mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-29 03:58:47 +00:00
Merge branch 'main' of https://github.com/meta-llama/llama-stack into register_custom_model
This commit is contained in:
commit
0990f60dad
74 changed files with 4854 additions and 1869 deletions
|
|
@ -225,8 +225,18 @@ class AgentConfigCommon(BaseModel):
|
|||
|
||||
@json_schema_type
|
||||
class AgentConfig(AgentConfigCommon):
|
||||
"""Configuration for an agent.
|
||||
|
||||
:param model: The model identifier to use for the agent
|
||||
:param instructions: The system instructions for the agent
|
||||
:param name: Optional name for the agent, used in telemetry and identification
|
||||
:param enable_session_persistence: Optional flag indicating whether session data has to be persisted
|
||||
:param response_format: Optional response format configuration
|
||||
"""
|
||||
|
||||
model: str
|
||||
instructions: str
|
||||
name: Optional[str] = None
|
||||
enable_session_persistence: Optional[bool] = False
|
||||
response_format: Optional[ResponseFormat] = None
|
||||
|
||||
|
|
|
|||
|
|
@ -526,9 +526,9 @@ class OpenAIAssistantMessageParam(BaseModel):
|
|||
"""
|
||||
|
||||
role: Literal["assistant"] = "assistant"
|
||||
content: OpenAIChatCompletionMessageContent
|
||||
content: Optional[OpenAIChatCompletionMessageContent] = None
|
||||
name: Optional[str] = None
|
||||
tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = Field(default_factory=list)
|
||||
tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None
|
||||
|
||||
|
||||
@json_schema_type
|
||||
|
|
|
|||
|
|
@ -210,16 +210,9 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
sys.exit(1)
|
||||
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not args.image_name:
|
||||
cprint(
|
||||
"Please specify --image-name when building a container from a config file",
|
||||
color="red",
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
if args.print_deps_only:
|
||||
print(f"# Dependencies for {args.template or args.config or image_name}")
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers)
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
print(f"uv pip install {' '.join(normal_deps)}")
|
||||
for special_dep in special_deps:
|
||||
|
|
@ -235,10 +228,14 @@ def run_stack_build_command(args: argparse.Namespace) -> None:
|
|||
)
|
||||
|
||||
except (Exception, RuntimeError) as exc:
|
||||
import traceback
|
||||
|
||||
cprint(
|
||||
f"Error building stack: {exc}",
|
||||
color="red",
|
||||
)
|
||||
cprint("Stack trace:", color="red")
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
if run_config is None:
|
||||
cprint(
|
||||
|
|
@ -270,9 +267,10 @@ def _generate_run_config(
|
|||
image_name=image_name,
|
||||
apis=apis,
|
||||
providers={},
|
||||
external_providers_dir=build_config.external_providers_dir if build_config.external_providers_dir else None,
|
||||
)
|
||||
# build providers dict
|
||||
provider_registry = get_provider_registry()
|
||||
provider_registry = get_provider_registry(build_config)
|
||||
for api in apis:
|
||||
run_config.providers[api] = []
|
||||
provider_types = build_config.distribution_spec.providers[api]
|
||||
|
|
@ -286,8 +284,22 @@ def _generate_run_config(
|
|||
if p.deprecation_error:
|
||||
raise InvalidProviderError(p.deprecation_error)
|
||||
|
||||
config_type = instantiate_class_type(provider_registry[Api(api)][provider_type].config_class)
|
||||
if hasattr(config_type, "sample_run_config"):
|
||||
try:
|
||||
config_type = instantiate_class_type(provider_registry[Api(api)][provider_type].config_class)
|
||||
except ModuleNotFoundError:
|
||||
# HACK ALERT:
|
||||
# This code executes after building is done, the import cannot work since the
|
||||
# package is either available in the venv or container - not available on the host.
|
||||
# TODO: use a "is_external" flag in ProviderSpec to check if the provider is
|
||||
# external
|
||||
cprint(
|
||||
f"Failed to import provider {provider_type} for API {api} - assuming it's external, skipping",
|
||||
color="yellow",
|
||||
)
|
||||
# Set config_type to None to avoid UnboundLocalError
|
||||
config_type = None
|
||||
|
||||
if config_type is not None and hasattr(config_type, "sample_run_config"):
|
||||
config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}")
|
||||
else:
|
||||
config = {}
|
||||
|
|
@ -305,11 +317,15 @@ def _generate_run_config(
|
|||
to_write = json.loads(run_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
||||
# this path is only invoked when no template is provided
|
||||
cprint(
|
||||
f"You can now run your stack with `llama stack run {run_config_file}`",
|
||||
color="green",
|
||||
)
|
||||
# Only print this message for non-container builds since it will be displayed before the
|
||||
# container is built
|
||||
# For non-container builds, the run.yaml is generated at the very end of the build process so it
|
||||
# makes sense to display this message
|
||||
if build_config.image_type != LlamaStackImageType.CONTAINER.value:
|
||||
cprint(
|
||||
f"You can now run your stack with `llama stack run {run_config_file}`",
|
||||
color="green",
|
||||
)
|
||||
return run_config_file
|
||||
|
||||
|
||||
|
|
@ -319,6 +335,7 @@ def _run_stack_build_command_from_build_config(
|
|||
template_name: Optional[str] = None,
|
||||
config_path: Optional[str] = None,
|
||||
) -> str:
|
||||
image_name = image_name or build_config.image_name
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
|
||||
if template_name:
|
||||
image_name = f"distribution-{template_name}"
|
||||
|
|
@ -342,6 +359,13 @@ def _run_stack_build_command_from_build_config(
|
|||
build_file_path = build_dir / f"{image_name}-build.yaml"
|
||||
|
||||
os.makedirs(build_dir, exist_ok=True)
|
||||
run_config_file = None
|
||||
# Generate the run.yaml so it can be included in the container image with the proper entrypoint
|
||||
# Only do this if we're building a container image and we're not using a template
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value and not template_name and config_path:
|
||||
cprint("Generating run.yaml file", color="green")
|
||||
run_config_file = _generate_run_config(build_config, build_dir, image_name)
|
||||
|
||||
with open(build_file_path, "w") as f:
|
||||
to_write = json.loads(build_config.model_dump_json())
|
||||
f.write(yaml.dump(to_write, sort_keys=False))
|
||||
|
|
@ -350,7 +374,8 @@ def _run_stack_build_command_from_build_config(
|
|||
build_config,
|
||||
build_file_path,
|
||||
image_name,
|
||||
template_or_config=template_name or config_path,
|
||||
template_or_config=template_name or config_path or str(build_file_path),
|
||||
run_config=run_config_file,
|
||||
)
|
||||
if return_code != 0:
|
||||
raise RuntimeError(f"Failed to build image {image_name}")
|
||||
|
|
|
|||
|
|
@ -7,16 +7,16 @@
|
|||
import importlib.resources
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_stack.distribution.datatypes import BuildConfig, Provider
|
||||
from llama_stack.distribution.datatypes import BuildConfig
|
||||
from llama_stack.distribution.distribution import get_provider_registry
|
||||
from llama_stack.distribution.utils.exec import run_command
|
||||
from llama_stack.distribution.utils.image_types import LlamaStackImageType
|
||||
from llama_stack.providers.datatypes import Api
|
||||
from llama_stack.templates.template import DistributionTemplate
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -37,19 +37,24 @@ class ApiInput(BaseModel):
|
|||
|
||||
|
||||
def get_provider_dependencies(
|
||||
config_providers: Dict[str, List[Provider]],
|
||||
config: BuildConfig | DistributionTemplate,
|
||||
) -> tuple[list[str], list[str]]:
|
||||
"""Get normal and special dependencies from provider configuration."""
|
||||
all_providers = get_provider_registry()
|
||||
# Extract providers based on config type
|
||||
if isinstance(config, DistributionTemplate):
|
||||
providers = config.providers
|
||||
elif isinstance(config, BuildConfig):
|
||||
providers = config.distribution_spec.providers
|
||||
deps = []
|
||||
registry = get_provider_registry(config)
|
||||
|
||||
for api_str, provider_or_providers in config_providers.items():
|
||||
providers_for_api = all_providers[Api(api_str)]
|
||||
for api_str, provider_or_providers in providers.items():
|
||||
providers_for_api = registry[Api(api_str)]
|
||||
|
||||
providers = provider_or_providers if isinstance(provider_or_providers, list) else [provider_or_providers]
|
||||
|
||||
for provider in providers:
|
||||
# Providers from BuildConfig and RunConfig are subtly different – not great
|
||||
# Providers from BuildConfig and RunConfig are subtly different – not great
|
||||
provider_type = provider if isinstance(provider, str) else provider.provider_type
|
||||
|
||||
if provider_type not in providers_for_api:
|
||||
|
|
@ -71,8 +76,8 @@ def get_provider_dependencies(
|
|||
return list(set(normal_deps)), list(set(special_deps))
|
||||
|
||||
|
||||
def print_pip_install_help(providers: Dict[str, List[Provider]]):
|
||||
normal_deps, special_deps = get_provider_dependencies(providers)
|
||||
def print_pip_install_help(config: BuildConfig):
|
||||
normal_deps, special_deps = get_provider_dependencies(config)
|
||||
|
||||
cprint(
|
||||
f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}",
|
||||
|
|
@ -88,10 +93,11 @@ def build_image(
|
|||
build_file_path: Path,
|
||||
image_name: str,
|
||||
template_or_config: str,
|
||||
run_config: str | None = None,
|
||||
):
|
||||
container_base = build_config.distribution_spec.container_image or "python:3.10-slim"
|
||||
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers)
|
||||
normal_deps, special_deps = get_provider_dependencies(build_config)
|
||||
normal_deps += SERVER_DEPENDENCIES
|
||||
|
||||
if build_config.image_type == LlamaStackImageType.CONTAINER.value:
|
||||
|
|
@ -103,6 +109,11 @@ def build_image(
|
|||
container_base,
|
||||
" ".join(normal_deps),
|
||||
]
|
||||
|
||||
# When building from a config file (not a template), include the run config path in the
|
||||
# build arguments
|
||||
if run_config is not None:
|
||||
args.append(run_config)
|
||||
elif build_config.image_type == LlamaStackImageType.CONDA.value:
|
||||
script = str(importlib.resources.files("llama_stack") / "distribution/build_conda_env.sh")
|
||||
args = [
|
||||
|
|
|
|||
|
|
@ -19,12 +19,16 @@ UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500}
|
|||
# mounting is not supported by docker buildx, so we use COPY instead
|
||||
USE_COPY_NOT_MOUNT=${USE_COPY_NOT_MOUNT:-}
|
||||
|
||||
# Path to the run.yaml file in the container
|
||||
RUN_CONFIG_PATH=/app/run.yaml
|
||||
|
||||
BUILD_CONTEXT_DIR=$(pwd)
|
||||
|
||||
if [ "$#" -lt 4 ]; then
|
||||
# This only works for templates
|
||||
echo "Usage: $0 <template_or_config> <image_name> <container_base> <pip_dependencies> [<special_pip_deps>]" >&2
|
||||
echo "Usage: $0 <template_or_config> <image_name> <container_base> <pip_dependencies> [<run_config>] [<special_pip_deps>]" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
template_or_config="$1"
|
||||
|
|
@ -35,8 +39,27 @@ container_base="$1"
|
|||
shift
|
||||
pip_dependencies="$1"
|
||||
shift
|
||||
special_pip_deps="${1:-}"
|
||||
|
||||
# Handle optional arguments
|
||||
run_config=""
|
||||
special_pip_deps=""
|
||||
|
||||
# Check if there are more arguments
|
||||
# The logics is becoming cumbersom, we should refactor it if we can do better
|
||||
if [ $# -gt 0 ]; then
|
||||
# Check if the argument ends with .yaml
|
||||
if [[ "$1" == *.yaml ]]; then
|
||||
run_config="$1"
|
||||
shift
|
||||
# If there's another argument after .yaml, it must be special_pip_deps
|
||||
if [ $# -gt 0 ]; then
|
||||
special_pip_deps="$1"
|
||||
fi
|
||||
else
|
||||
# If it's not .yaml, it must be special_pip_deps
|
||||
special_pip_deps="$1"
|
||||
fi
|
||||
fi
|
||||
|
||||
# Define color codes
|
||||
RED='\033[0;31m'
|
||||
|
|
@ -72,9 +95,13 @@ if [[ $container_base == *"registry.access.redhat.com/ubi9"* ]]; then
|
|||
FROM $container_base
|
||||
WORKDIR /app
|
||||
|
||||
RUN dnf -y update && dnf install -y iputils net-tools wget \
|
||||
# We install the Python 3.11 dev headers and build tools so that any
|
||||
# C‑extension wheels (e.g. polyleven, faiss‑cpu) can compile successfully.
|
||||
|
||||
RUN dnf -y update && dnf install -y iputils git net-tools wget \
|
||||
vim-minimal python3.11 python3.11-pip python3.11-wheel \
|
||||
python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all
|
||||
python3.11-setuptools python3.11-devel gcc make && \
|
||||
ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all
|
||||
|
||||
ENV UV_SYSTEM_PYTHON=1
|
||||
RUN pip install uv
|
||||
|
|
@ -86,7 +113,7 @@ WORKDIR /app
|
|||
|
||||
RUN apt-get update && apt-get install -y \
|
||||
iputils-ping net-tools iproute2 dnsutils telnet \
|
||||
curl wget telnet \
|
||||
curl wget telnet git\
|
||||
procps psmisc lsof \
|
||||
traceroute \
|
||||
bubblewrap \
|
||||
|
|
@ -115,6 +142,45 @@ EOF
|
|||
done
|
||||
fi
|
||||
|
||||
# Function to get Python command
|
||||
get_python_cmd() {
|
||||
if is_command_available python; then
|
||||
echo "python"
|
||||
elif is_command_available python3; then
|
||||
echo "python3"
|
||||
else
|
||||
echo "Error: Neither python nor python3 is installed. Please install Python to continue." >&2
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
if [ -n "$run_config" ]; then
|
||||
# Copy the run config to the build context since it's an absolute path
|
||||
cp "$run_config" "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
add_to_container << EOF
|
||||
COPY run.yaml $RUN_CONFIG_PATH
|
||||
EOF
|
||||
|
||||
# Parse the run.yaml configuration to identify external provider directories
|
||||
# If external providers are specified, copy their directory to the container
|
||||
# and update the configuration to reference the new container path
|
||||
python_cmd=$(get_python_cmd)
|
||||
external_providers_dir=$($python_cmd -c "import yaml; config = yaml.safe_load(open('$run_config')); print(config.get('external_providers_dir') or '')")
|
||||
if [ -n "$external_providers_dir" ]; then
|
||||
echo "Copying external providers directory: $external_providers_dir"
|
||||
add_to_container << EOF
|
||||
COPY $external_providers_dir /app/providers.d
|
||||
EOF
|
||||
# Edit the run.yaml file to change the external_providers_dir to /app/providers.d
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
sed -i.bak -e 's|external_providers_dir:.*|external_providers_dir: /app/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
rm -f "$BUILD_CONTEXT_DIR/run.yaml.bak"
|
||||
else
|
||||
sed -i 's|external_providers_dir:.*|external_providers_dir: /app/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
stack_mount="/app/llama-stack-source"
|
||||
client_mount="/app/llama-stack-client-source"
|
||||
|
||||
|
|
@ -174,15 +240,16 @@ fi
|
|||
RUN pip uninstall -y uv
|
||||
EOF
|
||||
|
||||
# if template_or_config ends with .yaml, it is not a template and we should not use the --template flag
|
||||
if [[ "$template_or_config" != *.yaml ]]; then
|
||||
# If a run config is provided, we use the --config flag
|
||||
if [[ -n "$run_config" ]]; then
|
||||
add_to_container << EOF
|
||||
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--config", "$RUN_CONFIG_PATH"]
|
||||
EOF
|
||||
# If a template is provided (not a yaml file), we use the --template flag
|
||||
elif [[ "$template_or_config" != *.yaml ]]; then
|
||||
add_to_container << EOF
|
||||
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "$template_or_config"]
|
||||
EOF
|
||||
else
|
||||
add_to_container << EOF
|
||||
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server"]
|
||||
EOF
|
||||
fi
|
||||
|
||||
# Add other require item commands genearic to all containers
|
||||
|
|
@ -254,9 +321,10 @@ $CONTAINER_BINARY build \
|
|||
"${CLI_ARGS[@]}" \
|
||||
-t "$image_tag" \
|
||||
-f "$TEMP_DIR/Containerfile" \
|
||||
"."
|
||||
"$BUILD_CONTEXT_DIR"
|
||||
|
||||
# clean up tmp/configs
|
||||
rm -f "$BUILD_CONTEXT_DIR/run.yaml"
|
||||
set +x
|
||||
|
||||
echo "Success!"
|
||||
|
|
|
|||
|
|
@ -326,3 +326,12 @@ class BuildConfig(BaseModel):
|
|||
default="conda",
|
||||
description="Type of package to build (conda | container | venv)",
|
||||
)
|
||||
image_name: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Name of the distribution to build",
|
||||
)
|
||||
external_providers_dir: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Path to directory containing external provider implementations. The providers packages will be resolved from this directory. "
|
||||
"pip_packages MUST contain the provider package name.",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -12,7 +12,6 @@ from typing import Any, Dict, List
|
|||
import yaml
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.distribution.datatypes import StackRunConfig
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
|
|
@ -97,7 +96,9 @@ def _load_inline_provider_spec(spec_data: Dict[str, Any], api: Api, provider_nam
|
|||
return spec
|
||||
|
||||
|
||||
def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dict[str, ProviderSpec]]:
|
||||
def get_provider_registry(
|
||||
config=None,
|
||||
) -> Dict[Api, Dict[str, ProviderSpec]]:
|
||||
"""Get the provider registry, optionally including external providers.
|
||||
|
||||
This function loads both built-in providers and external providers from YAML files.
|
||||
|
|
@ -122,7 +123,7 @@ def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dic
|
|||
llama-guard.yaml
|
||||
|
||||
Args:
|
||||
config: Optional StackRunConfig containing the external providers directory path
|
||||
config: Optional object containing the external providers directory path
|
||||
|
||||
Returns:
|
||||
A dictionary mapping APIs to their available providers
|
||||
|
|
@ -142,7 +143,8 @@ def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dic
|
|||
except ImportError as e:
|
||||
logger.warning(f"Failed to import module {name}: {e}")
|
||||
|
||||
if config and config.external_providers_dir:
|
||||
# Check if config has the external_providers_dir attribute
|
||||
if config and hasattr(config, "external_providers_dir") and config.external_providers_dir:
|
||||
external_providers_dir = os.path.abspath(config.external_providers_dir)
|
||||
if not os.path.exists(external_providers_dir):
|
||||
raise FileNotFoundError(f"External providers directory not found: {external_providers_dir}")
|
||||
|
|
|
|||
|
|
@ -8,6 +8,11 @@ import asyncio
|
|||
import time
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
||||
|
||||
from openai.types.chat import ChatCompletionToolChoiceOptionParam as OpenAIChatCompletionToolChoiceOptionParam
|
||||
from openai.types.chat import ChatCompletionToolParam as OpenAIChatCompletionToolParam
|
||||
from pydantic import Field, TypeAdapter
|
||||
from typing_extensions import Annotated
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
|
|
@ -526,7 +531,7 @@ class InferenceRouter(Inference):
|
|||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIMessageParam],
|
||||
messages: Annotated[List[OpenAIMessageParam], Field(..., min_length=1)],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
|
|
@ -558,6 +563,16 @@ class InferenceRouter(Inference):
|
|||
if model_obj.model_type == ModelType.embedding:
|
||||
raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions")
|
||||
|
||||
# Use the OpenAI client for a bit of extra input validation without
|
||||
# exposing the OpenAI client itself as part of our API surface
|
||||
if tool_choice:
|
||||
TypeAdapter(OpenAIChatCompletionToolChoiceOptionParam).validate_python(tool_choice)
|
||||
if tools is None:
|
||||
raise ValueError("'tool_choice' is only allowed when 'tools' is also provided")
|
||||
if tools:
|
||||
for tool in tools:
|
||||
TypeAdapter(OpenAIChatCompletionToolParam).validate_python(tool)
|
||||
|
||||
params = dict(
|
||||
model=model_obj.identifier,
|
||||
messages=messages,
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ from fastapi import Body, FastAPI, HTTPException, Request
|
|||
from fastapi import Path as FastapiPath
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.responses import JSONResponse, StreamingResponse
|
||||
from openai import BadRequestError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
|
@ -92,7 +93,7 @@ async def global_exception_handler(request: Request, exc: Exception):
|
|||
|
||||
def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidationError]:
|
||||
if isinstance(exc, ValidationError):
|
||||
exc = RequestValidationError(exc.raw_errors)
|
||||
exc = RequestValidationError(exc.errors())
|
||||
|
||||
if isinstance(exc, RequestValidationError):
|
||||
return HTTPException(
|
||||
|
|
@ -110,6 +111,8 @@ def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidatio
|
|||
)
|
||||
elif isinstance(exc, ValueError):
|
||||
return HTTPException(status_code=400, detail=f"Invalid value: {str(exc)}")
|
||||
elif isinstance(exc, BadRequestError):
|
||||
return HTTPException(status_code=400, detail=str(exc))
|
||||
elif isinstance(exc, PermissionError):
|
||||
return HTTPException(status_code=403, detail=f"Permission denied: {str(exc)}")
|
||||
elif isinstance(exc, TimeoutError):
|
||||
|
|
@ -162,9 +165,10 @@ async def maybe_await(value):
|
|||
return value
|
||||
|
||||
|
||||
async def sse_generator(event_gen):
|
||||
async def sse_generator(event_gen_coroutine):
|
||||
event_gen = await event_gen_coroutine
|
||||
try:
|
||||
async for item in await event_gen:
|
||||
async for item in event_gen:
|
||||
yield create_sse_event(item)
|
||||
await asyncio.sleep(0.01)
|
||||
except asyncio.CancelledError:
|
||||
|
|
|
|||
|
|
@ -24,6 +24,13 @@ def rag_chat_page():
|
|||
def should_disable_input():
|
||||
return "displayed_messages" in st.session_state and len(st.session_state.displayed_messages) > 0
|
||||
|
||||
def log_message(message):
|
||||
with st.chat_message(message["role"]):
|
||||
if "tool_output" in message and message["tool_output"]:
|
||||
with st.expander(label="Tool Output", expanded=False, icon="🛠"):
|
||||
st.write(message["tool_output"])
|
||||
st.markdown(message["content"])
|
||||
|
||||
with st.sidebar:
|
||||
# File/Directory Upload Section
|
||||
st.subheader("Upload Documents", divider=True)
|
||||
|
|
@ -146,8 +153,7 @@ def rag_chat_page():
|
|||
|
||||
# Display chat history
|
||||
for message in st.session_state.displayed_messages:
|
||||
with st.chat_message(message["role"]):
|
||||
st.markdown(message["content"])
|
||||
log_message(message)
|
||||
|
||||
if temperature > 0.0:
|
||||
strategy = {
|
||||
|
|
@ -201,7 +207,7 @@ def rag_chat_page():
|
|||
|
||||
# Display assistant response
|
||||
with st.chat_message("assistant"):
|
||||
retrieval_message_placeholder = st.empty()
|
||||
retrieval_message_placeholder = st.expander(label="Tool Output", expanded=False, icon="🛠")
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
|
|
@ -209,14 +215,16 @@ def rag_chat_page():
|
|||
log.print()
|
||||
if log.role == "tool_execution":
|
||||
retrieval_response += log.content.replace("====", "").strip()
|
||||
retrieval_message_placeholder.info(retrieval_response)
|
||||
retrieval_message_placeholder.write(retrieval_response)
|
||||
else:
|
||||
full_response += log.content
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
st.session_state.displayed_messages.append({"role": "assistant", "content": full_response})
|
||||
st.session_state.displayed_messages.append(
|
||||
{"role": "assistant", "content": full_response, "tool_output": retrieval_response}
|
||||
)
|
||||
|
||||
def direct_process_prompt(prompt):
|
||||
# Add the system prompt in the beginning of the conversation
|
||||
|
|
@ -230,15 +238,14 @@ def rag_chat_page():
|
|||
prompt_context = rag_response.content
|
||||
|
||||
with st.chat_message("assistant"):
|
||||
with st.expander(label="Retrieval Output", expanded=False):
|
||||
st.write(prompt_context)
|
||||
|
||||
retrieval_message_placeholder = st.empty()
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
retrieval_response = ""
|
||||
|
||||
# Display the retrieved content
|
||||
retrieval_response += str(prompt_context)
|
||||
retrieval_message_placeholder.info(retrieval_response)
|
||||
|
||||
# Construct the extended prompt
|
||||
extended_prompt = f"Please answer the following query using the context below.\n\nCONTEXT:\n{prompt_context}\n\nQUERY:\n{prompt}"
|
||||
|
||||
|
|
|
|||
|
|
@ -29,17 +29,39 @@ def tool_chat_page():
|
|||
st.cache_resource.clear()
|
||||
|
||||
with st.sidebar:
|
||||
st.title("Configuration")
|
||||
st.subheader("Model")
|
||||
model = st.selectbox(label="models", options=model_list, on_change=reset_agent)
|
||||
model = st.selectbox(label="Model", options=model_list, on_change=reset_agent, label_visibility="collapsed")
|
||||
|
||||
st.subheader("Available ToolGroups")
|
||||
|
||||
st.subheader("Builtin Tools")
|
||||
toolgroup_selection = st.pills(
|
||||
label="Available ToolGroups", options=builtin_tools_list, selection_mode="multi", on_change=reset_agent
|
||||
label="Built-in tools",
|
||||
options=builtin_tools_list,
|
||||
selection_mode="multi",
|
||||
on_change=reset_agent,
|
||||
format_func=lambda tool: "".join(tool.split("::")[1:]),
|
||||
help="List of built-in tools from your llama stack server.",
|
||||
)
|
||||
|
||||
st.subheader("MCP Servers")
|
||||
if "builtin::rag" in toolgroup_selection:
|
||||
vector_dbs = llama_stack_api.client.vector_dbs.list() or []
|
||||
if not vector_dbs:
|
||||
st.info("No vector databases available for selection.")
|
||||
vector_dbs = [vector_db.identifier for vector_db in vector_dbs]
|
||||
selected_vector_dbs = st.multiselect(
|
||||
label="Select Document Collections to use in RAG queries",
|
||||
options=vector_dbs,
|
||||
on_change=reset_agent,
|
||||
)
|
||||
|
||||
mcp_selection = st.pills(
|
||||
label="Available MCP Servers", options=mcp_tools_list, selection_mode="multi", on_change=reset_agent
|
||||
label="MCP Servers",
|
||||
options=mcp_tools_list,
|
||||
selection_mode="multi",
|
||||
on_change=reset_agent,
|
||||
format_func=lambda tool: "".join(tool.split("::")[1:]),
|
||||
help="List of MCP servers registered to your llama stack server.",
|
||||
)
|
||||
|
||||
toolgroup_selection.extend(mcp_selection)
|
||||
|
|
@ -53,10 +75,10 @@ def tool_chat_page():
|
|||
]
|
||||
)
|
||||
|
||||
st.subheader(f"Active Tools: 🛠 {len(active_tool_list)}")
|
||||
st.markdown(f"Active Tools: 🛠 {len(active_tool_list)}", help="List of currently active tools.")
|
||||
st.json(active_tool_list)
|
||||
|
||||
st.subheader("Chat Configurations")
|
||||
st.subheader("Agent Configurations")
|
||||
max_tokens = st.slider(
|
||||
"Max Tokens",
|
||||
min_value=0,
|
||||
|
|
@ -67,6 +89,16 @@ def tool_chat_page():
|
|||
on_change=reset_agent,
|
||||
)
|
||||
|
||||
for i, tool_name in enumerate(toolgroup_selection):
|
||||
if tool_name == "builtin::rag":
|
||||
tool_dict = dict(
|
||||
name="builtin::rag",
|
||||
args={
|
||||
"vector_db_ids": list(selected_vector_dbs),
|
||||
},
|
||||
)
|
||||
toolgroup_selection[i] = tool_dict
|
||||
|
||||
@st.cache_resource
|
||||
def create_agent():
|
||||
return Agent(
|
||||
|
|
@ -112,7 +144,11 @@ def tool_chat_page():
|
|||
yield response.event.payload.delta.text
|
||||
if response.event.payload.event_type == "step_complete":
|
||||
if response.event.payload.step_details.step_type == "tool_execution":
|
||||
yield " 🛠 "
|
||||
if response.event.payload.step_details.tool_calls:
|
||||
tool_name = str(response.event.payload.step_details.tool_calls[0].tool_name)
|
||||
yield f'\n\n🛠 :grey[_Using "{tool_name}" tool:_]\n\n'
|
||||
else:
|
||||
yield "No tool_calls present in step_details"
|
||||
else:
|
||||
yield f"Error occurred in the Llama Stack Cluster: {response}"
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import io
|
||||
import json
|
||||
import uuid
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
|
@ -299,6 +300,7 @@ class ChatFormat:
|
|||
call_id=call_id,
|
||||
tool_name=tool_name,
|
||||
arguments=tool_arguments,
|
||||
arguments_json=json.dumps(tool_arguments),
|
||||
)
|
||||
)
|
||||
|
||||
|
|
|
|||
|
|
@ -178,6 +178,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
span.set_attribute("request", request.model_dump_json())
|
||||
turn_id = str(uuid.uuid4())
|
||||
span.set_attribute("turn_id", turn_id)
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
|
||||
await self._initialize_tools(request.toolgroups)
|
||||
async for chunk in self._run_turn(request, turn_id):
|
||||
|
|
@ -190,6 +192,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
span.set_attribute("session_id", request.session_id)
|
||||
span.set_attribute("request", request.model_dump_json())
|
||||
span.set_attribute("turn_id", request.turn_id)
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
|
||||
await self._initialize_tools()
|
||||
async for chunk in self._run_turn(request):
|
||||
|
|
@ -498,6 +502,8 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stop_reason = None
|
||||
|
||||
async with tracing.span("inference") as span:
|
||||
if self.agent_config.name:
|
||||
span.set_attribute("agent_name", self.agent_config.name)
|
||||
async for chunk in await self.inference_api.chat_completion(
|
||||
self.agent_config.model,
|
||||
input_messages,
|
||||
|
|
|
|||
|
|
@ -515,7 +515,8 @@ class MetaReferenceInferenceImpl(
|
|||
stop_reason = None
|
||||
ipython = False
|
||||
|
||||
for token_result in self.generator.chat_completion(request):
|
||||
for token_results in self.generator.chat_completion([request]):
|
||||
token_result = token_results[0]
|
||||
if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1":
|
||||
cprint(token_result.text, "cyan", end="")
|
||||
if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "2":
|
||||
|
|
|
|||
|
|
@ -33,6 +33,7 @@ from llama_stack.apis.tools import (
|
|||
)
|
||||
from llama_stack.apis.vector_io import QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import ToolsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
content_from_doc,
|
||||
make_overlapped_chunks,
|
||||
|
|
@ -153,6 +154,11 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
|||
)
|
||||
)
|
||||
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
picked.append(
|
||||
TextContentItem(
|
||||
text=f'The above results were retrieved to help answer the user\'s query: "{interleaved_content_as_str(content)}". Use them as supporting information only in answering this query.\n',
|
||||
)
|
||||
)
|
||||
|
||||
return RAGQueryResult(
|
||||
content=picked,
|
||||
|
|
|
|||
|
|
@ -362,6 +362,39 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
model_obj = await self.model_store.get_model(model)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
|
||||
self,
|
||||
model=model,
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
function_call=function_call,
|
||||
functions=functions,
|
||||
logit_bias=logit_bias,
|
||||
logprobs=logprobs,
|
||||
max_completion_tokens=max_completion_tokens,
|
||||
max_tokens=max_tokens,
|
||||
n=n,
|
||||
parallel_tool_calls=parallel_tool_calls,
|
||||
presence_penalty=presence_penalty,
|
||||
response_format=response_format,
|
||||
seed=seed,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
stream_options=stream_options,
|
||||
temperature=temperature,
|
||||
tool_choice=tool_choice,
|
||||
tools=tools,
|
||||
top_logprobs=top_logprobs,
|
||||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
messages=messages,
|
||||
frequency_penalty=frequency_penalty,
|
||||
|
|
@ -387,11 +420,4 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
|
|||
user=user,
|
||||
)
|
||||
|
||||
# Divert Llama Models through Llama Stack inference APIs because
|
||||
# Fireworks chat completions OpenAI-compatible API does not support
|
||||
# tool calls properly.
|
||||
llama_model = self.get_llama_model(model_obj.provider_resource_id)
|
||||
if llama_model:
|
||||
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(self, model=model, **params)
|
||||
|
||||
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)
|
||||
|
|
|
|||
85
llama_stack/providers/remote/inference/nvidia/NVIDIA.md
Normal file
85
llama_stack/providers/remote/inference/nvidia/NVIDIA.md
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
# NVIDIA Inference Provider for LlamaStack
|
||||
|
||||
This provider enables running inference using NVIDIA NIM.
|
||||
|
||||
## Features
|
||||
- Endpoints for completions, chat completions, and embeddings for registered models
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- LlamaStack with NVIDIA configuration
|
||||
- Access to NVIDIA NIM deployment
|
||||
- NIM for model to use for inference is deployed
|
||||
|
||||
### Setup
|
||||
|
||||
Build the NVIDIA environment:
|
||||
|
||||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
```
|
||||
|
||||
### Basic Usage using the LlamaStack Python Client
|
||||
|
||||
#### Initialize the client
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["NVIDIA_API_KEY"] = (
|
||||
"" # Required if using hosted NIM endpoint. If self-hosted, not required.
|
||||
)
|
||||
os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
### Create Completion
|
||||
|
||||
```python
|
||||
response = client.completion(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct",
|
||||
content="Complete the sentence using one word: Roses are red, violets are :",
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
print(f"Response: {response.content}")
|
||||
```
|
||||
|
||||
### Create Chat Completion
|
||||
|
||||
```python
|
||||
response = client.chat_completion(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You must respond to each message with only one word",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Complete the sentence using one word: Roses are red, violets are:",
|
||||
},
|
||||
],
|
||||
stream=False,
|
||||
sampling_params={
|
||||
"max_tokens": 50,
|
||||
},
|
||||
)
|
||||
print(f"Response: {response.completion_message.content}")
|
||||
```
|
||||
|
||||
### Create Embeddings
|
||||
```python
|
||||
response = client.embeddings(
|
||||
model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"]
|
||||
)
|
||||
print(f"Embeddings: {response.embeddings}")
|
||||
```
|
||||
|
|
@ -48,6 +48,10 @@ MODEL_ENTRIES = [
|
|||
"meta/llama-3.2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.3-70b-instruct",
|
||||
CoreModelId.llama3_3_70b_instruct.value,
|
||||
),
|
||||
# NeMo Retriever Text Embedding models -
|
||||
#
|
||||
# https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html
|
||||
|
|
|
|||
|
|
@ -129,6 +129,14 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
base_url = special_model_urls[provider_model_id]
|
||||
return _get_client_for_base_url(base_url)
|
||||
|
||||
async def _get_provider_model_id(self, model_id: str) -> str:
|
||||
if not self.model_store:
|
||||
raise RuntimeError("Model store is not set")
|
||||
model = await self.model_store.get_model(model_id)
|
||||
if model is None:
|
||||
raise ValueError(f"Model {model_id} is unknown")
|
||||
return model.provider_model_id
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -147,7 +155,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
# removing this health check as NeMo customizer endpoint health check is returning 404
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = convert_completion_request(
|
||||
request=CompletionRequest(
|
||||
model=provider_model_id,
|
||||
|
|
@ -191,7 +199,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
#
|
||||
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
|
||||
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
|
||||
model = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
|
||||
extra_body = {}
|
||||
|
||||
|
|
@ -214,8 +222,8 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
extra_body["input_type"] = task_type_options[task_type]
|
||||
|
||||
try:
|
||||
response = await self._get_client(model).embeddings.create(
|
||||
model=model,
|
||||
response = await self._get_client(provider_model_id).embeddings.create(
|
||||
model=provider_model_id,
|
||||
input=input,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
|
@ -249,10 +257,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
|
||||
# await check_health(self._config) # this raises errors
|
||||
|
||||
provider_model_id = self.get_provider_model_id(model_id)
|
||||
provider_model_id = await self._get_provider_model_id(model_id)
|
||||
request = await convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
model=provider_model_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
|
|
@ -297,7 +305,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
) -> OpenAICompletion:
|
||||
provider_model_id = self.get_provider_model_id(model)
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
|
|
@ -350,7 +358,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
provider_model_id = self.get_provider_model_id(model)
|
||||
provider_model_id = await self._get_provider_model_id(model)
|
||||
|
||||
params = await prepare_openai_completion_params(
|
||||
model=provider_model_id,
|
||||
|
|
|
|||
|
|
@ -76,8 +76,11 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
|
||||
async def shutdown(self) -> None:
|
||||
if self._client:
|
||||
await self._client.close()
|
||||
# Together client has no close method, so just set to None
|
||||
self._client = None
|
||||
if self._openai_client:
|
||||
await self._openai_client.close()
|
||||
self._openai_client = None
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
|
|
@ -359,7 +362,7 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
|
|||
top_p=top_p,
|
||||
user=user,
|
||||
)
|
||||
if params.get("stream", True):
|
||||
if params.get("stream", False):
|
||||
return self._stream_openai_chat_completion(params)
|
||||
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
||||
|
||||
|
|
|
|||
|
|
@ -231,12 +231,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
self.client = None
|
||||
|
||||
async def initialize(self) -> None:
|
||||
log.info(f"Initializing VLLM client with base_url={self.config.url}")
|
||||
self.client = AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token,
|
||||
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
|
||||
)
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
|
@ -249,6 +244,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
raise ValueError("Model store not set")
|
||||
return await self.model_store.get_model(model_id)
|
||||
|
||||
def _lazy_initialize_client(self):
|
||||
if self.client is not None:
|
||||
return
|
||||
|
||||
log.info(f"Initializing vLLM client with base_url={self.config.url}")
|
||||
self.client = self._create_client()
|
||||
|
||||
def _create_client(self):
|
||||
return AsyncOpenAI(
|
||||
base_url=self.config.url,
|
||||
api_key=self.config.api_token,
|
||||
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
|
||||
)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
|
|
@ -258,6 +267,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
|
||||
self._lazy_initialize_client()
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
|
|
@ -287,6 +297,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
logprobs: Optional[LogProbConfig] = None,
|
||||
tool_config: Optional[ToolConfig] = None,
|
||||
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
self._lazy_initialize_client()
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
model = await self._get_model(model_id)
|
||||
|
|
@ -357,9 +368,12 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
yield chunk
|
||||
|
||||
async def register_model(self, model: Model) -> Model:
|
||||
assert self.client is not None
|
||||
# register_model is called during Llama Stack initialization, hence we cannot init self.client if not initialized yet.
|
||||
# self.client should only be created after the initialization is complete to avoid asyncio cross-context errors.
|
||||
# Changing this may lead to unpredictable behavior.
|
||||
client = self._create_client() if self.client is None else self.client
|
||||
model = await self.register_helper.register_model(model)
|
||||
res = await self.client.models.list()
|
||||
res = await client.models.list()
|
||||
available_models = [m.id async for m in res]
|
||||
if model.provider_resource_id not in available_models:
|
||||
raise ValueError(
|
||||
|
|
@ -410,6 +424,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
output_dimension: Optional[int] = None,
|
||||
task_type: Optional[EmbeddingTaskType] = None,
|
||||
) -> EmbeddingsResponse:
|
||||
self._lazy_initialize_client()
|
||||
assert self.client is not None
|
||||
model = await self._get_model(model_id)
|
||||
|
||||
|
|
@ -449,6 +464,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
) -> OpenAICompletion:
|
||||
self._lazy_initialize_client()
|
||||
model_obj = await self._get_model(model)
|
||||
|
||||
extra_body: Dict[str, Any] = {}
|
||||
|
|
@ -505,6 +521,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
self._lazy_initialize_client()
|
||||
model_obj = await self._get_model(model)
|
||||
params = await prepare_openai_completion_params(
|
||||
model=model_obj.provider_resource_id,
|
||||
|
|
|
|||
|
|
@ -16,7 +16,11 @@ _MODEL_ENTRIES = [
|
|||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
)
|
||||
),
|
||||
build_hf_repo_model_entry(
|
||||
"meta/llama-3.2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -27,11 +27,12 @@ from .models import _MODEL_ENTRIES
|
|||
|
||||
# Map API status to JobStatus enum
|
||||
STATUS_MAPPING = {
|
||||
"running": "in_progress",
|
||||
"completed": "completed",
|
||||
"failed": "failed",
|
||||
"cancelled": "cancelled",
|
||||
"pending": "scheduled",
|
||||
"running": JobStatus.in_progress.value,
|
||||
"completed": JobStatus.completed.value,
|
||||
"failed": JobStatus.failed.value,
|
||||
"cancelled": JobStatus.cancelled.value,
|
||||
"pending": JobStatus.scheduled.value,
|
||||
"unknown": JobStatus.scheduled.value,
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
77
llama_stack/providers/remote/safety/nvidia/README.md
Normal file
77
llama_stack/providers/remote/safety/nvidia/README.md
Normal file
|
|
@ -0,0 +1,77 @@
|
|||
# NVIDIA Safety Provider for LlamaStack
|
||||
|
||||
This provider enables safety checks and guardrails for LLM interactions using NVIDIA's NeMo Guardrails service.
|
||||
|
||||
## Features
|
||||
|
||||
- Run safety checks for messages
|
||||
|
||||
## Getting Started
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- LlamaStack with NVIDIA configuration
|
||||
- Access to NVIDIA NeMo Guardrails service
|
||||
- NIM for model to use for safety check is deployed
|
||||
|
||||
### Setup
|
||||
|
||||
Build the NVIDIA environment:
|
||||
|
||||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
```
|
||||
|
||||
### Basic Usage using the LlamaStack Python Client
|
||||
|
||||
#### Initialize the client
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
os.environ["NVIDIA_API_KEY"] = "your-api-key"
|
||||
os.environ["NVIDIA_GUARDRAILS_URL"] = "http://guardrails.test"
|
||||
|
||||
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
|
||||
|
||||
client = LlamaStackAsLibraryClient("nvidia")
|
||||
client.initialize()
|
||||
```
|
||||
|
||||
#### Create a safety shield
|
||||
|
||||
```python
|
||||
from llama_stack.apis.safety import Shield
|
||||
from llama_stack.apis.inference import Message
|
||||
|
||||
# Create a safety shield
|
||||
shield = Shield(
|
||||
shield_id="your-shield-id",
|
||||
provider_resource_id="safety-model-id", # The model to use for safety checks
|
||||
description="Safety checks for content moderation",
|
||||
)
|
||||
|
||||
# Register the shield
|
||||
await client.safety.register_shield(shield)
|
||||
```
|
||||
|
||||
#### Run safety checks
|
||||
|
||||
```python
|
||||
# Messages to check
|
||||
messages = [Message(role="user", content="Your message to check")]
|
||||
|
||||
# Run safety check
|
||||
response = await client.safety.run_shield(
|
||||
shield_id="your-shield-id",
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# Check for violations
|
||||
if response.violation:
|
||||
print(f"Safety violation detected: {response.violation.user_message}")
|
||||
print(f"Violation level: {response.violation.violation_level}")
|
||||
print(f"Metadata: {response.violation.metadata}")
|
||||
else:
|
||||
print("No safety violations detected")
|
||||
```
|
||||
|
|
@ -8,7 +8,17 @@ import logging
|
|||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
from typing import Any, AsyncGenerator, AsyncIterator, Awaitable, Dict, Iterable, List, Optional, Union
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncGenerator,
|
||||
AsyncIterator,
|
||||
Awaitable,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Union,
|
||||
)
|
||||
|
||||
from openai import AsyncStream
|
||||
from openai.types.chat import (
|
||||
|
|
@ -78,6 +88,7 @@ from llama_stack.apis.common.content_types import (
|
|||
TextDelta,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
_URLOrData,
|
||||
)
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
|
|
@ -93,6 +104,7 @@ from llama_stack.apis.inference import (
|
|||
SamplingParams,
|
||||
SystemMessage,
|
||||
TokenLogProbs,
|
||||
ToolChoice,
|
||||
ToolResponseMessage,
|
||||
TopKSamplingStrategy,
|
||||
TopPSamplingStrategy,
|
||||
|
|
@ -103,7 +115,6 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIChatCompletion,
|
||||
OpenAICompletion,
|
||||
OpenAICompletionChoice,
|
||||
OpenAIMessageParam,
|
||||
OpenAIResponseFormatParam,
|
||||
ToolConfig,
|
||||
)
|
||||
|
|
@ -612,13 +623,10 @@ async def convert_message_to_openai_dict_new(
|
|||
)
|
||||
for tool in message.tool_calls
|
||||
]
|
||||
params = {}
|
||||
if tool_calls:
|
||||
params = {"tool_calls": tool_calls}
|
||||
out = OpenAIChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content=await _convert_message_content(message.content),
|
||||
**params,
|
||||
tool_calls=tool_calls or None,
|
||||
)
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
out = OpenAIChatCompletionToolMessage(
|
||||
|
|
@ -695,7 +703,10 @@ def to_openai_param_type(param_type: str) -> dict:
|
|||
if param_type.startswith("list[") and param_type.endswith("]"):
|
||||
inner_type = param_type[5:-1]
|
||||
if inner_type in basic_types:
|
||||
return {"type": "array", "items": {"type": basic_types.get(inner_type, inner_type)}}
|
||||
return {
|
||||
"type": "array",
|
||||
"items": {"type": basic_types.get(inner_type, inner_type)},
|
||||
}
|
||||
|
||||
return {"type": param_type}
|
||||
|
||||
|
|
@ -815,6 +826,10 @@ def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
|
|||
def _convert_openai_request_tool_config(tool_choice: Optional[Union[str, Dict[str, Any]]] = None) -> ToolConfig:
|
||||
tool_config = ToolConfig()
|
||||
if tool_choice:
|
||||
try:
|
||||
tool_choice = ToolChoice(tool_choice)
|
||||
except ValueError:
|
||||
pass
|
||||
tool_config.tool_choice = tool_choice
|
||||
return tool_config
|
||||
|
||||
|
|
@ -849,7 +864,9 @@ def _convert_openai_request_tools(tools: Optional[List[Dict[str, Any]]] = None)
|
|||
return lls_tools
|
||||
|
||||
|
||||
def _convert_openai_request_response_format(response_format: OpenAIResponseFormatParam = None):
|
||||
def _convert_openai_request_response_format(
|
||||
response_format: OpenAIResponseFormatParam = None,
|
||||
):
|
||||
if not response_format:
|
||||
return None
|
||||
# response_format can be a dict or a pydantic model
|
||||
|
|
@ -957,38 +974,50 @@ def _convert_openai_sampling_params(
|
|||
return sampling_params
|
||||
|
||||
|
||||
def _convert_openai_request_messages(messages: List[OpenAIMessageParam]):
|
||||
# Llama Stack messages and OpenAI messages are similar, but not identical.
|
||||
lls_messages = []
|
||||
def openai_messages_to_messages(
|
||||
messages: List[OpenAIChatCompletionMessage],
|
||||
) -> List[Message]:
|
||||
"""
|
||||
Convert a list of OpenAIChatCompletionMessage into a list of Message.
|
||||
"""
|
||||
converted_messages = []
|
||||
for message in messages:
|
||||
lls_message = dict(message)
|
||||
if message.role == "system":
|
||||
converted_message = SystemMessage(content=message.content)
|
||||
elif message.role == "user":
|
||||
converted_message = UserMessage(content=openai_content_to_content(message.content))
|
||||
elif message.role == "assistant":
|
||||
converted_message = CompletionMessage(
|
||||
content=message.content,
|
||||
tool_calls=_convert_openai_tool_calls(message.tool_calls),
|
||||
stop_reason=StopReason.end_of_turn,
|
||||
)
|
||||
elif message.role == "tool":
|
||||
converted_message = ToolResponseMessage(
|
||||
role="tool",
|
||||
call_id=message.tool_call_id,
|
||||
content=openai_content_to_content(message.content),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown role {message.role}")
|
||||
converted_messages.append(converted_message)
|
||||
return converted_messages
|
||||
|
||||
# Llama Stack expects `call_id` but OpenAI uses `tool_call_id`
|
||||
tool_call_id = lls_message.pop("tool_call_id", None)
|
||||
if tool_call_id:
|
||||
lls_message["call_id"] = tool_call_id
|
||||
|
||||
content = lls_message.get("content", None)
|
||||
if isinstance(content, list):
|
||||
lls_content = []
|
||||
for item in content:
|
||||
# items can either by pydantic models or dicts here...
|
||||
item = dict(item)
|
||||
if item.get("type", "") == "image_url":
|
||||
lls_item = ImageContentItem(
|
||||
type="image",
|
||||
image=URL(uri=item.get("image_url", {}).get("url", "")),
|
||||
)
|
||||
elif item.get("type", "") == "text":
|
||||
lls_item = TextContentItem(
|
||||
type="text",
|
||||
text=item.get("text", ""),
|
||||
)
|
||||
lls_content.append(lls_item)
|
||||
lls_message["content"] = lls_content
|
||||
lls_messages.append(lls_message)
|
||||
|
||||
return lls_messages
|
||||
def openai_content_to_content(content: Union[str, Iterable[OpenAIChatCompletionContentPartParam]]):
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, list):
|
||||
return [openai_content_to_content(c) for c in content]
|
||||
elif hasattr(content, "type"):
|
||||
if content.type == "text":
|
||||
return TextContentItem(type="text", text=content.text)
|
||||
elif content.type == "image_url":
|
||||
return ImageContentItem(type="image", image=_URLOrData(url=URL(uri=content.image_url.url)))
|
||||
else:
|
||||
raise ValueError(f"Unknown content type: {content.type}")
|
||||
else:
|
||||
raise ValueError(f"Unknown content type: {content}")
|
||||
|
||||
|
||||
def convert_openai_chat_completion_choice(
|
||||
|
|
@ -1313,7 +1342,7 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
|
||||
messages = _convert_openai_request_messages(messages)
|
||||
messages = openai_messages_to_messages(messages)
|
||||
response_format = _convert_openai_request_response_format(response_format)
|
||||
sampling_params = _convert_openai_sampling_params(
|
||||
max_tokens=max_tokens,
|
||||
|
|
@ -1321,7 +1350,10 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
top_p=top_p,
|
||||
)
|
||||
tool_config = _convert_openai_request_tool_config(tool_choice)
|
||||
|
||||
tools = _convert_openai_request_tools(tools)
|
||||
if tool_config.tool_choice == ToolChoice.none:
|
||||
tools = []
|
||||
|
||||
outstanding_responses = []
|
||||
# "n" is the number of completions to generate per prompt
|
||||
|
|
@ -1346,7 +1378,9 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
)
|
||||
|
||||
async def _process_stream_response(
|
||||
self, model: str, outstanding_responses: List[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]]
|
||||
self,
|
||||
model: str,
|
||||
outstanding_responses: List[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]],
|
||||
):
|
||||
id = f"chatcmpl-{uuid.uuid4()}"
|
||||
for outstanding_response in outstanding_responses:
|
||||
|
|
@ -1369,11 +1403,31 @@ class OpenAIChatCompletionToLlamaStackMixin:
|
|||
elif isinstance(event.delta, ToolCallDelta):
|
||||
if event.delta.parse_status == ToolCallParseStatus.succeeded:
|
||||
tool_call = event.delta.tool_call
|
||||
|
||||
# First chunk includes full structure
|
||||
openai_tool_call = OpenAIChoiceDeltaToolCall(
|
||||
index=0,
|
||||
id=tool_call.call_id,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
name=tool_call.tool_name, arguments=tool_call.arguments_json
|
||||
name=tool_call.tool_name,
|
||||
arguments="",
|
||||
),
|
||||
)
|
||||
delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call])
|
||||
yield OpenAIChatCompletionChunk(
|
||||
id=id,
|
||||
choices=[
|
||||
OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)
|
||||
],
|
||||
created=int(time.time()),
|
||||
model=model,
|
||||
object="chat.completion.chunk",
|
||||
)
|
||||
# arguments
|
||||
openai_tool_call = OpenAIChoiceDeltaToolCall(
|
||||
index=0,
|
||||
function=OpenAIChoiceDeltaToolCallFunction(
|
||||
arguments=tool_call.arguments_json,
|
||||
),
|
||||
)
|
||||
delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call])
|
||||
|
|
|
|||
|
|
@ -25,14 +25,84 @@ The following models are available by default:
|
|||
{% endif %}
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
## Prerequisites
|
||||
### NVIDIA API Keys
|
||||
|
||||
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
|
||||
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable.
|
||||
|
||||
### Deploy NeMo Microservices Platform
|
||||
The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform.
|
||||
|
||||
## Supported Services
|
||||
Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints.
|
||||
|
||||
### Inference: NVIDIA NIM
|
||||
NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs:
|
||||
1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key)
|
||||
2. Self-hosted: NVIDIA NIMs that run on your own infrastructure.
|
||||
|
||||
The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment.
|
||||
|
||||
### Datasetio API: NeMo Data Store
|
||||
The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint.
|
||||
|
||||
See the [NVIDIA Datasetio docs](/llama_stack/providers/remote/datasetio/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Eval API: NeMo Evaluator
|
||||
The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the [NVIDIA Eval docs](/llama_stack/providers/remote/eval/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Post-Training API: NeMo Customizer
|
||||
The NeMo Customizer microservice supports fine-tuning models. You can reference [this list of supported models](/llama_stack/providers/remote/post_training/nvidia/models.py) that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the [NVIDIA Post-Training docs](/llama_stack/providers/remote/post_training/nvidia/README.md) for supported features and example usage.
|
||||
|
||||
### Safety API: NeMo Guardrails
|
||||
The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint.
|
||||
|
||||
See the NVIDIA Safety docs for supported features and example usage.
|
||||
|
||||
## Deploying models
|
||||
In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`.
|
||||
|
||||
Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart.
|
||||
```sh
|
||||
# URL to NeMo NIM Proxy service
|
||||
export NEMO_URL="http://nemo.test"
|
||||
|
||||
curl --location "$NEMO_URL/v1/deployment/model-deployments" \
|
||||
-H 'accept: application/json' \
|
||||
-H 'Content-Type: application/json' \
|
||||
-d '{
|
||||
"name": "llama-3.2-1b-instruct",
|
||||
"namespace": "meta",
|
||||
"config": {
|
||||
"model": "meta/llama-3.2-1b-instruct",
|
||||
"nim_deployment": {
|
||||
"image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct",
|
||||
"image_tag": "1.8.3",
|
||||
"pvc_size": "25Gi",
|
||||
"gpu": 1,
|
||||
"additional_envs": {
|
||||
"NIM_GUIDED_DECODING_BACKEND": "fast_outlines"
|
||||
}
|
||||
}
|
||||
}
|
||||
}'
|
||||
```
|
||||
This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference.
|
||||
|
||||
You can also remove a deployed NIM to free up GPU resources, if needed.
|
||||
```sh
|
||||
export NEMO_URL="http://nemo.test"
|
||||
|
||||
curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct"
|
||||
```
|
||||
|
||||
## Running Llama Stack with NVIDIA
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
You can do this via Conda or venv (build code), or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
|
|
@ -54,9 +124,23 @@ docker run \
|
|||
### Via Conda
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
|
||||
llama stack build --template nvidia --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
||||
### Via venv
|
||||
|
||||
If you've set up your local development environment, you can also build the image using your local virtual environment.
|
||||
|
||||
```bash
|
||||
INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct
|
||||
llama stack build --template nvidia --image-type venv
|
||||
llama stack run ./run.yaml \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY \
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
|
|
|||
|
|
@ -59,7 +59,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
default_models = get_model_registry(available_models)
|
||||
return DistributionTemplate(
|
||||
name="nvidia",
|
||||
distro_type="remote_hosted",
|
||||
distro_type="self_hosted",
|
||||
description="Use NVIDIA NIM for running LLM inference and safety",
|
||||
container_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
|
|
|
|||
|
|
@ -174,6 +174,16 @@ models:
|
|||
provider_id: nvidia
|
||||
provider_model_id: meta/llama-3.2-90b-vision-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta/llama-3.3-70b-instruct
|
||||
provider_id: nvidia
|
||||
provider_model_id: meta/llama-3.3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.3-70B-Instruct
|
||||
provider_id: nvidia
|
||||
provider_model_id: meta/llama-3.3-70b-instruct
|
||||
model_type: llm
|
||||
- metadata:
|
||||
embedding_dimension: 2048
|
||||
context_length: 8192
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ The following environment variables can be configured:
|
|||
In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM
|
||||
server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also
|
||||
[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and
|
||||
that we only use GPUs here for demonstration purposes.
|
||||
that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging.
|
||||
|
||||
### Setting up vLLM server on AMD GPU
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue