Merge 0fb6fecedb into sapling-pr-archive-ehhuang

This commit is contained in:
ehhuang 2025-11-05 11:22:59 -08:00 committed by GitHub
commit 0a328f0878
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 15 additions and 6 deletions

View file

@ -260,7 +260,7 @@ class VectorStoreSearchResponsePage(BaseModel):
"""
object: str = "vector_store.search_results.page"
search_query: str
search_query: list[str]
data: list[VectorStoreSearchResponse]
has_more: bool = False
next_page: str | None = None
@ -478,7 +478,7 @@ class OpenAICreateVectorStoreRequestWithExtraBody(BaseModel, extra="allow"):
name: str | None = None
file_ids: list[str] | None = None
expires_after: dict[str, Any] | None = None
chunking_strategy: dict[str, Any] | None = None
chunking_strategy: VectorStoreChunkingStrategy | None = None
metadata: dict[str, Any] | None = None

View file

@ -20,6 +20,8 @@ from llama_stack.apis.vector_io import (
SearchRankingOptions,
VectorIO,
VectorStoreChunkingStrategy,
VectorStoreChunkingStrategyStatic,
VectorStoreChunkingStrategyStaticConfig,
VectorStoreDeleteResponse,
VectorStoreFileBatchObject,
VectorStoreFileContentsResponse,
@ -167,6 +169,13 @@ class VectorIORouter(VectorIO):
if embedding_dimension is not None:
params.model_extra["embedding_dimension"] = embedding_dimension
# Set chunking strategy explicitly if not provided
if params.chunking_strategy is None or params.chunking_strategy.type == "auto":
# actualize the chunking strategy to static
params.chunking_strategy = VectorStoreChunkingStrategyStatic(
static=VectorStoreChunkingStrategyStaticConfig()
)
return await provider.openai_create_vector_store(params)
async def openai_list_vector_stores(