mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
Added non-streaming ollama inference impl
This commit is contained in:
parent
5b9c05c5dd
commit
0e75e73fa7
4 changed files with 332 additions and 1 deletions
|
@ -23,6 +23,7 @@ from .datatypes import QuantizationConfig
|
||||||
class ImplType(Enum):
|
class ImplType(Enum):
|
||||||
inline = "inline"
|
inline = "inline"
|
||||||
remote = "remote"
|
remote = "remote"
|
||||||
|
ollama = "ollama"
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
|
@ -80,10 +81,17 @@ class RemoteImplConfig(BaseModel):
|
||||||
url: str = Field(..., description="The URL of the remote module")
|
url: str = Field(..., description="The URL of the remote module")
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class OllamaImplConfig(BaseModel):
|
||||||
|
impl_type: Literal[ImplType.ollama.value] = ImplType.ollama.value
|
||||||
|
model: str = Field(..., description="The name of the model in ollama catalog")
|
||||||
|
url: str = Field(..., description="The URL for the ollama server")
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class InferenceConfig(BaseModel):
|
class InferenceConfig(BaseModel):
|
||||||
impl_config: Annotated[
|
impl_config: Annotated[
|
||||||
Union[InlineImplConfig, RemoteImplConfig],
|
Union[InlineImplConfig, RemoteImplConfig, OllamaImplConfig],
|
||||||
Field(discriminator="impl_type"),
|
Field(discriminator="impl_type"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
|
@ -12,6 +12,10 @@ async def get_inference_api_instance(config: InferenceConfig):
|
||||||
from .inference import InferenceImpl
|
from .inference import InferenceImpl
|
||||||
|
|
||||||
return InferenceImpl(config.impl_config)
|
return InferenceImpl(config.impl_config)
|
||||||
|
elif config.impl_config.impl_type == ImplType.ollama.value:
|
||||||
|
from .inference import OllamaInference
|
||||||
|
|
||||||
|
return OllamaInference(config.impl_config)
|
||||||
|
|
||||||
from .client import InferenceClient
|
from .client import InferenceClient
|
||||||
|
|
||||||
|
|
143
llama_toolchain/inference/ollama.py
Normal file
143
llama_toolchain/inference/ollama.py
Normal file
|
@ -0,0 +1,143 @@
|
||||||
|
import httpx
|
||||||
|
import uuid
|
||||||
|
|
||||||
|
from typing import AsyncGenerator
|
||||||
|
|
||||||
|
from ollama import AsyncClient
|
||||||
|
|
||||||
|
from llama_models.llama3_1.api.datatypes import (
|
||||||
|
BuiltinTool,
|
||||||
|
CompletionMessage,
|
||||||
|
Message,
|
||||||
|
StopReason,
|
||||||
|
ToolCall,
|
||||||
|
)
|
||||||
|
from llama_models.llama3_1.api.tool_utils import ToolUtils
|
||||||
|
|
||||||
|
from .api.config import OllamaImplConfig
|
||||||
|
from .api.endpoints import (
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponseStreamChunk,
|
||||||
|
CompletionRequest,
|
||||||
|
Inference,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class OllamaInference(Inference):
|
||||||
|
|
||||||
|
def __init__(self, config: OllamaImplConfig) -> None:
|
||||||
|
self.config = config
|
||||||
|
self.model = config.model
|
||||||
|
|
||||||
|
async def initialize(self) -> None:
|
||||||
|
self.client = AsyncClient(host=self.config.url)
|
||||||
|
try:
|
||||||
|
status = await self.client.pull(self.model)
|
||||||
|
assert status['status'] == 'success', f"Failed to pull model {self.model} in ollama"
|
||||||
|
except httpx.ConnectError:
|
||||||
|
print("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
|
||||||
|
raise
|
||||||
|
|
||||||
|
async def shutdown(self) -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
||||||
|
ollama_messages = []
|
||||||
|
for message in messages:
|
||||||
|
ollama_messages.append(
|
||||||
|
{"role": message.role, "content": message.content}
|
||||||
|
)
|
||||||
|
|
||||||
|
return ollama_messages
|
||||||
|
|
||||||
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||||
|
if not request.stream:
|
||||||
|
r = await self.client.chat(
|
||||||
|
model=self.model,
|
||||||
|
messages=self._messages_to_ollama_messages(request.messages),
|
||||||
|
stream=False
|
||||||
|
)
|
||||||
|
completion_message = decode_assistant_message_from_content(
|
||||||
|
r['message']['content']
|
||||||
|
)
|
||||||
|
|
||||||
|
yield ChatCompletionResponse(
|
||||||
|
completion_message=completion_message,
|
||||||
|
logprobs=None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError()
|
||||||
|
|
||||||
|
|
||||||
|
#TODO: Consolidate this with impl in llama-models
|
||||||
|
def decode_assistant_message_from_content(content: str) -> CompletionMessage:
|
||||||
|
ipython = content.startswith("<|python_tag|>")
|
||||||
|
if ipython:
|
||||||
|
content = content[len("<|python_tag|>") :]
|
||||||
|
|
||||||
|
if content.endswith("<|eot_id|>"):
|
||||||
|
content = content[: -len("<|eot_id|>")]
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
elif content.endswith("<|eom_id|>"):
|
||||||
|
content = content[: -len("<|eom_id|>")]
|
||||||
|
stop_reason = StopReason.end_of_message
|
||||||
|
else:
|
||||||
|
# Ollama does not return <|eot_id|>
|
||||||
|
# and hence we explicitly set it as the default.
|
||||||
|
#TODO: Check for StopReason.out_of_tokens
|
||||||
|
stop_reason = StopReason.end_of_turn
|
||||||
|
|
||||||
|
tool_name = None
|
||||||
|
tool_arguments = {}
|
||||||
|
|
||||||
|
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
||||||
|
if custom_tool_info is not None:
|
||||||
|
tool_name, tool_arguments = custom_tool_info
|
||||||
|
# Sometimes when agent has custom tools alongside builin tools
|
||||||
|
# Agent responds for builtin tool calls in the format of the custom tools
|
||||||
|
# This code tries to handle that case
|
||||||
|
if tool_name in BuiltinTool.__members__:
|
||||||
|
tool_name = BuiltinTool[tool_name]
|
||||||
|
tool_arguments = {
|
||||||
|
"query": list(tool_arguments.values())[0],
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
||||||
|
if builtin_tool_info is not None:
|
||||||
|
tool_name, query = builtin_tool_info
|
||||||
|
tool_arguments = {
|
||||||
|
"query": query,
|
||||||
|
}
|
||||||
|
if tool_name in BuiltinTool.__members__:
|
||||||
|
tool_name = BuiltinTool[tool_name]
|
||||||
|
elif ipython:
|
||||||
|
tool_name = BuiltinTool.code_interpreter
|
||||||
|
tool_arguments = {
|
||||||
|
"code": content,
|
||||||
|
}
|
||||||
|
|
||||||
|
tool_calls = []
|
||||||
|
if tool_name is not None and tool_arguments is not None:
|
||||||
|
call_id = str(uuid.uuid4())
|
||||||
|
tool_calls.append(
|
||||||
|
ToolCall(
|
||||||
|
call_id=call_id,
|
||||||
|
tool_name=tool_name,
|
||||||
|
arguments=tool_arguments,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
content = ""
|
||||||
|
|
||||||
|
if stop_reason is None:
|
||||||
|
stop_reason = StopReason.out_of_tokens
|
||||||
|
|
||||||
|
return CompletionMessage(
|
||||||
|
content=content,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
tool_calls=tool_calls,
|
||||||
|
)
|
176
tests/test_ollama_inference.py
Normal file
176
tests/test_ollama_inference.py
Normal file
|
@ -0,0 +1,176 @@
|
||||||
|
import textwrap
|
||||||
|
import unittest
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
from llama_models.llama3_1.api.datatypes import (
|
||||||
|
BuiltinTool,
|
||||||
|
InstructModel,
|
||||||
|
UserMessage,
|
||||||
|
StopReason,
|
||||||
|
SystemMessage,
|
||||||
|
)
|
||||||
|
|
||||||
|
from llama_toolchain.inference.api.endpoints import (
|
||||||
|
ChatCompletionRequest
|
||||||
|
)
|
||||||
|
from llama_toolchain.inference.api.config import (
|
||||||
|
OllamaImplConfig
|
||||||
|
)
|
||||||
|
from llama_toolchain.inference.ollama import (
|
||||||
|
OllamaInference
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class OllamaInferenceTests(unittest.IsolatedAsyncioTestCase):
|
||||||
|
|
||||||
|
async def asyncSetUp(self):
|
||||||
|
ollama_config = OllamaImplConfig(
|
||||||
|
model="llama3.1",
|
||||||
|
url="http://localhost:11434",
|
||||||
|
)
|
||||||
|
|
||||||
|
# setup ollama
|
||||||
|
self.inference = OllamaInference(ollama_config)
|
||||||
|
await self.inference.initialize()
|
||||||
|
|
||||||
|
current_date = datetime.now()
|
||||||
|
formatted_date = current_date.strftime("%d %B %Y")
|
||||||
|
self.system_prompt = SystemMessage(
|
||||||
|
content=textwrap.dedent(f"""
|
||||||
|
Environment: ipython
|
||||||
|
Tools: brave_search
|
||||||
|
|
||||||
|
Cutting Knowledge Date: December 2023
|
||||||
|
Today Date:{formatted_date}
|
||||||
|
|
||||||
|
"""),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.system_prompt_with_custom_tool = SystemMessage(
|
||||||
|
content=textwrap.dedent("""
|
||||||
|
Environment: ipython
|
||||||
|
Tools: brave_search, wolfram_alpha, photogen
|
||||||
|
|
||||||
|
Cutting Knowledge Date: December 2023
|
||||||
|
Today Date: 30 July 2024
|
||||||
|
|
||||||
|
|
||||||
|
You have access to the following functions:
|
||||||
|
|
||||||
|
Use the function 'get_boiling_point' to 'Get the boiling point of a imaginary liquids (eg. polyjuice)'
|
||||||
|
{"name": "get_boiling_point", "description": "Get the boiling point of a imaginary liquids (eg. polyjuice)", "parameters": {"liquid_name": {"param_type": "string", "description": "The name of the liquid", "required": true}, "celcius": {"param_type": "boolean", "description": "Whether to return the boiling point in Celcius", "required": false}}}
|
||||||
|
|
||||||
|
|
||||||
|
Think very carefully before calling functions.
|
||||||
|
If you choose to call a function ONLY reply in the following format with no prefix or suffix:
|
||||||
|
|
||||||
|
<function=example_function_name>{"example_name": "example_value"}</function>
|
||||||
|
|
||||||
|
Reminder:
|
||||||
|
- If looking for real time information use relevant functions before falling back to brave_search
|
||||||
|
- Function calls MUST follow the specified format, start with <function= and end with </function>
|
||||||
|
- Required parameters MUST be specified
|
||||||
|
- Only call one function at a time
|
||||||
|
- Put the entire function call reply on one line
|
||||||
|
|
||||||
|
"""
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
async def asyncTearDown(self):
|
||||||
|
await self.inference.shutdown()
|
||||||
|
|
||||||
|
async def test_text(self):
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=InstructModel.llama3_8b_chat,
|
||||||
|
messages=[
|
||||||
|
UserMessage(
|
||||||
|
content="What is the capital of France?",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
iterator = self.inference.chat_completion(request)
|
||||||
|
async for r in iterator:
|
||||||
|
response = r
|
||||||
|
|
||||||
|
self.assertTrue("Paris" in response.completion_message.content)
|
||||||
|
self.assertEquals(response.completion_message.stop_reason, StopReason.end_of_turn)
|
||||||
|
|
||||||
|
async def test_tool_call(self):
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=InstructModel.llama3_8b_chat,
|
||||||
|
messages=[
|
||||||
|
self.system_prompt,
|
||||||
|
UserMessage(
|
||||||
|
content="Who is the current US President?",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
iterator = self.inference.chat_completion(request)
|
||||||
|
async for r in iterator:
|
||||||
|
response = r
|
||||||
|
|
||||||
|
completion_message = response.completion_message
|
||||||
|
|
||||||
|
self.assertEquals(completion_message.content, "")
|
||||||
|
self.assertEquals(completion_message.stop_reason, StopReason.end_of_message)
|
||||||
|
|
||||||
|
self.assertEquals(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||||
|
self.assertEquals(completion_message.tool_calls[0].tool_name, BuiltinTool.brave_search)
|
||||||
|
self.assertTrue(
|
||||||
|
"president" in completion_message.tool_calls[0].arguments["query"].lower()
|
||||||
|
)
|
||||||
|
|
||||||
|
async def test_code_execution(self):
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=InstructModel.llama3_8b_chat,
|
||||||
|
messages=[
|
||||||
|
self.system_prompt,
|
||||||
|
UserMessage(
|
||||||
|
content="Write code to compute the 5th prime number",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
iterator = self.inference.chat_completion(request)
|
||||||
|
async for r in iterator:
|
||||||
|
response = r
|
||||||
|
|
||||||
|
completion_message = response.completion_message
|
||||||
|
|
||||||
|
self.assertEquals(completion_message.content, "")
|
||||||
|
self.assertEquals(completion_message.stop_reason, StopReason.end_of_message)
|
||||||
|
|
||||||
|
self.assertEquals(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||||
|
self.assertEquals(completion_message.tool_calls[0].tool_name, BuiltinTool.code_interpreter)
|
||||||
|
code = completion_message.tool_calls[0].arguments["code"]
|
||||||
|
self.assertTrue("def " in code.lower(), code)
|
||||||
|
|
||||||
|
async def test_custom_tool(self):
|
||||||
|
request = ChatCompletionRequest(
|
||||||
|
model=InstructModel.llama3_8b_chat,
|
||||||
|
messages=[
|
||||||
|
self.system_prompt_with_custom_tool,
|
||||||
|
UserMessage(
|
||||||
|
content="Use provided function to find the boiling point of polyjuice in fahrenheit?",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
iterator = self.inference.chat_completion(request)
|
||||||
|
async for r in iterator:
|
||||||
|
response = r
|
||||||
|
|
||||||
|
completion_message = response.completion_message
|
||||||
|
|
||||||
|
self.assertEqual(completion_message.content, "")
|
||||||
|
self.assertEquals(completion_message.stop_reason, StopReason.end_of_turn)
|
||||||
|
|
||||||
|
self.assertEquals(len(completion_message.tool_calls), 1, completion_message.tool_calls)
|
||||||
|
self.assertEquals(completion_message.tool_calls[0].tool_name, "get_boiling_point")
|
||||||
|
|
||||||
|
args = completion_message.tool_calls[0].arguments
|
||||||
|
self.assertTrue(isinstance(args, dict))
|
||||||
|
self.assertTrue(args["liquid_name"], "polyjuice")
|
Loading…
Add table
Add a link
Reference in a new issue