mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
chore(api)!: remove tool_runtime.rag_tool from the API surface (#4067)
RAG aka file search is implemented via the Responses API by specifying the file-search tool. The backend implementation remains unchanged. This PR merely removes the directly exposed API surface which allowed users to directly perform searches from the client. This facility is now available via the `client.vector_store.search()` OpenAI compatible API.
This commit is contained in:
parent
a8a8aa56c0
commit
0c49a53c97
10 changed files with 4 additions and 1117 deletions
|
|
@ -5,18 +5,13 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum, StrEnum
|
||||
from typing import Annotated, Any, Literal, Protocol
|
||||
from typing import Annotated, Any, Literal
|
||||
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from typing_extensions import runtime_checkable
|
||||
|
||||
from llama_stack.apis.common.content_types import URL, InterleavedContent
|
||||
from llama_stack.apis.version import LLAMA_STACK_API_V1
|
||||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RRFRanker(BaseModel):
|
||||
"""
|
||||
Reciprocal Rank Fusion (RRF) ranker configuration.
|
||||
|
|
@ -30,7 +25,6 @@ class RRFRanker(BaseModel):
|
|||
impact_factor: float = Field(default=60.0, gt=0.0) # default of 60 for optimal performance
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class WeightedRanker(BaseModel):
|
||||
"""
|
||||
Weighted ranker configuration that combines vector and keyword scores.
|
||||
|
|
@ -55,10 +49,8 @@ Ranker = Annotated[
|
|||
RRFRanker | WeightedRanker,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(Ranker, name="Ranker")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGDocument(BaseModel):
|
||||
"""
|
||||
A document to be used for document ingestion in the RAG Tool.
|
||||
|
|
@ -75,7 +67,6 @@ class RAGDocument(BaseModel):
|
|||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGQueryResult(BaseModel):
|
||||
"""Result of a RAG query containing retrieved content and metadata.
|
||||
|
||||
|
|
@ -87,7 +78,6 @@ class RAGQueryResult(BaseModel):
|
|||
metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGQueryGenerator(Enum):
|
||||
"""Types of query generators for RAG systems.
|
||||
|
||||
|
|
@ -101,7 +91,6 @@ class RAGQueryGenerator(Enum):
|
|||
custom = "custom"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGSearchMode(StrEnum):
|
||||
"""
|
||||
Search modes for RAG query retrieval:
|
||||
|
|
@ -115,7 +104,6 @@ class RAGSearchMode(StrEnum):
|
|||
HYBRID = "hybrid"
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class DefaultRAGQueryGeneratorConfig(BaseModel):
|
||||
"""Configuration for the default RAG query generator.
|
||||
|
||||
|
|
@ -127,7 +115,6 @@ class DefaultRAGQueryGeneratorConfig(BaseModel):
|
|||
separator: str = " "
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class LLMRAGQueryGeneratorConfig(BaseModel):
|
||||
"""Configuration for the LLM-based RAG query generator.
|
||||
|
||||
|
|
@ -145,10 +132,8 @@ RAGQueryGeneratorConfig = Annotated[
|
|||
DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class RAGQueryConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the RAG query generation.
|
||||
|
|
@ -181,38 +166,3 @@ class RAGQueryConfig(BaseModel):
|
|||
if len(v) == 0:
|
||||
raise ValueError("chunk_template must not be empty")
|
||||
return v
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class RAGToolRuntime(Protocol):
|
||||
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def insert(
|
||||
self,
|
||||
documents: list[RAGDocument],
|
||||
vector_store_id: str,
|
||||
chunk_size_in_tokens: int = 512,
|
||||
) -> None:
|
||||
"""Index documents so they can be used by the RAG system.
|
||||
|
||||
:param documents: List of documents to index in the RAG system
|
||||
:param vector_store_id: ID of the vector database to store the document embeddings
|
||||
:param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing
|
||||
"""
|
||||
...
|
||||
|
||||
@webmethod(route="/tool-runtime/rag-tool/query", method="POST", level=LLAMA_STACK_API_V1)
|
||||
async def query(
|
||||
self,
|
||||
content: InterleavedContent,
|
||||
vector_store_ids: list[str],
|
||||
query_config: RAGQueryConfig | None = None,
|
||||
) -> RAGQueryResult:
|
||||
"""Query the RAG system for context; typically invoked by the agent.
|
||||
|
||||
:param content: The query content to search for in the indexed documents
|
||||
:param vector_store_ids: List of vector database IDs to search within
|
||||
:param query_config: (Optional) Configuration parameters for the query operation
|
||||
:returns: RAGQueryResult containing the retrieved content and metadata
|
||||
"""
|
||||
...
|
||||
|
|
|
|||
|
|
@ -16,8 +16,6 @@ from llama_stack.apis.version import LLAMA_STACK_API_V1
|
|||
from llama_stack.core.telemetry.trace_protocol import trace_protocol
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
from .rag_tool import RAGToolRuntime
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class ToolDef(BaseModel):
|
||||
|
|
@ -195,8 +193,6 @@ class SpecialToolGroup(Enum):
|
|||
class ToolRuntime(Protocol):
|
||||
tool_store: ToolStore | None = None
|
||||
|
||||
rag_tool: RAGToolRuntime | None = None
|
||||
|
||||
# TODO: This needs to be renamed once OPEN API generator name conflict issue is fixed.
|
||||
@webmethod(route="/tool-runtime/list-tools", method="GET", level=LLAMA_STACK_API_V1)
|
||||
async def list_runtime_tools(
|
||||
|
|
|
|||
|
|
@ -8,14 +8,9 @@ from typing import Any
|
|||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
)
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
|
|
@ -26,36 +21,6 @@ logger = get_logger(name=__name__, category="core::routers")
|
|||
|
||||
|
||||
class ToolRuntimeRouter(ToolRuntime):
|
||||
class RagToolImpl(RAGToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: ToolGroupsRoutingTable,
|
||||
) -> None:
|
||||
logger.debug("Initializing ToolRuntimeRouter.RagToolImpl")
|
||||
self.routing_table = routing_table
|
||||
|
||||
async def query(
|
||||
self,
|
||||
content: InterleavedContent,
|
||||
vector_store_ids: list[str],
|
||||
query_config: RAGQueryConfig | None = None,
|
||||
) -> RAGQueryResult:
|
||||
logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}")
|
||||
provider = await self.routing_table.get_provider_impl("knowledge_search")
|
||||
return await provider.query(content, vector_store_ids, query_config)
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: list[RAGDocument],
|
||||
vector_store_id: str,
|
||||
chunk_size_in_tokens: int = 512,
|
||||
) -> None:
|
||||
logger.debug(
|
||||
f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}"
|
||||
)
|
||||
provider = await self.routing_table.get_provider_impl("insert_into_memory")
|
||||
return await provider.insert(documents, vector_store_id, chunk_size_in_tokens)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
routing_table: ToolGroupsRoutingTable,
|
||||
|
|
@ -63,11 +28,6 @@ class ToolRuntimeRouter(ToolRuntime):
|
|||
logger.debug("Initializing ToolRuntimeRouter")
|
||||
self.routing_table = routing_table
|
||||
|
||||
# HACK ALERT this should be in sync with "get_all_api_endpoints()"
|
||||
self.rag_tool = self.RagToolImpl(routing_table)
|
||||
for method in ("query", "insert"):
|
||||
setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method))
|
||||
|
||||
async def initialize(self) -> None:
|
||||
logger.debug("ToolRuntimeRouter.initialize")
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -13,7 +13,6 @@ from aiohttp import hdrs
|
|||
from starlette.routing import Route
|
||||
|
||||
from llama_stack.apis.datatypes import Api, ExternalApiSpec
|
||||
from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup
|
||||
from llama_stack.core.resolver import api_protocol_map
|
||||
from llama_stack.schema_utils import WebMethod
|
||||
|
||||
|
|
@ -25,33 +24,16 @@ RouteImpls = dict[str, PathImpl]
|
|||
RouteMatch = tuple[EndpointFunc, PathParams, str, WebMethod]
|
||||
|
||||
|
||||
def toolgroup_protocol_map():
|
||||
return {
|
||||
SpecialToolGroup.rag_tool: RAGToolRuntime,
|
||||
}
|
||||
|
||||
|
||||
def get_all_api_routes(
|
||||
external_apis: dict[Api, ExternalApiSpec] | None = None,
|
||||
) -> dict[Api, list[tuple[Route, WebMethod]]]:
|
||||
apis = {}
|
||||
|
||||
protocols = api_protocol_map(external_apis)
|
||||
toolgroup_protocols = toolgroup_protocol_map()
|
||||
for api, protocol in protocols.items():
|
||||
routes = []
|
||||
protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction)
|
||||
|
||||
# HACK ALERT
|
||||
if api == Api.tool_runtime:
|
||||
for tool_group in SpecialToolGroup:
|
||||
sub_protocol = toolgroup_protocols[tool_group]
|
||||
sub_protocol_methods = inspect.getmembers(sub_protocol, predicate=inspect.isfunction)
|
||||
for name, method in sub_protocol_methods:
|
||||
if not hasattr(method, "__webmethod__"):
|
||||
continue
|
||||
protocol_methods.append((f"{tool_group.value}.{name}", method))
|
||||
|
||||
for name, method in protocol_methods:
|
||||
# Get all webmethods for this method (supports multiple decorators)
|
||||
webmethods = getattr(method, "__webmethods__", [])
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ from llama_stack.apis.safety import Safety
|
|||
from llama_stack.apis.scoring import Scoring
|
||||
from llama_stack.apis.scoring_functions import ScoringFunctions
|
||||
from llama_stack.apis.shields import Shields
|
||||
from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl
|
||||
from llama_stack.core.datatypes import Provider, SafetyConfig, StackRunConfig, VectorStoresConfig
|
||||
|
|
@ -78,7 +78,6 @@ class LlamaStack(
|
|||
Inspect,
|
||||
ToolGroups,
|
||||
ToolRuntime,
|
||||
RAGToolRuntime,
|
||||
Files,
|
||||
Prompts,
|
||||
Conversations,
|
||||
|
|
|
|||
|
|
@ -27,7 +27,6 @@ from llama_stack.apis.tools import (
|
|||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
|
|
@ -91,7 +90,7 @@ async def raw_data_from_doc(doc: RAGDocument) -> tuple[bytes, str]:
|
|||
return content_str.encode("utf-8"), "text/plain"
|
||||
|
||||
|
||||
class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
||||
class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
config: RagToolRuntimeConfig,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue