Merge branch 'main' of https://github.com/meta-llama/llama-stack into register_custom_model

This commit is contained in:
raspawar 2025-04-24 21:44:32 +05:30
commit 0990f60dad
74 changed files with 4854 additions and 1869 deletions

View file

@ -362,6 +362,39 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
model_obj = await self.model_store.get_model(model)
# Divert Llama Models through Llama Stack inference APIs because
# Fireworks chat completions OpenAI-compatible API does not support
# tool calls properly.
llama_model = self.get_llama_model(model_obj.provider_resource_id)
if llama_model:
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(
self,
model=model,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
params = await prepare_openai_completion_params(
messages=messages,
frequency_penalty=frequency_penalty,
@ -387,11 +420,4 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv
user=user,
)
# Divert Llama Models through Llama Stack inference APIs because
# Fireworks chat completions OpenAI-compatible API does not support
# tool calls properly.
llama_model = self.get_llama_model(model_obj.provider_resource_id)
if llama_model:
return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion(self, model=model, **params)
return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params)

View file

@ -0,0 +1,85 @@
# NVIDIA Inference Provider for LlamaStack
This provider enables running inference using NVIDIA NIM.
## Features
- Endpoints for completions, chat completions, and embeddings for registered models
## Getting Started
### Prerequisites
- LlamaStack with NVIDIA configuration
- Access to NVIDIA NIM deployment
- NIM for model to use for inference is deployed
### Setup
Build the NVIDIA environment:
```bash
llama stack build --template nvidia --image-type conda
```
### Basic Usage using the LlamaStack Python Client
#### Initialize the client
```python
import os
os.environ["NVIDIA_API_KEY"] = (
"" # Required if using hosted NIM endpoint. If self-hosted, not required.
)
os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
### Create Completion
```python
response = client.completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
content="Complete the sentence using one word: Roses are red, violets are :",
stream=False,
sampling_params={
"max_tokens": 50,
},
)
print(f"Response: {response.content}")
```
### Create Chat Completion
```python
response = client.chat_completion(
model_id="meta-llama/Llama-3.1-8b-Instruct",
messages=[
{
"role": "system",
"content": "You must respond to each message with only one word",
},
{
"role": "user",
"content": "Complete the sentence using one word: Roses are red, violets are:",
},
],
stream=False,
sampling_params={
"max_tokens": 50,
},
)
print(f"Response: {response.completion_message.content}")
```
### Create Embeddings
```python
response = client.embeddings(
model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"]
)
print(f"Embeddings: {response.embeddings}")
```

View file

@ -48,6 +48,10 @@ MODEL_ENTRIES = [
"meta/llama-3.2-90b-vision-instruct",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_hf_repo_model_entry(
"meta/llama-3.3-70b-instruct",
CoreModelId.llama3_3_70b_instruct.value,
),
# NeMo Retriever Text Embedding models -
#
# https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html

View file

@ -129,6 +129,14 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
base_url = special_model_urls[provider_model_id]
return _get_client_for_base_url(base_url)
async def _get_provider_model_id(self, model_id: str) -> str:
if not self.model_store:
raise RuntimeError("Model store is not set")
model = await self.model_store.get_model(model_id)
if model is None:
raise ValueError(f"Model {model_id} is unknown")
return model.provider_model_id
async def completion(
self,
model_id: str,
@ -147,7 +155,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# removing this health check as NeMo customizer endpoint health check is returning 404
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
request = convert_completion_request(
request=CompletionRequest(
model=provider_model_id,
@ -191,7 +199,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
model = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
extra_body = {}
@ -214,8 +222,8 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._get_client(model).embeddings.create(
model=model,
response = await self._get_client(provider_model_id).embeddings.create(
model=provider_model_id,
input=input,
extra_body=extra_body,
)
@ -249,10 +257,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
model=provider_model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
@ -297,7 +305,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
) -> OpenAICompletion:
provider_model_id = self.get_provider_model_id(model)
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,
@ -350,7 +358,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
provider_model_id = self.get_provider_model_id(model)
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,

View file

@ -76,8 +76,11 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
async def shutdown(self) -> None:
if self._client:
await self._client.close()
# Together client has no close method, so just set to None
self._client = None
if self._openai_client:
await self._openai_client.close()
self._openai_client = None
async def completion(
self,
@ -359,7 +362,7 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi
top_p=top_p,
user=user,
)
if params.get("stream", True):
if params.get("stream", False):
return self._stream_openai_chat_completion(params)
return await self._get_openai_client().chat.completions.create(**params) # type: ignore

View file

@ -231,12 +231,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
self.client = None
async def initialize(self) -> None:
log.info(f"Initializing VLLM client with base_url={self.config.url}")
self.client = AsyncOpenAI(
base_url=self.config.url,
api_key=self.config.api_token,
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
)
pass
async def shutdown(self) -> None:
pass
@ -249,6 +244,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
raise ValueError("Model store not set")
return await self.model_store.get_model(model_id)
def _lazy_initialize_client(self):
if self.client is not None:
return
log.info(f"Initializing vLLM client with base_url={self.config.url}")
self.client = self._create_client()
def _create_client(self):
return AsyncOpenAI(
base_url=self.config.url,
api_key=self.config.api_token,
http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False),
)
async def completion(
self,
model_id: str,
@ -258,6 +267,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]:
self._lazy_initialize_client()
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
@ -287,6 +297,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
self._lazy_initialize_client()
if sampling_params is None:
sampling_params = SamplingParams()
model = await self._get_model(model_id)
@ -357,9 +368,12 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
yield chunk
async def register_model(self, model: Model) -> Model:
assert self.client is not None
# register_model is called during Llama Stack initialization, hence we cannot init self.client if not initialized yet.
# self.client should only be created after the initialization is complete to avoid asyncio cross-context errors.
# Changing this may lead to unpredictable behavior.
client = self._create_client() if self.client is None else self.client
model = await self.register_helper.register_model(model)
res = await self.client.models.list()
res = await client.models.list()
available_models = [m.id async for m in res]
if model.provider_resource_id not in available_models:
raise ValueError(
@ -410,6 +424,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
self._lazy_initialize_client()
assert self.client is not None
model = await self._get_model(model_id)
@ -449,6 +464,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
) -> OpenAICompletion:
self._lazy_initialize_client()
model_obj = await self._get_model(model)
extra_body: Dict[str, Any] = {}
@ -505,6 +521,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
self._lazy_initialize_client()
model_obj = await self._get_model(model)
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,