feat: update search for vector_stores (#2441)

Updated the `search` functionality return response to match openai. 

## Test Plan
```
pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
This commit is contained in:
Hardik Shah 2025-06-12 15:34:22 -07:00 committed by GitHub
parent 35c2817d0a
commit 0bc1747ed8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 236 additions and 106 deletions

View file

@ -8,7 +8,7 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Protocol, runtime_checkable
from typing import Any, Literal, Protocol, runtime_checkable
from pydantic import BaseModel, Field
@ -96,13 +96,30 @@ class VectorStoreSearchRequest(BaseModel):
rewrite_query: bool = False
@json_schema_type
class VectorStoreContent(BaseModel):
type: Literal["text"]
text: str
@json_schema_type
class VectorStoreSearchResponse(BaseModel):
"""Response from searching a vector store."""
file_id: str
filename: str
score: float
attributes: dict[str, str | float | bool] | None = None
content: list[VectorStoreContent]
@json_schema_type
class VectorStoreSearchResponsePage(BaseModel):
"""Response from searching a vector store."""
object: str = "vector_store.search_results.page"
search_query: str
data: list[dict[str, Any]]
data: list[VectorStoreSearchResponse]
has_more: bool = False
next_page: str | None = None
@ -259,7 +276,7 @@ class VectorIO(Protocol):
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
"""Search for chunks in a vector store.
Searches a vector store for relevant chunks based on a query and optional file attribute filters.

View file

@ -17,7 +17,7 @@ from llama_stack.apis.vector_io import (
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.log import get_logger
from llama_stack.providers.datatypes import RoutingTable
@ -242,7 +242,7 @@ class VectorIORouter(VectorIO):
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
logger.debug(f"VectorIORouter.openai_search_vector_store: {vector_store_id}")
# Route based on vector store ID
provider = self.routing_table.get_provider_impl(vector_store_id)

View file

@ -21,7 +21,7 @@ from llama_stack.apis.vector_io import (
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig
@ -239,5 +239,5 @@ class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Chroma")

View file

@ -23,7 +23,7 @@ from llama_stack.apis.vector_io import (
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
@ -237,7 +237,7 @@ class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -21,7 +21,7 @@ from llama_stack.apis.vector_io import (
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig
@ -239,5 +239,5 @@ class QdrantVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
max_num_results: int | None = 10,
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
raise NotImplementedError("OpenAI Vector Stores API is not supported in Qdrant")

View file

@ -13,10 +13,12 @@ from typing import Any
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.apis.vector_io import (
QueryChunksResponse,
VectorStoreContent,
VectorStoreDeleteResponse,
VectorStoreListResponse,
VectorStoreObject,
VectorStoreSearchResponse,
VectorStoreSearchResponsePage,
)
logger = logging.getLogger(__name__)
@ -85,7 +87,6 @@ class OpenAIVectorStoreMixin(ABC):
provider_vector_db_id: str | None = None,
) -> VectorStoreObject:
"""Creates a vector store."""
print("IN OPENAI VECTOR STORE MIXIN, openai_create_vector_store")
# store and vector_db have the same id
store_id = name or str(uuid.uuid4())
created_at = int(time.time())
@ -281,7 +282,7 @@ class OpenAIVectorStoreMixin(ABC):
ranking_options: dict[str, Any] | None = None,
rewrite_query: bool | None = False,
# search_mode: Literal["keyword", "vector", "hybrid"] = "vector",
) -> VectorStoreSearchResponse:
) -> VectorStoreSearchResponsePage:
"""Search for chunks in a vector store."""
# TODO: Add support in the API for this
search_mode = "vector"
@ -312,7 +313,7 @@ class OpenAIVectorStoreMixin(ABC):
# Convert response to OpenAI format
data = []
for i, (chunk, score) in enumerate(zip(response.chunks, response.scores, strict=False)):
for chunk, score in zip(response.chunks, response.scores, strict=False):
# Apply score based filtering
if score < score_threshold:
continue
@ -323,18 +324,46 @@ class OpenAIVectorStoreMixin(ABC):
if not self._matches_filters(chunk.metadata, filters):
continue
chunk_data = {
"id": f"chunk_{i}",
"object": "vector_store.search_result",
"score": score,
"content": chunk.content.content if hasattr(chunk.content, "content") else str(chunk.content),
"metadata": chunk.metadata,
}
data.append(chunk_data)
# content is InterleavedContent
if isinstance(chunk.content, str):
content = [
VectorStoreContent(
type="text",
text=chunk.content,
)
]
elif isinstance(chunk.content, list):
# TODO: Add support for other types of content
content = [
VectorStoreContent(
type="text",
text=item.text,
)
for item in chunk.content
if item.type == "text"
]
else:
if chunk.content.type != "text":
raise ValueError(f"Unsupported content type: {chunk.content.type}")
content = [
VectorStoreContent(
type="text",
text=chunk.content.text,
)
]
response_data_item = VectorStoreSearchResponse(
file_id=chunk.metadata.get("file_id", ""),
filename=chunk.metadata.get("filename", ""),
score=score,
attributes=chunk.metadata,
content=content,
)
data.append(response_data_item)
if len(data) >= max_num_results:
break
return VectorStoreSearchResponse(
return VectorStoreSearchResponsePage(
search_query=search_query,
data=data,
has_more=False, # For simplicity, we don't implement pagination here
@ -344,7 +373,7 @@ class OpenAIVectorStoreMixin(ABC):
except Exception as e:
logger.error(f"Error searching vector store {vector_store_id}: {e}")
# Return empty results on error
return VectorStoreSearchResponse(
return VectorStoreSearchResponsePage(
search_query=search_query,
data=[],
has_more=False,