mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
feat: Add open benchmark template codegen (#1579)
## What does this PR do? As title, add codegen for open-benchmark template ## test checked the new generated run.yaml file and it's identical before and after the change Also add small improvement to together template so that missing TOGETHER_API_KEY won't crash the server which is the consistent user experience as other remote providers
This commit is contained in:
parent
4eee349acd
commit
0b0be70605
8 changed files with 430 additions and 84 deletions
293
llama_stack/templates/open-benchmark/open_benchmark.py
Normal file
293
llama_stack/templates/open-benchmark/open_benchmark.py
Normal file
|
@ -0,0 +1,293 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
BenchmarkInput,
|
||||
DatasetInput,
|
||||
ModelInput,
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
||||
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
ProviderModelEntry,
|
||||
)
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
|
||||
|
||||
def get_inference_providers() -> Tuple[List[Provider], List[ModelInput]]:
|
||||
# in this template, we allow each API key to be optional
|
||||
providers = [
|
||||
(
|
||||
"openai",
|
||||
[
|
||||
ProviderModelEntry(
|
||||
provider_model_id="openai/gpt-4o",
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
OpenAIConfig.sample_run_config(api_key="${env.OPENAI_API_KEY:}"),
|
||||
),
|
||||
(
|
||||
"anthropic",
|
||||
[
|
||||
ProviderModelEntry(
|
||||
provider_model_id="anthropic/claude-3-5-sonnet-latest",
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
AnthropicConfig.sample_run_config(api_key="${env.ANTHROPIC_API_KEY:}"),
|
||||
),
|
||||
(
|
||||
"gemini",
|
||||
[
|
||||
ProviderModelEntry(
|
||||
provider_model_id="gemini/gemini-1.5-flash",
|
||||
model_type=ModelType.llm,
|
||||
)
|
||||
],
|
||||
GeminiConfig.sample_run_config(api_key="${env.GEMINI_API_KEY:}"),
|
||||
),
|
||||
(
|
||||
"groq",
|
||||
[],
|
||||
GroqConfig.sample_run_config(api_key="${env.GROQ_API_KEY:}"),
|
||||
),
|
||||
(
|
||||
"together",
|
||||
[],
|
||||
TogetherImplConfig.sample_run_config(api_key="${env.TOGETHER_API_KEY:}"),
|
||||
),
|
||||
]
|
||||
inference_providers = []
|
||||
available_models = {}
|
||||
for provider_id, model_entries, config in providers:
|
||||
inference_providers.append(
|
||||
Provider(
|
||||
provider_id=provider_id,
|
||||
provider_type=f"remote::{provider_id}",
|
||||
config=config,
|
||||
)
|
||||
)
|
||||
available_models[provider_id] = model_entries
|
||||
return inference_providers, available_models
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
inference_providers, available_models = get_inference_providers()
|
||||
providers = {
|
||||
"inference": [p.provider_type for p in inference_providers],
|
||||
"vector_io": ["inline::sqlite-vec", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
"eval": ["inline::meta-reference"],
|
||||
"datasetio": ["remote::huggingface", "inline::localfs"],
|
||||
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
|
||||
"tool_runtime": [
|
||||
"remote::brave-search",
|
||||
"remote::tavily-search",
|
||||
"inline::code-interpreter",
|
||||
"inline::rag-runtime",
|
||||
"remote::model-context-protocol",
|
||||
],
|
||||
}
|
||||
name = "open-benchmark"
|
||||
|
||||
vector_io_providers = [
|
||||
Provider(
|
||||
provider_id="sqlite-vec",
|
||||
provider_type="inline::sqlite-vec",
|
||||
config=SQLiteVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_CHROMADB+chromadb}",
|
||||
provider_type="remote::chromadb",
|
||||
config=ChromaVectorIOConfig.sample_run_config(url="${env.CHROMADB_URL:}"),
|
||||
),
|
||||
Provider(
|
||||
provider_id="${env.ENABLE_PGVECTOR+pgvector}",
|
||||
provider_type="remote::pgvector",
|
||||
config=PGVectorVectorIOConfig.sample_run_config(
|
||||
db="${env.PGVECTOR_DB:}",
|
||||
user="${env.PGVECTOR_USER:}",
|
||||
password="${env.PGVECTOR_PASSWORD:}",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
||||
default_tool_groups = [
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::websearch",
|
||||
provider_id="tavily-search",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::rag",
|
||||
provider_id="rag-runtime",
|
||||
),
|
||||
ToolGroupInput(
|
||||
toolgroup_id="builtin::code_interpreter",
|
||||
provider_id="code-interpreter",
|
||||
),
|
||||
]
|
||||
|
||||
default_models = get_model_registry(available_models) + [
|
||||
ModelInput(
|
||||
model_id="meta-llama/Llama-3.3-70B-Instruct",
|
||||
provider_id="groq",
|
||||
provider_model_id="groq/llama-3.3-70b-versatile",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
ModelInput(
|
||||
model_id="meta-llama/Llama-3.1-405B-Instruct",
|
||||
provider_id="together",
|
||||
provider_model_id="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
||||
model_type=ModelType.llm,
|
||||
),
|
||||
]
|
||||
|
||||
default_datasets = [
|
||||
DatasetInput(
|
||||
dataset_id="simpleqa",
|
||||
provider_id="huggingface",
|
||||
url={"uri": "https://huggingface.co/datasets/llamastack/simpleqa"},
|
||||
metadata={
|
||||
"path": "llamastack/simpleqa",
|
||||
"split": "train",
|
||||
},
|
||||
dataset_schema={
|
||||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "string"},
|
||||
},
|
||||
),
|
||||
DatasetInput(
|
||||
dataset_id="mmlu_cot",
|
||||
provider_id="huggingface",
|
||||
url={"uri": "https://huggingface.co/datasets/llamastack/mmlu_cot"},
|
||||
metadata={
|
||||
"path": "llamastack/mmlu_cot",
|
||||
"name": "all",
|
||||
"split": "test",
|
||||
},
|
||||
dataset_schema={
|
||||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "string"},
|
||||
},
|
||||
),
|
||||
DatasetInput(
|
||||
dataset_id="gpqa_cot",
|
||||
provider_id="huggingface",
|
||||
url={"uri": "https://huggingface.co/datasets/llamastack/gpqa_0shot_cot"},
|
||||
metadata={
|
||||
"path": "llamastack/gpqa_0shot_cot",
|
||||
"name": "gpqa_main",
|
||||
"split": "train",
|
||||
},
|
||||
dataset_schema={
|
||||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "string"},
|
||||
},
|
||||
),
|
||||
DatasetInput(
|
||||
dataset_id="math_500",
|
||||
provider_id="huggingface",
|
||||
url={"uri": "https://huggingface.co/datasets/llamastack/math_500"},
|
||||
metadata={
|
||||
"path": "llamastack/math_500",
|
||||
"split": "test",
|
||||
},
|
||||
dataset_schema={
|
||||
"input_query": {"type": "string"},
|
||||
"expected_answer": {"type": "string"},
|
||||
"chat_completion_input": {"type": "string"},
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
default_benchmarks = [
|
||||
BenchmarkInput(
|
||||
benchmark_id="meta-reference-simpleqa",
|
||||
dataset_id="simpleqa",
|
||||
scoring_functions=["llm-as-judge::405b-simpleqa"],
|
||||
),
|
||||
BenchmarkInput(
|
||||
benchmark_id="meta-reference-mmlu-cot",
|
||||
dataset_id="mmlu_cot",
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
),
|
||||
BenchmarkInput(
|
||||
benchmark_id="meta-reference-gpqa-cot",
|
||||
dataset_id="gpqa_cot",
|
||||
scoring_functions=["basic::regex_parser_multiple_choice_answer"],
|
||||
),
|
||||
BenchmarkInput(
|
||||
benchmark_id="meta-reference-math-500",
|
||||
dataset_id="math_500",
|
||||
scoring_functions=["basic::regex_parser_math_response"],
|
||||
),
|
||||
]
|
||||
return DistributionTemplate(
|
||||
name=name,
|
||||
distro_type="self_hosted",
|
||||
description="Distribution for running open benchmarks",
|
||||
container_image=None,
|
||||
template_path=None,
|
||||
providers=providers,
|
||||
available_models_by_provider=available_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": inference_providers,
|
||||
"vector_io": vector_io_providers,
|
||||
},
|
||||
default_models=default_models,
|
||||
default_tool_groups=default_tool_groups,
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
default_datasets=default_datasets,
|
||||
default_benchmarks=default_benchmarks,
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"TOGETHER_API_KEY": (
|
||||
"",
|
||||
"Together API Key",
|
||||
),
|
||||
"OPENAI_API_KEY": (
|
||||
"",
|
||||
"OpenAI API Key",
|
||||
),
|
||||
"GEMINI_API_KEY": (
|
||||
"",
|
||||
"Gemini API Key",
|
||||
),
|
||||
"ANTHROPIC_API_KEY": (
|
||||
"",
|
||||
"Anthropic API Key",
|
||||
),
|
||||
"GROQ_API_KEY": (
|
||||
"",
|
||||
"Groq API Key",
|
||||
),
|
||||
},
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue