mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 15:23:51 +00:00
[1/n] migrate inference/chat_completion
This commit is contained in:
parent
1433aaf9f7
commit
0c7c6b7e02
3 changed files with 35 additions and 7 deletions
|
@ -176,7 +176,15 @@ class Inference(Protocol):
|
|||
@webmethod(route="/inference/chat_completion")
|
||||
async def chat_completion(
|
||||
self,
|
||||
request: ChatCompletionRequest,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
# zero-shot tool definitions as input to the model
|
||||
tools: Optional[List[ToolDefinition]] = list,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
|
||||
|
||||
@webmethod(route="/inference/embeddings")
|
||||
|
|
|
@ -10,10 +10,10 @@ from typing import Any, AsyncGenerator
|
|||
|
||||
import fire
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
||||
from pydantic import BaseModel
|
||||
from termcolor import cprint
|
||||
|
||||
from .api import (
|
||||
ChatCompletionRequest,
|
||||
|
@ -52,9 +52,7 @@ class InferenceClient(Inference):
|
|||
async with client.stream(
|
||||
"POST",
|
||||
f"{self.base_url}/inference/chat_completion",
|
||||
json={
|
||||
"request": encodable_dict(request),
|
||||
},
|
||||
json=encodable_dict(request),
|
||||
headers={"Content-Type": "application/json"},
|
||||
timeout=20,
|
||||
) as response:
|
||||
|
|
|
@ -22,9 +22,12 @@ from llama_toolchain.inference.api import (
|
|||
ToolCallParseStatus,
|
||||
)
|
||||
from llama_toolchain.inference.prepare_messages import prepare_messages
|
||||
|
||||
from .config import MetaReferenceImplConfig
|
||||
from .model_parallel import LlamaModelParallelGenerator
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_toolchain.inference.api import * # noqa: F403
|
||||
|
||||
# there's a single model parallel process running serving the model. for now,
|
||||
# we don't support multiple concurrent requests to this process.
|
||||
|
@ -50,10 +53,29 @@ class MetaReferenceInferenceImpl(Inference):
|
|||
# hm, when stream=False, we should not be doing SSE :/ which is what the
|
||||
# top-level server is going to do. make the typing more specific here
|
||||
async def chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
self,
|
||||
model: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = list,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncIterator[
|
||||
Union[ChatCompletionResponseStreamChunk, ChatCompletionResponse]
|
||||
]:
|
||||
request = ChatCompletionRequest(
|
||||
model=model,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
messages = prepare_messages(request)
|
||||
model = resolve_model(request.model)
|
||||
if model is None:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue