Merge branch 'main' of https://github.com/meta-llama/llama-stack into add_nemo_customizer

This commit is contained in:
raspawar 2025-03-24 13:12:46 +05:30
commit 0d4dc06a3c
162 changed files with 3835 additions and 2976 deletions

View file

@ -36,7 +36,6 @@ from llama_stack.apis.inference import (
)
from llama_stack.apis.safety import SafetyViolation
from llama_stack.apis.tools import ToolDef
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@ -383,7 +382,6 @@ class AgentStepResponse(BaseModel):
@runtime_checkable
@trace_protocol
class Agents(Protocol):
"""Agents API for creating and interacting with agentic systems.
@ -395,7 +393,7 @@ class Agents(Protocol):
- Agents can also use Memory to retrieve information from knowledge bases. See the RAG Tool and Vector IO APIs for more details.
"""
@webmethod(route="/agents", method="POST")
@webmethod(route="/agents", method="POST", descriptive_name="create_agent")
async def create_agent(
self,
agent_config: AgentConfig,
@ -407,7 +405,9 @@ class Agents(Protocol):
"""
...
@webmethod(route="/agents/{agent_id}/session/{session_id}/turn", method="POST")
@webmethod(
route="/agents/{agent_id}/session/{session_id}/turn", method="POST", descriptive_name="create_agent_turn"
)
async def create_agent_turn(
self,
agent_id: str,
@ -439,6 +439,7 @@ class Agents(Protocol):
@webmethod(
route="/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume",
method="POST",
descriptive_name="resume_agent_turn",
)
async def resume_agent_turn(
self,
@ -501,7 +502,7 @@ class Agents(Protocol):
"""
...
@webmethod(route="/agents/{agent_id}/session", method="POST")
@webmethod(route="/agents/{agent_id}/session", method="POST", descriptive_name="create_agent_session")
async def create_agent_session(
self,
agent_id: str,

View file

@ -10,15 +10,15 @@ from pydantic import BaseModel
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class Job(BaseModel):
job_id: str
@json_schema_type
class JobStatus(Enum):
completed = "completed"
in_progress = "in_progress"
failed = "failed"
scheduled = "scheduled"
cancelled = "cancelled"
@json_schema_type
class Job(BaseModel):
job_id: str
status: JobStatus

View file

@ -10,7 +10,7 @@ from pydantic import BaseModel, Field
from typing_extensions import Annotated
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.common.job_types import Job
from llama_stack.apis.inference import SamplingParams, SystemMessage
from llama_stack.apis.scoring import ScoringResult
from llama_stack.apis.scoring_functions import ScoringFnParams
@ -115,7 +115,7 @@ class Eval(Protocol):
"""
@webmethod(route="/eval/benchmarks/{benchmark_id}/jobs/{job_id}", method="GET")
async def job_status(self, benchmark_id: str, job_id: str) -> JobStatus:
async def job_status(self, benchmark_id: str, job_id: str) -> Job:
"""Get the status of a job.
:param benchmark_id: The ID of the benchmark to run the evaluation on.

View file

@ -6,7 +6,7 @@
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol
from typing import Any, Dict, List, Literal, Optional, Protocol, Union
from pydantic import BaseModel, ConfigDict, Field
from typing_extensions import Annotated
@ -89,7 +89,7 @@ class QATFinetuningConfig(BaseModel):
group_size: int
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
AlgorithmConfig = Annotated[Union[LoraFinetuningConfig, QATFinetuningConfig], Field(discriminator="type")]
register_schema(AlgorithmConfig, name="AlgorithmConfig")
@ -183,7 +183,7 @@ class PostTraining(Protocol):
description="Model descriptor from `llama model list`",
),
checkpoint_dir: Optional[str] = None,
algorithm_config: Optional[LoraFinetuningConfig | QATFinetuningConfig] = None,
algorithm_config: Optional[AlgorithmConfig] = None,
) -> PostTrainingJob: ...
@webmethod(route="/post-training/preference-optimize", method="POST")

View file

@ -69,7 +69,7 @@ class ToolGroup(Resource):
@json_schema_type
class ToolInvocationResult(BaseModel):
content: InterleavedContent
content: Optional[InterleavedContent] = None
error_message: Optional[str] = None
error_code: Optional[int] = None
metadata: Optional[Dict[str, Any]] = None
@ -140,9 +140,9 @@ class SpecialToolGroup(Enum):
@runtime_checkable
@trace_protocol
class ToolRuntime(Protocol):
tool_store: ToolStore
tool_store: ToolStore | None = None
rag_tool: RAGToolRuntime
rag_tool: RAGToolRuntime | None = None
# TODO: This needs to be renamed once OPEN API generator name conflict issue is fixed.
@webmethod(route="/tool-runtime/list-tools", method="GET")

View file

@ -36,7 +36,7 @@ class VectorDBStore(Protocol):
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_db_store: VectorDBStore
vector_db_store: VectorDBStore | None = None
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion