noqa: F403
|
from llama_stack.apis.evals import * # noqa: F403
|
||||||
|
import os
|
||||||
import random
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
import lm_eval
|
import lm_eval
|
||||||
from lm_eval.api.model import LM
|
from lm_eval.api.model import LM
|
||||||
from lm_eval.evaluator import evaluate, get_task_list
|
from lm_eval.evaluator import evaluate, get_task_list
|
||||||
from lm_eval.tasks import get_task_dict, TaskManager
|
from lm_eval.tasks import get_task_dict, TaskManager
|
||||||
|
from termcolor import cprint
|
||||||
|
|
||||||
from .config import EleutherEvalsImplConfig # noqa
|
from .config import EleutherEvalsImplConfig # noqa
|
||||||
|
|
||||||
|
@ -20,10 +23,12 @@ class EleutherEvalsWrapper(LM):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
inference_api: Inference,
|
inference_api: Inference,
|
||||||
|
model: str,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.inference_api = inference_api
|
self.inference_api = inference_api
|
||||||
|
self.model = model
|
||||||
self.tokenizer = None
|
self.tokenizer = None
|
||||||
self.tokenized_requests = False
|
self.tokenized_requests = False
|
||||||
self.kwargs = kwargs
|
self.kwargs = kwargs
|
||||||
|
@ -83,13 +88,29 @@ class EleutherEvalsWrapper(LM):
|
||||||
raise NotImplementedError("No support for logits.")
|
raise NotImplementedError("No support for logits.")
|
||||||
|
|
||||||
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
||||||
return NotImplementedError("Not implemented")
|
res = []
|
||||||
|
for req in requests:
|
||||||
|
print("generation for msg: ", req.args[0])
|
||||||
|
response = self.inference_api.chat_completion(
|
||||||
|
model=self.model,
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": req.args[0],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
res.append(response.completion_message)
|
||||||
|
|
||||||
|
print(response)
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
class EleutherEvalsAdapter(Evals):
|
class EleutherEvalsAdapter(Evals):
|
||||||
def __init__(self, config: EleutherEvalsImplConfig, inference_api: Inference):
|
def __init__(self, config: EleutherEvalsImplConfig, inference_api: Inference):
|
||||||
self.inference_api = inference_api
|
self.inference_api = inference_api
|
||||||
self.eluther_wrapper = EleutherEvalsWrapper(inference_api)
|
|
||||||
|
|
||||||
async def initialize(self) -> None:
|
async def initialize(self) -> None:
|
||||||
pass
|
pass
|
||||||
|
@ -103,16 +124,34 @@ class EleutherEvalsAdapter(Evals):
|
||||||
dataset: str,
|
dataset: str,
|
||||||
task: str,
|
task: str,
|
||||||
) -> EvaluateResponse:
|
) -> EvaluateResponse:
|
||||||
task_manager = TaskManager()
|
eluther_wrapper = EleutherEvalsWrapper(self.inference_api, model)
|
||||||
|
|
||||||
|
cprint(f"Eleuther Evals: {model} {dataset} {task}", "red")
|
||||||
|
|
||||||
|
task = "meta_mmlu_pro_instruct"
|
||||||
|
current_dir = Path(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
print(current_dir)
|
||||||
|
|
||||||
|
task_manager = TaskManager(
|
||||||
|
include_path=str(current_dir / "tasks"),
|
||||||
|
)
|
||||||
|
|
||||||
task_dict = get_task_dict(task, task_manager)
|
task_dict = get_task_dict(task, task_manager)
|
||||||
|
cprint(task_dict, "blue")
|
||||||
|
|
||||||
task_types = set([t.task.OUTPUT_TYPE for t in get_task_list(task_dict)])
|
task_types = set([t.task.OUTPUT_TYPE for t in get_task_list(task_dict)])
|
||||||
|
cprint(task_types, "cyan")
|
||||||
|
|
||||||
output = evaluate(
|
output = evaluate(
|
||||||
self.eluther_wrapper,
|
eluther_wrapper,
|
||||||
task_dict,
|
task_dict,
|
||||||
limit=2,
|
limit=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
formatted_output = lm_eval.utils.make_table(output)
|
formatted_output = lm_eval.utils.make_table(output)
|
||||||
|
|
||||||
|
cprint(formatted_output, "green")
|
||||||
|
|
||||||
return EvaluateResponse(
|
return EvaluateResponse(
|
||||||
metrics={
|
metrics={
|
||||||
"metrics_table": formatted_output,
|
"metrics_table": formatted_output,
|
||||||
|
|
32
llama_stack/providers/impls/third_party/evals/eleuther/tasks/ifeval/ifeval.yaml
vendored
Normal file
32
llama_stack/providers/impls/third_party/evals/eleuther/tasks/ifeval/ifeval.yaml
vendored
Normal file
|
@ -0,0 +1,32 @@
|
||||||
|
task: meta_ifeval
|
||||||
|
dataset_path: parquet
|
||||||
|
dataset_kwargs:
|
||||||
|
data_files: ./work_dir/joined_ifeval.parquet
|
||||||
|
output_type: generate_until
|
||||||
|
test_split: train
|
||||||
|
num_fewshot: 0
|
||||||
|
doc_to_text: prompt
|
||||||
|
doc_to_target: 0
|
||||||
|
generation_kwargs:
|
||||||
|
until: []
|
||||||
|
do_sample: false
|
||||||
|
temperature: 0.0
|
||||||
|
max_gen_toks: 1280
|
||||||
|
process_results: !function utils.process_results
|
||||||
|
metric_list:
|
||||||
|
- metric: prompt_level_strict_acc
|
||||||
|
aggregation: mean
|
||||||
|
higher_is_better: true
|
||||||
|
- metric: inst_level_strict_acc
|
||||||
|
aggregation: !function utils.agg_inst_level_acc
|
||||||
|
higher_is_better: true
|
||||||
|
- metric: prompt_level_loose_acc
|
||||||
|
aggregation: mean
|
||||||
|
higher_is_better: true
|
||||||
|
- metric: inst_level_loose_acc
|
||||||
|
aggregation: !function utils.agg_inst_level_acc
|
||||||
|
higher_is_better: true
|
||||||
|
metadata:
|
||||||
|
version: 2.0
|
||||||
|
fewshot_config:
|
||||||
|
sampler: first_n
|
145
llama_stack/providers/impls/third_party/evals/eleuther/tasks/ifeval/utils.py
vendored
Normal file
145
llama_stack/providers/impls/third_party/evals/eleuther/tasks/ifeval/utils.py
vendored
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import dataclasses
|
||||||
|
from typing import Dict, Optional, Union
|
||||||
|
|
||||||
|
from lm_eval.tasks.ifeval import instructions_registry
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class InputExample:
|
||||||
|
key: int
|
||||||
|
instruction_id_list: list[str]
|
||||||
|
prompt: str
|
||||||
|
kwargs: list[Dict[str, Optional[Union[str, int]]]]
|
||||||
|
|
||||||
|
|
||||||
|
@dataclasses.dataclass
|
||||||
|
class OutputExample:
|
||||||
|
instruction_id_list: list[str]
|
||||||
|
prompt: str
|
||||||
|
response: str
|
||||||
|
follow_all_instructions: bool
|
||||||
|
follow_instruction_list: list[bool]
|
||||||
|
|
||||||
|
|
||||||
|
def test_instruction_following_strict(
|
||||||
|
inp,
|
||||||
|
response,
|
||||||
|
):
|
||||||
|
"""Tests response to see if instructions are followed."""
|
||||||
|
instruction_list = inp.instruction_id_list
|
||||||
|
is_following_list = []
|
||||||
|
|
||||||
|
for index, instruction_id in enumerate(instruction_list):
|
||||||
|
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
|
||||||
|
instruction = instruction_cls(instruction_id)
|
||||||
|
|
||||||
|
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
|
||||||
|
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
|
||||||
|
instruction.build_description(**kwargs)
|
||||||
|
args = instruction.get_instruction_args()
|
||||||
|
if args and "prompt" in args:
|
||||||
|
instruction.build_description(prompt=inp.prompt)
|
||||||
|
|
||||||
|
if response.strip() and instruction.check_following(response):
|
||||||
|
is_following_list.append(True)
|
||||||
|
else:
|
||||||
|
is_following_list.append(False)
|
||||||
|
|
||||||
|
return OutputExample(
|
||||||
|
instruction_id_list=inp.instruction_id_list,
|
||||||
|
prompt=inp.prompt,
|
||||||
|
response=response,
|
||||||
|
follow_all_instructions=all(is_following_list),
|
||||||
|
follow_instruction_list=is_following_list,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_instruction_following_loose(
|
||||||
|
inp,
|
||||||
|
response,
|
||||||
|
):
|
||||||
|
"""Tests response for an upper bound for following instructions."""
|
||||||
|
r = response.split("\n")
|
||||||
|
response_remove_first = "\n".join(r[1:]).strip()
|
||||||
|
response_remove_last = "\n".join(r[:-1]).strip()
|
||||||
|
response_remove_both = "\n".join(r[1:-1]).strip()
|
||||||
|
revised_response = response.replace("*", "")
|
||||||
|
revised_response_remove_first = response_remove_first.replace("*", "")
|
||||||
|
revised_response_remove_last = response_remove_last.replace("*", "")
|
||||||
|
revised_response_remove_both = response_remove_both.replace("*", "")
|
||||||
|
all_responses = [
|
||||||
|
response,
|
||||||
|
revised_response,
|
||||||
|
response_remove_first,
|
||||||
|
response_remove_last,
|
||||||
|
response_remove_both,
|
||||||
|
revised_response_remove_first,
|
||||||
|
revised_response_remove_last,
|
||||||
|
revised_response_remove_both,
|
||||||
|
]
|
||||||
|
instruction_list = inp.instruction_id_list
|
||||||
|
is_following_list = []
|
||||||
|
|
||||||
|
for index, instruction_id in enumerate(instruction_list):
|
||||||
|
instruction_cls = instructions_registry.INSTRUCTION_DICT[instruction_id]
|
||||||
|
instruction = instruction_cls(instruction_id)
|
||||||
|
|
||||||
|
# Remove None values from kwargs to avoid unexpected keyword argument errors in build_description method.
|
||||||
|
kwargs = {k: v for k, v in inp.kwargs[index].items() if v}
|
||||||
|
instruction.build_description(**kwargs)
|
||||||
|
args = instruction.get_instruction_args()
|
||||||
|
if args and "prompt" in args:
|
||||||
|
instruction.build_description(prompt=inp.prompt)
|
||||||
|
|
||||||
|
is_following = False
|
||||||
|
for r in all_responses:
|
||||||
|
if r.strip() and instruction.check_following(r):
|
||||||
|
is_following = True
|
||||||
|
break
|
||||||
|
|
||||||
|
is_following_list.append(is_following)
|
||||||
|
|
||||||
|
return OutputExample(
|
||||||
|
instruction_id_list=inp.instruction_id_list,
|
||||||
|
prompt=inp.prompt,
|
||||||
|
response=response,
|
||||||
|
follow_all_instructions=all(is_following_list),
|
||||||
|
follow_instruction_list=is_following_list,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def process_results(doc, results):
|
||||||
|
new_kwargs = []
|
||||||
|
for item in doc["kwargs"]:
|
||||||
|
if item["nth_paragraph"]:
|
||||||
|
item["nth_paragraph"] = int(item["nth_paragraph"])
|
||||||
|
new_kwargs.append(item)
|
||||||
|
inp = InputExample(
|
||||||
|
key=doc["key"],
|
||||||
|
instruction_id_list=doc["instruction_id_list"],
|
||||||
|
prompt=doc["prompt"],
|
||||||
|
kwargs=new_kwargs,
|
||||||
|
)
|
||||||
|
response = results[0]
|
||||||
|
|
||||||
|
out_strict = test_instruction_following_strict(inp, response)
|
||||||
|
out_loose = test_instruction_following_loose(inp, response)
|
||||||
|
|
||||||
|
return {
|
||||||
|
"prompt_level_strict_acc": out_strict.follow_all_instructions,
|
||||||
|
"inst_level_strict_acc": out_strict.follow_instruction_list,
|
||||||
|
"prompt_level_loose_acc": out_loose.follow_all_instructions,
|
||||||
|
"inst_level_loose_acc": out_loose.follow_instruction_list,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def agg_inst_level_acc(items):
|
||||||
|
flat_items = [item for sublist in items for item in sublist]
|
||||||
|
inst_level_acc = sum(flat_items) / len(flat_items)
|
||||||
|
return inst_level_acc
|
|
@ -0,0 +1,29 @@
|
||||||
|
task: meta_mmlu_pro_instruct
|
||||||
|
dataset_path: meta-llama/Llama-3.1-8B-Instruct-evals
|
||||||
|
dataset_name: Llama-3.1-8B-Instruct-evals__mmlu_pro__details
|
||||||
|
test_split: latest
|
||||||
|
output_type: generate_until
|
||||||
|
process_docs: !function utils.process_docs
|
||||||
|
doc_to_text: !function utils.doc_to_text
|
||||||
|
doc_to_target: gold
|
||||||
|
filter_list:
|
||||||
|
- name: "strict-match"
|
||||||
|
filter:
|
||||||
|
- function: "regex"
|
||||||
|
group_select: -1
|
||||||
|
regex_pattern: 'best answer is ([A-Z])'
|
||||||
|
- function: "take_first"
|
||||||
|
generation_kwargs:
|
||||||
|
until: []
|
||||||
|
do_sample: false
|
||||||
|
temperature: 0
|
||||||
|
max_gen_toks: 1024
|
||||||
|
num_fewshot: 0
|
||||||
|
metric_list:
|
||||||
|
- metric: exact_match
|
||||||
|
aggregation: mean
|
||||||
|
higher_is_better: true
|
||||||
|
ignore_case: true
|
||||||
|
ignore_punctuation: true
|
||||||
|
metadata:
|
||||||
|
version: 1.0
|
35
llama_stack/providers/impls/third_party/evals/eleuther/tasks/mmlu_pro/utils.py
vendored
Normal file
35
llama_stack/providers/impls/third_party/evals/eleuther/tasks/mmlu_pro/utils.py
vendored
Normal file
|
@ -0,0 +1,35 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
|
||||||
|
|
||||||
|
def doc_to_text(doc: dict) -> str:
|
||||||
|
return doc["input_final_prompts"][0]
|
||||||
|
|
||||||
|
|
||||||
|
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
|
||||||
|
def _process_doc(doc: dict) -> dict:
|
||||||
|
out_doc = {
|
||||||
|
"problem": doc["input_question"],
|
||||||
|
"gold": doc["input_correct_responses"][0],
|
||||||
|
}
|
||||||
|
return out_doc
|
||||||
|
|
||||||
|
dataset = dataset.select_columns(
|
||||||
|
[
|
||||||
|
"input_question",
|
||||||
|
"input_correct_responses",
|
||||||
|
"input_final_prompts",
|
||||||
|
"is_correct",
|
||||||
|
"input_question_hash",
|
||||||
|
"input_choice_list",
|
||||||
|
"output_prediction_text",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
dataset = dataset.rename_column("is_correct", "previously_is_correct")
|
||||||
|
dataset = dataset.map(_process_doc)
|
||||||
|
return dataset.map(_process_doc)
|
|
@ -152,7 +152,7 @@ def severity(levelname: str) -> LogSeverity:
|
||||||
elif levelname == "INFO":
|
elif levelname == "INFO":
|
||||||
return LogSeverity.INFO
|
return LogSeverity.INFO
|
||||||
elif levelname == "WARNING":
|
elif levelname == "WARNING":
|
||||||
return LogSeverity.WARNING
|
return LogSeverity.WARN
|
||||||
elif levelname == "ERROR":
|
elif levelname == "ERROR":
|
||||||
return LogSeverity.ERROR
|
return LogSeverity.ERROR
|
||||||
elif levelname == "CRITICAL":
|
elif levelname == "CRITICAL":
|
||||||
|
|
|
@ -12,12 +12,12 @@ apis_to_serve:
|
||||||
- safety
|
- safety
|
||||||
- evals
|
- evals
|
||||||
api_providers:
|
api_providers:
|
||||||
# evals:
|
|
||||||
# provider_type: eleuther
|
|
||||||
# config: {}
|
|
||||||
evals:
|
evals:
|
||||||
provider_type: meta-reference
|
provider_type: eleuther
|
||||||
config: {}
|
config: {}
|
||||||
|
# evals:
|
||||||
|
# provider_type: meta-reference
|
||||||
|
# config: {}
|
||||||
inference:
|
inference:
|
||||||
providers:
|
providers:
|
||||||
- meta-reference
|
- meta-reference
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue