mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
clean up
This commit is contained in:
parent
a6baa7b3d4
commit
0b9480a0e3
5 changed files with 0 additions and 18 deletions
|
@ -590,7 +590,6 @@ class InferenceRouter(Inference):
|
||||||
|
|
||||||
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
|
async def _nonstream_openai_chat_completion(self, provider: Inference, params: dict) -> OpenAIChatCompletion:
|
||||||
response = await provider.openai_chat_completion(**params)
|
response = await provider.openai_chat_completion(**params)
|
||||||
|
|
||||||
for choice in response.choices:
|
for choice in response.choices:
|
||||||
# some providers return an empty list for no tool calls in non-streaming responses
|
# some providers return an empty list for no tool calls in non-streaming responses
|
||||||
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
|
# but the OpenAI API returns None. So, set tool_calls to None if it's empty
|
||||||
|
|
|
@ -61,7 +61,6 @@ MODEL_ENTRIES = [
|
||||||
),
|
),
|
||||||
ProviderModelEntry(
|
ProviderModelEntry(
|
||||||
provider_model_id="nomic-ai/nomic-embed-text-v1.5",
|
provider_model_id="nomic-ai/nomic-embed-text-v1.5",
|
||||||
aliases=["nomic-ai/nomic-embed-text-v1.5"],
|
|
||||||
model_type=ModelType.embedding,
|
model_type=ModelType.embedding,
|
||||||
metadata={
|
metadata={
|
||||||
"embedding_dimension": 768,
|
"embedding_dimension": 768,
|
||||||
|
|
|
@ -13,13 +13,6 @@ import pytest
|
||||||
from ..test_cases.test_case import TestCase
|
from ..test_cases.test_case import TestCase
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(autouse=True)
|
|
||||||
def rate_limit_delay():
|
|
||||||
"""Add delay between tests to avoid rate limiting from providers like Fireworks"""
|
|
||||||
yield
|
|
||||||
time.sleep(30) # 30 second delay after each test
|
|
||||||
|
|
||||||
|
|
||||||
def _normalize_text(text: str) -> str:
|
def _normalize_text(text: str) -> str:
|
||||||
"""
|
"""
|
||||||
Normalize Unicode text by removing diacritical marks for comparison.
|
Normalize Unicode text by removing diacritical marks for comparison.
|
||||||
|
|
|
@ -6,7 +6,6 @@
|
||||||
|
|
||||||
import base64
|
import base64
|
||||||
import struct
|
import struct
|
||||||
import time
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from openai import OpenAI
|
from openai import OpenAI
|
||||||
|
@ -14,13 +13,6 @@ from openai import OpenAI
|
||||||
from llama_stack.core.library_client import LlamaStackAsLibraryClient
|
from llama_stack.core.library_client import LlamaStackAsLibraryClient
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture(autouse=True)
|
|
||||||
def rate_limit_delay():
|
|
||||||
"""Add delay between tests to avoid rate limiting from providers like Fireworks"""
|
|
||||||
yield
|
|
||||||
time.sleep(30) # 30 second delay after each test
|
|
||||||
|
|
||||||
|
|
||||||
def decode_base64_to_floats(base64_string: str) -> list[float]:
|
def decode_base64_to_floats(base64_string: str) -> list[float]:
|
||||||
"""Helper function to decode base64 string to list of float32 values."""
|
"""Helper function to decode base64 string to list of float32 values."""
|
||||||
embedding_bytes = base64.b64decode(base64_string)
|
embedding_bytes = base64.b64decode(base64_string)
|
||||||
|
|
|
@ -115,7 +115,6 @@ SETUP_DEFINITIONS: dict[str, Setup] = {
|
||||||
"text_model": "accounts/fireworks/models/llama-v3p1-8b-instruct",
|
"text_model": "accounts/fireworks/models/llama-v3p1-8b-instruct",
|
||||||
"vision_model": "accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
"vision_model": "accounts/fireworks/models/llama-v3p2-90b-vision-instruct",
|
||||||
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
|
"embedding_model": "nomic-ai/nomic-embed-text-v1.5",
|
||||||
# "embedding_model": "accounts/fireworks/models/qwen3-embedding-8b",
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue