This commit is contained in:
Botao Chen 2025-01-22 16:21:40 -08:00
parent bbb1542b95
commit 09e9445a11
2 changed files with 24 additions and 72 deletions

View file

@ -4,12 +4,14 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import os
import shutil
from pathlib import Path
from typing import Any, Dict, List
import torch
from safetensors.torch import save_file
from torchtune import training
from torchtune.models import convert_weights
from torchtune.training.checkpointing._utils import (
@ -103,7 +105,7 @@ class TorchtuneCheckpointer:
Path(self._output_dir)
/ f"{self._model_id}-{self._training_algorithm}-{epoch}"
)
if format == "meta":
if checkpoint_format == "meta":
model_file_path.mkdir(parents=True, exist_ok=True)
# copy the related files for inference
@ -176,79 +178,27 @@ class TorchtuneCheckpointer:
)
print("model_file_path", str(model_file_path))
elif format == "hf":
elif checkpoint_format == "hf":
# Note: for saving hugging face format checkpoints, we only suppport saving adapter weights now
# the config.json file contains model params needed for state dict conversion
config = json.loads(
Path.joinpath(self._checkpoint_dir, "config.json").read_text()
Path.joinpath(self._checkpoint_dir.parent, "config.json").read_text()
)
if not adapter_only:
state_dict[training.MODEL_KEY] = convert_weights.tune_to_hf(
state_dict[training.MODEL_KEY],
num_heads=config["num_attention_heads"],
num_kv_heads=config["num_key_value_heads"],
dim=config["hidden_size"],
head_dim=config.get("head_dim", None),
)
# split the state_dict into separate dicts, one for each output checkpoint file
# e.g. split_state_dicts= {
# "0001": {"key1": tensor1, "key2": tensor2},
# "0002": {"key3": tensor3}
# }
split_state_dicts: Dict[str, Dict[str, torch.Tensor]] = {}
total_size = 0
for key, weight in state_dict[training.MODEL_KEY].items():
cpt_idx = self._weight_map[key]
# initialize dict
if cpt_idx not in split_state_dicts:
split_state_dicts[cpt_idx] = {}
split_state_dicts[cpt_idx].update({key: weight})
total_size += weight.numel() * weight.element_size()
# write the partitioned state dicts to the right checkpoint file
# e.g. model-00001-of-00004.safetensors, model-00002-of-00004.safetensors, etc
num_shards = len(split_state_dicts)
map_original_name_to_new_name = {}
for cpt_idx, model_state_dict in split_state_dicts.items():
# TODO: We should probably use the original shard name and just add a prefix
# however, having the SHARD_FNAME standardizes our checkpoints
shard_name = SHARD_FNAME.format(
cpt_idx=f"{cpt_idx}".zfill(5),
num_shards=f"{num_shards}".zfill(5),
)
map_original_name_to_new_name[cpt_idx] = shard_name
output_path = Path.joinpath(model_file_path, shard_name)
output_path.parent.mkdir(parents=True, exist_ok=True)
output_path = output_path.with_suffix(".safetensors")
save_file(model_state_dict, output_path, metadata={"format": "pt"})
logger.info(
"Model checkpoint of size "
f"{os.path.getsize(output_path) / 1024**3:.2f} GiB "
f"saved to {output_path}"
)
# Save the appropriate index file based on serialization format
# e.g. {metadata: {total_size: 1234}, weight_map: {"key1": "model_0001.safetensors", "key2": "model_0002.safetensors"}}
weight_map = {
k: map_original_name_to_new_name[cpt_idx] + ".safetensors"
for k, cpt_idx in self._weight_map.items()
}
index_file_name = SAFETENSOR_INDEX_FNAME
index_path = Path.joinpath(model_file_path, index_file_name)
index_data = {
"metadata": {"total_size": total_size},
"weight_map": weight_map,
}
with open(index_path, "w") as f:
json.dump(index_data, f, indent=2)
# repo_id is necessary for when saving an adapter config, so its compatible with HF.
# This json file is produced and saved in the download step.
# contents are {"repo_id": "some_model/some_model_version"}
repo_id_path = Path.joinpath(
self._checkpoint_dir.parent, REPO_ID_FNAME
).with_suffix(".json")
self.repo_id = None
if repo_id_path.exists():
with open(repo_id_path, "r") as json_file:
data = json.load(json_file)
self.repo_id = data.get("repo_id")
if training.ADAPTER_KEY in state_dict:
# TODO: saving it "as is" is a requirement because, if we only save with
# convert_weights.tune_to_peft_adapter_weights, we do NOT have a fn
# convert_weights.peft_to_tune. The .pt format is not needed, but
@ -273,7 +223,9 @@ class TorchtuneCheckpointer:
head_dim=config.get("head_dim", None),
)
)
output_path = Path.joinpath(model_file_path, ADAPTER_MODEL_FNAME)
output_path = Path.joinpath(
model_file_path, "adapter", ADAPTER_MODEL_FNAME
)
output_path.parent.mkdir(parents=True, exist_ok=True)
output_path = output_path.with_suffix(".safetensors")
save_file(
@ -300,7 +252,7 @@ class TorchtuneCheckpointer:
)
output_path = Path.joinpath(
model_file_path, ADAPTER_CONFIG_FNAME
model_file_path, "adapter", ADAPTER_CONFIG_FNAME
).with_suffix(".json")
with open(output_path, "w") as f:
json.dump(state_dict[training.ADAPTER_CONFIG], f)
@ -313,7 +265,7 @@ class TorchtuneCheckpointer:
# Save all files in ckpt_dir, except model weights and mapping, to output_dir/epoch_{epoch}
# So its easy to run inference with the model using this epoch's checkpoint
copy_files(
self._checkpoint_dir,
self._checkpoint_dir.parent,
model_file_path,
ignore_suffixes=SUFFIXES_TO_NOT_COPY,
)

View file

@ -11,4 +11,4 @@ from pydantic import BaseModel
class TorchtunePostTrainingConfig(BaseModel):
torch_seed: Optional[int] = None
checkpoint_format: Optional[str] = "hf"
checkpoint_format: Optional[str] = "meta"