Merge branch 'main' of https://github.com/meta-llama/llama-stack into register_custom_model

This commit is contained in:
raspawar 2025-04-24 21:44:32 +05:30
commit 0990f60dad
74 changed files with 4854 additions and 1869 deletions

View file

@ -129,6 +129,14 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
base_url = special_model_urls[provider_model_id]
return _get_client_for_base_url(base_url)
async def _get_provider_model_id(self, model_id: str) -> str:
if not self.model_store:
raise RuntimeError("Model store is not set")
model = await self.model_store.get_model(model_id)
if model is None:
raise ValueError(f"Model {model_id} is unknown")
return model.provider_model_id
async def completion(
self,
model_id: str,
@ -147,7 +155,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# removing this health check as NeMo customizer endpoint health check is returning 404
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
request = convert_completion_request(
request=CompletionRequest(
model=provider_model_id,
@ -191,7 +199,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
#
flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents]
input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents]
model = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
extra_body = {}
@ -214,8 +222,8 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
extra_body["input_type"] = task_type_options[task_type]
try:
response = await self._get_client(model).embeddings.create(
model=model,
response = await self._get_client(provider_model_id).embeddings.create(
model=provider_model_id,
input=input,
extra_body=extra_body,
)
@ -249,10 +257,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
# await check_health(self._config) # this raises errors
provider_model_id = self.get_provider_model_id(model_id)
provider_model_id = await self._get_provider_model_id(model_id)
request = await convert_chat_completion_request(
request=ChatCompletionRequest(
model=self.get_provider_model_id(model_id),
model=provider_model_id,
messages=messages,
sampling_params=sampling_params,
response_format=response_format,
@ -297,7 +305,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
guided_choice: Optional[List[str]] = None,
prompt_logprobs: Optional[int] = None,
) -> OpenAICompletion:
provider_model_id = self.get_provider_model_id(model)
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,
@ -350,7 +358,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
top_p: Optional[float] = None,
user: Optional[str] = None,
) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]:
provider_model_id = self.get_provider_model_id(model)
provider_model_id = await self._get_provider_model_id(model)
params = await prepare_openai_completion_params(
model=provider_model_id,