feat: update search for vector_stores (#2441)

Updated the `search` functionality return response to match openai. 

## Test Plan
```
pytest -sv --stack-config=http://localhost:8321 tests/integration/vector_io/test_openai_vector_stores.py --embedding-model all-MiniLM-L6-v2
```
This commit is contained in:
Hardik Shah 2025-06-12 15:34:22 -07:00 committed by GitHub
parent 35c2817d0a
commit 0bc1747ed8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 236 additions and 106 deletions

View file

@ -34,6 +34,13 @@ def openai_client(client_with_models):
return OpenAI(base_url=base_url, api_key="fake")
@pytest.fixture(params=["openai_client"]) # , "llama_stack_client"])
def compat_client(request, client_with_models):
if request.param == "openai_client" and isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI client tests not supported with library client")
return request.getfixturevalue(request.param)
@pytest.fixture(scope="session")
def sample_chunks():
return [
@ -57,29 +64,29 @@ def sample_chunks():
@pytest.fixture(scope="function")
def openai_client_with_empty_stores(openai_client):
def compat_client_with_empty_stores(compat_client):
def clear_vector_stores():
# List and delete all existing vector stores
try:
response = openai_client.vector_stores.list()
response = compat_client.vector_stores.list()
for store in response.data:
openai_client.vector_stores.delete(vector_store_id=store.id)
compat_client.vector_stores.delete(vector_store_id=store.id)
except Exception:
# If the API is not available or fails, just continue
logger.warning("Failed to clear vector stores")
pass
clear_vector_stores()
yield openai_client
yield compat_client
# Clean up after the test
clear_vector_stores()
def test_openai_create_vector_store(openai_client_with_empty_stores, client_with_models):
def test_openai_create_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test creating a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a vector store
vector_store = client.vector_stores.create(
@ -96,11 +103,11 @@ def test_openai_create_vector_store(openai_client_with_empty_stores, client_with
assert hasattr(vector_store, "created_at")
def test_openai_list_vector_stores(openai_client_with_empty_stores, client_with_models):
def test_openai_list_vector_stores(compat_client_with_empty_stores, client_with_models):
"""Test listing vector stores using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a few vector stores
store1 = client.vector_stores.create(name="store1", metadata={"type": "test"})
@ -123,11 +130,11 @@ def test_openai_list_vector_stores(openai_client_with_empty_stores, client_with_
assert len(limited_response.data) == 1
def test_openai_retrieve_vector_store(openai_client_with_empty_stores, client_with_models):
def test_openai_retrieve_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test retrieving a specific vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a vector store
created_store = client.vector_stores.create(name="retrieve_test_store", metadata={"purpose": "retrieval_test"})
@ -142,11 +149,11 @@ def test_openai_retrieve_vector_store(openai_client_with_empty_stores, client_wi
assert retrieved_store.object == "vector_store"
def test_openai_update_vector_store(openai_client_with_empty_stores, client_with_models):
def test_openai_update_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test modifying a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a vector store
created_store = client.vector_stores.create(name="original_name", metadata={"version": "1.0"})
@ -165,11 +172,11 @@ def test_openai_update_vector_store(openai_client_with_empty_stores, client_with
assert modified_store.last_active_at > created_store.last_active_at
def test_openai_delete_vector_store(openai_client_with_empty_stores, client_with_models):
def test_openai_delete_vector_store(compat_client_with_empty_stores, client_with_models):
"""Test deleting a vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a vector store
created_store = client.vector_stores.create(name="delete_test_store", metadata={"purpose": "deletion_test"})
@ -187,11 +194,11 @@ def test_openai_delete_vector_store(openai_client_with_empty_stores, client_with
client.vector_stores.retrieve(vector_store_id=created_store.id)
def test_openai_vector_store_search_empty(openai_client_with_empty_stores, client_with_models):
def test_openai_vector_store_search_empty(compat_client_with_empty_stores, client_with_models):
"""Test searching an empty vector store using OpenAI API."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
client = openai_client_with_empty_stores
client = compat_client_with_empty_stores
# Create a vector store
vector_store = client.vector_stores.create(name="search_test_store", metadata={"purpose": "search_testing"})
@ -208,15 +215,15 @@ def test_openai_vector_store_search_empty(openai_client_with_empty_stores, clien
assert search_response.has_more is False
def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client_with_models, sample_chunks):
def test_openai_vector_store_with_chunks(compat_client_with_empty_stores, client_with_models, sample_chunks):
"""Test vector store functionality with actual chunks using both OpenAI and native APIs."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
openai_client = openai_client_with_empty_stores
compat_client = compat_client_with_empty_stores
llama_client = client_with_models
# Create a vector store using OpenAI API
vector_store = openai_client.vector_stores.create(name="chunks_test_store", metadata={"purpose": "chunks_testing"})
vector_store = compat_client.vector_stores.create(name="chunks_test_store", metadata={"purpose": "chunks_testing"})
# Insert chunks using the native LlamaStack API (since OpenAI API doesn't have direct chunk insertion)
llama_client.vector_io.insert(
@ -225,7 +232,7 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
)
# Search using OpenAI API
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query="What is Python programming language?", max_num_results=3
)
assert search_response is not None
@ -233,18 +240,19 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
# The top result should be about Python (doc1)
top_result = search_response.data[0]
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
assert top_result.metadata["document_id"] == "doc1"
top_content = top_result.content[0].text
assert "python" in top_content.lower() or "programming" in top_content.lower()
assert top_result.attributes["document_id"] == "doc1"
# Test filtering by metadata
filtered_search = openai_client.vector_stores.search(
filtered_search = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query="artificial intelligence", filters={"topic": "ai"}, max_num_results=5
)
assert filtered_search is not None
# All results should have topic "ai"
for result in filtered_search.data:
assert result.metadata["topic"] == "ai"
assert result.attributes["topic"] == "ai"
@pytest.mark.parametrize(
@ -257,18 +265,18 @@ def test_openai_vector_store_with_chunks(openai_client_with_empty_stores, client
],
)
def test_openai_vector_store_search_relevance(
openai_client_with_empty_stores, client_with_models, sample_chunks, test_case
compat_client_with_empty_stores, client_with_models, sample_chunks, test_case
):
"""Test that OpenAI vector store search returns relevant results for different queries."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
openai_client = openai_client_with_empty_stores
compat_client = compat_client_with_empty_stores
llama_client = client_with_models
query, expected_doc_id, expected_topic = test_case
# Create a vector store
vector_store = openai_client.vector_stores.create(
vector_store = compat_client.vector_stores.create(
name=f"relevance_test_{expected_doc_id}", metadata={"purpose": "relevance_testing"}
)
@ -279,7 +287,7 @@ def test_openai_vector_store_search_relevance(
)
# Search using OpenAI API
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id, query=query, max_num_results=4
)
@ -288,8 +296,9 @@ def test_openai_vector_store_search_relevance(
# The top result should match the expected document
top_result = search_response.data[0]
assert top_result.metadata["document_id"] == expected_doc_id
assert top_result.metadata["topic"] == expected_topic
assert top_result.attributes["document_id"] == expected_doc_id
assert top_result.attributes["topic"] == expected_topic
# Verify score is included and reasonable
assert isinstance(top_result.score, int | float)
@ -297,16 +306,16 @@ def test_openai_vector_store_search_relevance(
def test_openai_vector_store_search_with_ranking_options(
openai_client_with_empty_stores, client_with_models, sample_chunks
compat_client_with_empty_stores, client_with_models, sample_chunks
):
"""Test OpenAI vector store search with ranking options."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
openai_client = openai_client_with_empty_stores
compat_client = compat_client_with_empty_stores
llama_client = client_with_models
# Create a vector store
vector_store = openai_client.vector_stores.create(
vector_store = compat_client.vector_stores.create(
name="ranking_test_store", metadata={"purpose": "ranking_testing"}
)
@ -318,7 +327,7 @@ def test_openai_vector_store_search_with_ranking_options(
# Search with ranking options
threshold = 0.1
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id,
query="machine learning and artificial intelligence",
max_num_results=3,
@ -334,16 +343,16 @@ def test_openai_vector_store_search_with_ranking_options(
def test_openai_vector_store_search_with_high_score_filter(
openai_client_with_empty_stores, client_with_models, sample_chunks
compat_client_with_empty_stores, client_with_models, sample_chunks
):
"""Test that searching with text very similar to a document and high score threshold returns only that document."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
openai_client = openai_client_with_empty_stores
compat_client = compat_client_with_empty_stores
llama_client = client_with_models
# Create a vector store
vector_store = openai_client.vector_stores.create(
vector_store = compat_client.vector_stores.create(
name="high_score_filter_test", metadata={"purpose": "high_score_filtering"}
)
@ -358,7 +367,7 @@ def test_openai_vector_store_search_with_high_score_filter(
query = "Python is a high-level programming language with code readability and fewer lines than C++ or Java"
# picking up thrshold to be slightly higher than the second result
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id,
query=query,
max_num_results=3,
@ -367,7 +376,7 @@ def test_openai_vector_store_search_with_high_score_filter(
threshold = search_response.data[1].score + 0.0001
# we expect only one result with the requested threshold
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id,
query=query,
max_num_results=10, # Allow more results but expect filtering
@ -379,25 +388,26 @@ def test_openai_vector_store_search_with_high_score_filter(
# The top result should be the Python document (doc1)
top_result = search_response.data[0]
assert top_result.metadata["document_id"] == "doc1"
assert top_result.metadata["topic"] == "programming"
assert top_result.attributes["document_id"] == "doc1"
assert top_result.attributes["topic"] == "programming"
assert top_result.score >= threshold
# Verify the content contains Python-related terms
assert "python" in top_result.content.lower() or "programming" in top_result.content.lower()
top_content = top_result.content[0].text
assert "python" in top_content.lower() or "programming" in top_content.lower()
def test_openai_vector_store_search_with_max_num_results(
openai_client_with_empty_stores, client_with_models, sample_chunks
compat_client_with_empty_stores, client_with_models, sample_chunks
):
"""Test OpenAI vector store search with max_num_results."""
skip_if_provider_doesnt_support_openai_vector_stores(client_with_models)
openai_client = openai_client_with_empty_stores
compat_client = compat_client_with_empty_stores
llama_client = client_with_models
# Create a vector store
vector_store = openai_client.vector_stores.create(
vector_store = compat_client.vector_stores.create(
name="max_num_results_test_store", metadata={"purpose": "max_num_results_testing"}
)
@ -408,7 +418,7 @@ def test_openai_vector_store_search_with_max_num_results(
)
# Search with max_num_results
search_response = openai_client.vector_stores.search(
search_response = compat_client.vector_stores.search(
vector_store_id=vector_store.id,
query="machine learning and artificial intelligence",
max_num_results=2,