remove mixin and test fixes

This commit is contained in:
Dinesh Yeduguru 2024-12-09 15:00:12 -08:00
parent 5bbeb985ca
commit 0e451525e5
9 changed files with 140 additions and 69 deletions

View file

@ -23,8 +23,8 @@ from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import FaissImplConfig
@ -131,7 +131,7 @@ class FaissIndex(EmbeddingIndex):
return QueryDocumentsResponse(chunks=chunks, scores=scores)
class FaissMemoryImpl(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate):
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
@ -147,11 +147,12 @@ class FaissMemoryImpl(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivat
for bank_data in stored_banks:
bank = VectorMemoryBank.model_validate_json(bank_data)
index = self._create_bank_with_index(
index = BankWithIndex(
bank,
await FaissIndex.create(
bank.embedding_dimension, self.kvstore, bank.identifier
),
self.inference_api,
)
self.cache[bank.identifier] = index
@ -175,11 +176,12 @@ class FaissMemoryImpl(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivat
)
# Store in cache
self.cache[memory_bank.identifier] = self._create_bank_with_index(
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
await FaissIndex.create(
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier
),
self.inference_api,
)
async def list_memory_banks(self) -> List[MemoryBank]:

View file

@ -15,12 +15,10 @@ from numpy.typing import NDArray
from pydantic import parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
log = logging.getLogger(__name__)
@ -72,7 +70,7 @@ class ChromaIndex(EmbeddingIndex):
await self.client.delete_collection(self.collection.name)
class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate):
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, url: str, inference_api: Api.inference) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
url = url.rstrip("/")
@ -111,8 +109,8 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
memory_bank, ChromaIndex(self.client, collection)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, ChromaIndex(self.client, collection), self.inference_api
)
async def list_memory_banks(self) -> List[MemoryBank]:
@ -125,9 +123,10 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
log.exception(f"Failed to parse bank: {collection.metadata}")
continue
self.cache[bank.identifier] = self._create_bank_with_index(
self.cache[bank.identifier] = BankWithIndex(
bank,
ChromaIndex(self.client, collection),
self.inference_api,
)
return [i.bank for i in self.cache.values()]
@ -166,6 +165,8 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
collection = await self.client.get_collection(bank_id)
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = self._create_bank_with_index(bank, ChromaIndex(self.client, collection))
index = BankWithIndex(
bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[bank_id] = index
return index

View file

@ -21,7 +21,6 @@ from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import PGVectorConfig
@ -120,9 +119,7 @@ class PGVectorIndex(EmbeddingIndex):
self.cursor.execute(f"DROP TABLE IF EXISTS {self.table_name}")
class PGVectorMemoryAdapter(
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
):
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
@ -171,8 +168,8 @@ class PGVectorMemoryAdapter(
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
memory_bank, index
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, index, self.inference_api
)
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
@ -183,9 +180,10 @@ class PGVectorMemoryAdapter(
banks = load_models(self.cursor, VectorMemoryBank)
for bank in banks:
if bank.identifier not in self.cache:
index = self._create_bank_with_index(
index = BankWithIndex(
bank,
PGVectorIndex(bank, bank.embedding_dimension, self.cursor),
self.inference_api,
)
self.cache[bank.identifier] = index
return banks
@ -216,5 +214,5 @@ class PGVectorMemoryAdapter(
bank = await self.memory_bank_store.get_memory_bank(bank_id)
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
self.cache[bank_id] = self._create_bank_with_index(bank, index)
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
return self.cache[bank_id]

View file

@ -21,7 +21,6 @@ from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
log = logging.getLogger(__name__)
@ -101,9 +100,7 @@ class QdrantIndex(EmbeddingIndex):
return QueryDocumentsResponse(chunks=chunks, scores=scores)
class QdrantVectorMemoryAdapter(
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
):
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
@ -124,9 +121,10 @@ class QdrantVectorMemoryAdapter(
memory_bank.memory_bank_type == MemoryBankType.vector
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
index = self._create_bank_with_index(
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
inference_api=self.inference_api,
)
self.cache[memory_bank.identifier] = index
@ -144,9 +142,10 @@ class QdrantVectorMemoryAdapter(
if not bank:
raise ValueError(f"Bank {bank_id} not found")
index = self._create_bank_with_index(
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index

View file

@ -19,7 +19,6 @@ from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import WeaviateConfig, WeaviateRequestProviderData
@ -83,7 +82,6 @@ class WeaviateIndex(EmbeddingIndex):
class WeaviateMemoryAdapter(
InferenceEmbeddingMixin,
Memory,
NeedsRequestProviderData,
MemoryBanksProtocolPrivate,
@ -140,9 +138,10 @@ class WeaviateMemoryAdapter(
],
)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
self.inference_api,
)
async def list_memory_banks(self) -> List[MemoryBank]:
@ -164,9 +163,10 @@ class WeaviateMemoryAdapter(
if not client.collections.exists(bank.identifier):
raise ValueError(f"Collection with name `{bank.identifier}` not found")
index = self._create_bank_with_index(
index = BankWithIndex(
bank=bank,
index=WeaviateIndex(client=client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index

View file

@ -6,9 +6,65 @@
import pytest
from ..conftest import get_provider_fixture_overrides
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import MEMORY_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "meta_reference",
"memory": "faiss",
},
id="meta_reference",
marks=pytest.mark.meta_reference,
),
pytest.param(
{
"inference": "ollama",
"memory": "pgvector",
},
id="ollama",
marks=pytest.mark.ollama,
),
pytest.param(
{
"inference": "together",
"memory": "chroma",
},
id="chroma",
marks=pytest.mark.chroma,
),
pytest.param(
{
"inference": "bedrock",
"memory": "qdrant",
},
id="qdrant",
marks=pytest.mark.qdrant,
),
pytest.param(
{
"inference": "fireworks",
"memory": "weaviate",
},
id="weaviate",
marks=pytest.mark.weaviate,
),
]
def pytest_addoption(parser):
parser.addoption(
"--embedding-model",
action="store",
default=None,
help="Specify the embedding model to use for testing",
)
def pytest_configure(config):
for fixture_name in MEMORY_FIXTURES:
config.addinivalue_line(
@ -18,12 +74,22 @@ def pytest_configure(config):
def pytest_generate_tests(metafunc):
if "embedding_model" in metafunc.fixturenames:
model = metafunc.config.getoption("--embedding-model")
if not model:
raise ValueError(
"No embedding model specified. Please provide a valid embedding model."
)
params = [pytest.param(model, id="")]
metafunc.parametrize("embedding_model", params, indirect=True)
if "memory_stack" in metafunc.fixturenames:
metafunc.parametrize(
"memory_stack",
[
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
for fixture_name in MEMORY_FIXTURES
],
indirect=True,
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"memory": MEMORY_FIXTURES,
}
combinations = (
get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("memory_stack", combinations, indirect=True)

View file

@ -10,6 +10,8 @@ import tempfile
import pytest
import pytest_asyncio
from llama_stack.apis.inference import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider, RemoteProviderConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
@ -97,14 +99,30 @@ MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
@pytest_asyncio.fixture(scope="session")
async def memory_stack(request):
fixture_name = request.param
fixture = request.getfixturevalue(f"memory_{fixture_name}")
async def memory_stack(embedding_model, request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "memory"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test(
[Api.memory],
{"memory": fixture.providers},
fixture.provider_data,
[Api.memory, Api.inference],
providers,
provider_data,
models=[
ModelInput(
model_id=embedding_model,
model_type=ModelType.embedding_model,
metadata={
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
},
)
],
)
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]

View file

@ -45,12 +45,14 @@ def sample_documents():
]
async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
async def register_memory_bank(
banks_impl: MemoryBanks, embedding_model: str
) -> MemoryBank:
bank_id = f"test_bank_{uuid.uuid4().hex}"
return await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -59,11 +61,11 @@ async def register_memory_bank(banks_impl: MemoryBanks) -> MemoryBank:
class TestMemory:
@pytest.mark.asyncio
async def test_banks_list(self, memory_stack):
async def test_banks_list(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
# Register a test bank
registered_bank = await register_memory_bank(banks_impl)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
try:
# Verify our bank shows up in list
@ -84,7 +86,7 @@ class TestMemory:
)
@pytest.mark.asyncio
async def test_banks_register(self, memory_stack):
async def test_banks_register(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
bank_id = f"test_bank_{uuid.uuid4().hex}"
@ -94,7 +96,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -109,7 +111,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -126,13 +128,15 @@ class TestMemory:
await banks_impl.unregister_memory_bank(bank_id)
@pytest.mark.asyncio
async def test_query_documents(self, memory_stack, sample_documents):
async def test_query_documents(
self, memory_stack, embedding_model, sample_documents
):
memory_impl, banks_impl = memory_stack
with pytest.raises(ValueError):
await memory_impl.insert_documents("test_bank", sample_documents)
registered_bank = await register_memory_bank(banks_impl)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
await memory_impl.insert_documents(
registered_bank.memory_bank_id, sample_documents
)

View file

@ -198,20 +198,3 @@ class BankWithIndex:
)
query_vector = np.array(embeddings_response.embeddings[0], dtype=np.float32)
return await self.index.query(query_vector, k, score_threshold)
class InferenceEmbeddingMixin:
inference_api: Api.inference
def __init__(self, inference_api: Api.inference):
self.inference_api = inference_api
def _create_bank_with_index(
self, bank: VectorMemoryBank, index: EmbeddingIndex
) -> BankWithIndex:
return BankWithIndex(
bank=bank,
index=index,
inference_api=self.inference_api,
)