remove mixin and test fixes

This commit is contained in:
Dinesh Yeduguru 2024-12-09 15:00:12 -08:00
parent 5bbeb985ca
commit 0e451525e5
9 changed files with 140 additions and 69 deletions

View file

@ -15,12 +15,10 @@ from numpy.typing import NDArray
from pydantic import parse_obj_as
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
log = logging.getLogger(__name__)
@ -72,7 +70,7 @@ class ChromaIndex(EmbeddingIndex):
await self.client.delete_collection(self.collection.name)
class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate):
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, url: str, inference_api: Api.inference) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {url}")
url = url.rstrip("/")
@ -111,8 +109,8 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
memory_bank, ChromaIndex(self.client, collection)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, ChromaIndex(self.client, collection), self.inference_api
)
async def list_memory_banks(self) -> List[MemoryBank]:
@ -125,9 +123,10 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
log.exception(f"Failed to parse bank: {collection.metadata}")
continue
self.cache[bank.identifier] = self._create_bank_with_index(
self.cache[bank.identifier] = BankWithIndex(
bank,
ChromaIndex(self.client, collection),
self.inference_api,
)
return [i.bank for i in self.cache.values()]
@ -166,6 +165,8 @@ class ChromaMemoryAdapter(InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPr
collection = await self.client.get_collection(bank_id)
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = self._create_bank_with_index(bank, ChromaIndex(self.client, collection))
index = BankWithIndex(
bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[bank_id] = index
return index

View file

@ -21,7 +21,6 @@ from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import PGVectorConfig
@ -120,9 +119,7 @@ class PGVectorIndex(EmbeddingIndex):
self.cursor.execute(f"DROP TABLE IF EXISTS {self.table_name}")
class PGVectorMemoryAdapter(
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
):
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
self.config = config
self.inference_api = inference_api
@ -171,8 +168,8 @@ class PGVectorMemoryAdapter(
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
memory_bank, index
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, index, self.inference_api
)
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
@ -183,9 +180,10 @@ class PGVectorMemoryAdapter(
banks = load_models(self.cursor, VectorMemoryBank)
for bank in banks:
if bank.identifier not in self.cache:
index = self._create_bank_with_index(
index = BankWithIndex(
bank,
PGVectorIndex(bank, bank.embedding_dimension, self.cursor),
self.inference_api,
)
self.cache[bank.identifier] = index
return banks
@ -216,5 +214,5 @@ class PGVectorMemoryAdapter(
bank = await self.memory_bank_store.get_memory_bank(bank_id)
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
self.cache[bank_id] = self._create_bank_with_index(bank, index)
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
return self.cache[bank_id]

View file

@ -21,7 +21,6 @@ from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
log = logging.getLogger(__name__)
@ -101,9 +100,7 @@ class QdrantIndex(EmbeddingIndex):
return QueryDocumentsResponse(chunks=chunks, scores=scores)
class QdrantVectorMemoryAdapter(
InferenceEmbeddingMixin, Memory, MemoryBanksProtocolPrivate
):
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
self.config = config
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
@ -124,9 +121,10 @@ class QdrantVectorMemoryAdapter(
memory_bank.memory_bank_type == MemoryBankType.vector
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
index = self._create_bank_with_index(
index = BankWithIndex(
bank=memory_bank,
index=QdrantIndex(self.client, memory_bank.identifier),
inference_api=self.inference_api,
)
self.cache[memory_bank.identifier] = index
@ -144,9 +142,10 @@ class QdrantVectorMemoryAdapter(
if not bank:
raise ValueError(f"Bank {bank_id} not found")
index = self._create_bank_with_index(
index = BankWithIndex(
bank=bank,
index=QdrantIndex(client=self.client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index

View file

@ -19,7 +19,6 @@ from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
InferenceEmbeddingMixin,
)
from .config import WeaviateConfig, WeaviateRequestProviderData
@ -83,7 +82,6 @@ class WeaviateIndex(EmbeddingIndex):
class WeaviateMemoryAdapter(
InferenceEmbeddingMixin,
Memory,
NeedsRequestProviderData,
MemoryBanksProtocolPrivate,
@ -140,9 +138,10 @@ class WeaviateMemoryAdapter(
],
)
self.cache[memory_bank.identifier] = self._create_bank_with_index(
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank,
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
self.inference_api,
)
async def list_memory_banks(self) -> List[MemoryBank]:
@ -164,9 +163,10 @@ class WeaviateMemoryAdapter(
if not client.collections.exists(bank.identifier):
raise ValueError(f"Collection with name `{bank.identifier}` not found")
index = self._create_bank_with_index(
index = BankWithIndex(
bank=bank,
index=WeaviateIndex(client=client, collection_name=bank_id),
inference_api=self.inference_api,
)
self.cache[bank_id] = index
return index