mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-05 10:13:05 +00:00
add datastore initial code
This commit is contained in:
parent
d667a7109f
commit
0a2af0e2f8
9 changed files with 293 additions and 9 deletions
|
@ -35,10 +35,10 @@ def builtin_automatically_routed_apis() -> List[AutoRoutedApiInfo]:
|
|||
routing_table_api=Api.vector_dbs,
|
||||
router_api=Api.vector_io,
|
||||
),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.datasets,
|
||||
router_api=Api.datasetio,
|
||||
),
|
||||
# AutoRoutedApiInfo(
|
||||
# routing_table_api=Api.datasets,
|
||||
# router_api=Api.datasetio,
|
||||
# ),
|
||||
AutoRoutedApiInfo(
|
||||
routing_table_api=Api.scoring_functions,
|
||||
router_api=Api.scoring,
|
||||
|
|
30
llama_stack/providers/registry/datasets.py
Normal file
30
llama_stack/providers/registry/datasets.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
from llama_stack.providers.datatypes import (
|
||||
AdapterSpec,
|
||||
Api,
|
||||
ProviderSpec,
|
||||
remote_provider_spec,
|
||||
)
|
||||
|
||||
|
||||
def available_providers() -> List[ProviderSpec]:
|
||||
return [
|
||||
remote_provider_spec(
|
||||
api=Api.datasets,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"datasets",
|
||||
],
|
||||
module="llama_stack.providers.remote.datasets.nvidia",
|
||||
config_class="llama_stack.providers.remote.datasets.nvidia.NvidiaDatasetConfig",
|
||||
),
|
||||
),
|
||||
]
|
0
llama_stack/providers/remote/datasets/nvidia/README.md
Normal file
0
llama_stack/providers/remote/datasets/nvidia/README.md
Normal file
23
llama_stack/providers/remote/datasets/nvidia/__init__.py
Normal file
23
llama_stack/providers/remote/datasets/nvidia/__init__.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .config import NvidiaDatasetConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(
|
||||
config: NvidiaDatasetConfig,
|
||||
_deps,
|
||||
):
|
||||
from .datasets import NvidiaDatasetAdapter
|
||||
|
||||
if not isinstance(config, NvidiaDatasetConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
|
||||
impl = NvidiaDatasetAdapter(config)
|
||||
return impl
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NvidiaDatasetAdapter"]
|
71
llama_stack/providers/remote/datasets/nvidia/config.py
Normal file
71
llama_stack/providers/remote/datasets/nvidia/config.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import warnings
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class NvidiaDatasetConfig(BaseModel):
|
||||
"""Configuration for NVIDIA Dataset implementation."""
|
||||
|
||||
api_key: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key.",
|
||||
)
|
||||
|
||||
dataset_namespace: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_DATASET_NAMESPACE", "default"),
|
||||
description="The NVIDIA dataset namespace.",
|
||||
)
|
||||
|
||||
access_policies: Optional[dict] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_ACCESS_POLICIES", {}),
|
||||
description="The NVIDIA access policies.",
|
||||
)
|
||||
|
||||
project_id: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_PROJECT_ID", "test-project"),
|
||||
description="The NVIDIA project ID.",
|
||||
)
|
||||
|
||||
datasets_url: str = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_DATASETS_URL", "http://nemo.test"),
|
||||
description="Base URL for the NeMo Dataset API",
|
||||
)
|
||||
|
||||
# warning for default values
|
||||
def __post_init__(self):
|
||||
default_values = []
|
||||
if os.getenv("NVIDIA_PROJECT_ID") is None:
|
||||
default_values.append("project_id='test-project'")
|
||||
if os.getenv("NVIDIA_DATASET_NAMESPACE") is None:
|
||||
default_values.append("dataset_namespace='default'")
|
||||
if os.getenv("NVIDIA_ACCESS_POLICIES") is None:
|
||||
default_values.append("access_policies='{}'")
|
||||
if os.getenv("NVIDIA_DATASETS_URL") is None:
|
||||
default_values.append("datasets_url='http://nemo.test'")
|
||||
|
||||
if default_values:
|
||||
warnings.warn(
|
||||
f"Using default values: {', '.join(default_values)}. \
|
||||
Please set the environment variables to avoid this default behavior.",
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, **kwargs) -> Dict[str, Any]:
|
||||
return {
|
||||
"api_key": "${env.NVIDIA_API_KEY:}",
|
||||
"user_id": "${env.NVIDIA_USER_ID:llama-stack-user}",
|
||||
"dataset_namespace": "${env.NVIDIA_DATASET_NAMESPACE:default}",
|
||||
"access_policies": "${env.NVIDIA_ACCESS_POLICIES:}",
|
||||
"project_id": "${env.NVIDIA_PROJECT_ID:test-project}",
|
||||
"customizer_url": "${env.NVIDIA_CUSTOMIZER_URL:}",
|
||||
"output_model_dir": "${env.NVIDIA_OUTPUT_MODEL_DIR:test-example-model@v1}",
|
||||
}
|
148
llama_stack/providers/remote/datasets/nvidia/datasets.py
Normal file
148
llama_stack/providers/remote/datasets/nvidia/datasets.py
Normal file
|
@ -0,0 +1,148 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
import aiohttp
|
||||
|
||||
from llama_stack.apis.common.content_types import URL
|
||||
from llama_stack.apis.common.type_system import ParamType
|
||||
from llama_stack.apis.datasets.datasets import Dataset, ListDatasetsResponse
|
||||
from llama_stack.apis.resource import ResourceType
|
||||
from llama_stack.schema_utils import webmethod
|
||||
|
||||
from .config import NvidiaDatasetConfig
|
||||
|
||||
|
||||
class NvidiaDatasetAdapter:
|
||||
"""Nvidia NeMo Dataset API."""
|
||||
|
||||
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
|
||||
|
||||
def __init__(self, config: NvidiaDatasetConfig):
|
||||
self.config = config
|
||||
self.headers = {}
|
||||
if config.api_key:
|
||||
self.headers["Authorization"] = f"Bearer {config.api_key}"
|
||||
|
||||
async def _make_request(
|
||||
self,
|
||||
method: str,
|
||||
path: str,
|
||||
headers: Optional[Dict[str, Any]] = None,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
json: Optional[Dict[str, Any]] = None,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
"""Helper method to make HTTP requests to the Customizer API."""
|
||||
url = f"{self.config.datasets_url}{path}"
|
||||
request_headers = self.headers.copy() # Create a copy to avoid modifying the original
|
||||
|
||||
if headers:
|
||||
request_headers.update(headers)
|
||||
|
||||
# Add content-type header for JSON requests
|
||||
if json and "Content-Type" not in request_headers:
|
||||
request_headers["Content-Type"] = "application/json"
|
||||
|
||||
async with aiohttp.ClientSession(headers=request_headers) as session:
|
||||
async with session.request(method, url, params=params, json=json, **kwargs) as response:
|
||||
if response.status >= 400:
|
||||
error_data = await response.json()
|
||||
raise Exception(f"API request failed: {error_data}")
|
||||
return await response.json()
|
||||
|
||||
@webmethod(route="/datasets", method="POST")
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
dataset_schema: Dict[str, ParamType],
|
||||
url: URL,
|
||||
provider_dataset_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> None:
|
||||
"""Register a new dataset.
|
||||
|
||||
Args:
|
||||
dataset_id: The ID of the dataset.
|
||||
dataset_schema: The schema of the dataset.
|
||||
url: The URL of the dataset.
|
||||
provider_dataset_id: The ID of the provider dataset.
|
||||
provider_id: The ID of the provider.
|
||||
metadata: The metadata of the dataset.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:namespace}", method="GET")
|
||||
async def get_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
) -> Optional[Dataset]:
|
||||
dataset_id, namespace = dataset_id.split(":")
|
||||
dataset = await self._make_request(
|
||||
method="GET",
|
||||
path=f"/v1/datasets/{namespace}/{dataset_id}",
|
||||
)
|
||||
created_at = datetime.fromisoformat(dataset.pop("created_at")) if "created_at" in dataset else datetime.now()
|
||||
identifier = dataset.pop("name")
|
||||
url = URL(uri=dataset.pop("files_url"))
|
||||
return Dataset(
|
||||
identifier=identifier,
|
||||
provider_id="nvidia", # confirm this
|
||||
url=url,
|
||||
dataset_schema={}, # ToDo: get schema from the dataset
|
||||
created_at=created_at,
|
||||
metadata=dataset,
|
||||
)
|
||||
|
||||
@webmethod(route="/datasets", method="GET")
|
||||
async def list_datasets(
|
||||
self,
|
||||
) -> ListDatasetsResponse:
|
||||
## ToDo: add pagination
|
||||
response = await self._make_request(method="GET", path="/v1/datasets")
|
||||
datasets = []
|
||||
for dataset in response["data"]:
|
||||
created_at = (
|
||||
datetime.fromisoformat(dataset.pop("created_at")) if "created_at" in dataset else datetime.now()
|
||||
)
|
||||
identifier = dataset.pop("name")
|
||||
url = URL(uri=dataset.pop("files_url"))
|
||||
datasets.append(
|
||||
Dataset(
|
||||
identifier=identifier,
|
||||
provider_id="nvidia", # confirm this
|
||||
url=url,
|
||||
dataset_schema={},
|
||||
created_at=created_at,
|
||||
metadata=dataset,
|
||||
)
|
||||
) # add remaining fields as metadata
|
||||
|
||||
return ListDatasetsResponse(data=datasets)
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="POST")
|
||||
async def update_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
dataset_schema: Dict[str, ParamType],
|
||||
url: URL,
|
||||
provider_dataset_id: Optional[str] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
metadata: Optional[Dict[str, Any]] = None,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/datasets/{dataset_id:path}", method="DELETE")
|
||||
async def unregister_dataset(
|
||||
self,
|
||||
dataset_id: str,
|
||||
namespace: Optional[str] = "default",
|
||||
) -> None: ...
|
|
@ -16,6 +16,8 @@ distribution_spec:
|
|||
- inline::meta-reference
|
||||
datasetio:
|
||||
- inline::localfs
|
||||
datasets:
|
||||
- remote::nvidia
|
||||
scoring:
|
||||
- inline::basic
|
||||
- inline::llm-as-judge
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
|
||||
from llama_stack.providers.remote.datasets.nvidia import NvidiaDatasetConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.post_training.nvidia import NvidiaPostTrainingConfig
|
||||
|
@ -24,6 +25,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["inline::localfs"],
|
||||
"datasets": ["remote::nvidia"],
|
||||
"scoring": ["inline::basic"],
|
||||
"tool_runtime": ["inline::rag-runtime"],
|
||||
}
|
||||
|
@ -39,6 +41,12 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
provider_type="remote::nvidia",
|
||||
config=NvidiaPostTrainingConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
datasets_provider = Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NvidiaDatasetConfig.sample_run_config(),
|
||||
)
|
||||
safety_provider = Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
|
@ -76,6 +84,8 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
"post_training": [post_training_provider],
|
||||
"datasets": [datasets_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
|
|
|
@ -58,11 +58,11 @@ providers:
|
|||
datasetio:
|
||||
- provider_id: localfs
|
||||
provider_type: inline::localfs
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/nvidia}/localfs_datasetio.db
|
||||
config: {}
|
||||
datasets:
|
||||
- provider_id: nvidia
|
||||
provider_type: remote::nvidia
|
||||
config: {}
|
||||
scoring:
|
||||
- provider_id: basic
|
||||
provider_type: inline::basic
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue