Merge branch 'main' into hide-non-openai-inference-apis

This commit is contained in:
Matthew Farrellee 2025-09-26 17:48:30 -04:00
commit 0e78cd5383
33 changed files with 2394 additions and 1723 deletions

View file

@ -139,18 +139,7 @@ Methods:
- <code title="post /v1/agents/{agent_id}/session/{session_id}/turn">client.agents.turn.<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/resources/agents/turn.py">create</a>(session_id, \*, agent_id, \*\*<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/agents/turn_create_params.py">params</a>) -> <a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/agents/turn_create_response.py">TurnCreateResponse</a></code>
- <code title="get /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}">client.agents.turn.<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/resources/agents/turn.py">retrieve</a>(turn_id, \*, agent_id, session_id) -> <a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/agents/turn.py">Turn</a></code>
## BatchInference
Types:
```python
from llama_stack_client.types import BatchInferenceChatCompletionResponse
```
Methods:
- <code title="post /v1/batch-inference/chat-completion">client.batch_inference.<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/resources/batch_inference.py">chat_completion</a>(\*\*<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/batch_inference_chat_completion_params.py">params</a>) -> <a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/batch_inference_chat_completion_response.py">BatchInferenceChatCompletionResponse</a></code>
- <code title="post /v1/batch-inference/completion">client.batch_inference.<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/resources/batch_inference.py">completion</a>(\*\*<a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/batch_inference_completion_params.py">params</a>) -> <a href="https://github.com/meta-llama/llama-stack-client-python/tree/main/src/llama_stack_client/types/shared/batch_completion.py">BatchCompletion</a></code>
## Datasets

View file

@ -548,7 +548,6 @@ class Generator:
if op.defining_class.__name__ in [
"SyntheticDataGeneration",
"PostTraining",
"BatchInference",
]:
op.defining_class.__name__ = f"{op.defining_class.__name__} (Coming Soon)"
print(op.defining_class.__name__)

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,7 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .batch_inference import *

View file

@ -1,79 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Protocol, runtime_checkable
from llama_stack.apis.common.job_types import Job
from llama_stack.apis.inference import (
InterleavedContent,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.version import LLAMA_STACK_API_V1
from llama_stack.schema_utils import webmethod
@runtime_checkable
class BatchInference(Protocol):
"""Batch inference API for generating completions and chat completions.
This is an asynchronous API. If the request is successful, the response will be a job which can be polled for completion.
NOTE: This API is not yet implemented and is subject to change in concert with other asynchronous APIs
including (post-training, evals, etc).
"""
@webmethod(route="/batch-inference/completion", method="POST", level=LLAMA_STACK_API_V1)
async def completion(
self,
model: str,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> Job:
"""Generate completions for a batch of content.
:param model: The model to use for the completion.
:param content_batch: The content to complete.
:param sampling_params: The sampling parameters to use for the completion.
:param response_format: The response format to use for the completion.
:param logprobs: The logprobs to use for the completion.
:returns: A job for the completion.
"""
...
@webmethod(route="/batch-inference/chat-completion", method="POST", level=LLAMA_STACK_API_V1)
async def chat_completion(
self,
model: str,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
# zero-shot tool definitions as input to the model
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> Job:
"""Generate chat completions for a batch of messages.
:param model: The model to use for the chat completion.
:param messages_batch: The messages to complete.
:param sampling_params: The sampling parameters to use for the completion.
:param tools: The tools to use for the chat completion.
:param tool_choice: The tool choice to use for the chat completion.
:param tool_prompt_format: The tool prompt format to use for the chat completion.
:param response_format: The response format to use for the chat completion.
:param logprobs: The logprobs to use for the chat completion.
:returns: A job for the chat completion.
"""
...

View file

@ -914,6 +914,7 @@ class OpenAIEmbeddingData(BaseModel):
"""
object: Literal["embedding"] = "embedding"
# TODO: consider dropping str and using openai.types.embeddings.Embedding instead of OpenAIEmbeddingData
embedding: list[float] | str
index: int
@ -974,26 +975,6 @@ class EmbeddingTaskType(Enum):
document = "document"
@json_schema_type
class BatchCompletionResponse(BaseModel):
"""Response from a batch completion request.
:param batch: List of completion responses, one for each input in the batch
"""
batch: list[CompletionResponse]
@json_schema_type
class BatchChatCompletionResponse(BaseModel):
"""Response from a batch chat completion request.
:param batch: List of chat completion responses, one for each conversation in the batch
"""
batch: list[ChatCompletionResponse]
class OpenAICompletionWithInputMessages(OpenAIChatCompletion):
input_messages: list[OpenAIMessageParam]
@ -1049,26 +1030,7 @@ class InferenceProvider(Protocol):
"""
...
async def batch_completion(
self,
model_id: str,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
"""Generate completions for a batch of content using the specified model.
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
:param content_batch: The content to generate completions for.
:param sampling_params: (Optional) Parameters to control the sampling strategy.
:param response_format: (Optional) Grammar specification for guided (structured) decoding.
:param logprobs: (Optional) If specified, log probabilities for each token position will be returned.
:returns: A BatchCompletionResponse with the full completions.
"""
raise NotImplementedError("Batch completion is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/inference/chat-completion", method="POST", level=LLAMA_STACK_API_V1)
async def chat_completion(
self,
model_id: str,
@ -1108,30 +1070,7 @@ class InferenceProvider(Protocol):
"""
...
async def batch_chat_completion(
self,
model_id: str,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_config: ToolConfig | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchChatCompletionResponse:
"""Generate chat completions for a batch of messages using the specified model.
:param model_id: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint.
:param messages_batch: The messages to generate completions for.
:param sampling_params: (Optional) Parameters to control the sampling strategy.
:param tools: (Optional) List of tool definitions available to the model.
:param tool_config: (Optional) Configuration for tool use.
:param response_format: (Optional) Grammar specification for guided (structured) decoding.
:param logprobs: (Optional) If specified, log probabilities for each token position will be returned.
:returns: A BatchChatCompletionResponse with the full completions.
"""
raise NotImplementedError("Batch chat completion is not implemented")
return # this is so mypy's safe-super rule will consider the method concrete
@webmethod(route="/inference/embeddings", method="POST", level=LLAMA_STACK_API_V1)
async def embeddings(
self,
model_id: str,

View file

@ -20,8 +20,6 @@ from llama_stack.apis.common.content_types import (
)
from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
@ -273,30 +271,6 @@ class InferenceRouter(Inference):
)
return response
async def batch_chat_completion(
self,
model_id: str,
messages_batch: list[list[Message]],
tools: list[ToolDefinition] | None = None,
tool_config: ToolConfig | None = None,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchChatCompletionResponse:
logger.debug(
f"InferenceRouter.batch_chat_completion: {model_id=}, {len(messages_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}",
)
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.batch_chat_completion(
model_id=model_id,
messages_batch=messages_batch,
tools=tools,
tool_config=tool_config,
sampling_params=sampling_params,
response_format=response_format,
logprobs=logprobs,
)
async def completion(
self,
model_id: str,
@ -338,20 +312,6 @@ class InferenceRouter(Inference):
return response
async def batch_completion(
self,
model_id: str,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
logger.debug(
f"InferenceRouter.batch_completion: {model_id=}, {len(content_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}",
)
provider = await self.routing_table.get_provider_impl(model_id)
return await provider.batch_completion(model_id, content_batch, sampling_params, response_format, logprobs)
async def embeddings(
self,
model_id: str,

View file

@ -9,7 +9,7 @@ from typing import Any
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.errors import ToolGroupNotFoundError
from llama_stack.apis.tools import ListToolGroupsResponse, ListToolsResponse, Tool, ToolGroup, ToolGroups
from llama_stack.core.datatypes import ToolGroupWithOwner
from llama_stack.core.datatypes import AuthenticationRequiredError, ToolGroupWithOwner
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
@ -54,7 +54,18 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
all_tools = []
for toolgroup in toolgroups:
if toolgroup.identifier not in self.toolgroups_to_tools:
await self._index_tools(toolgroup)
try:
await self._index_tools(toolgroup)
except AuthenticationRequiredError:
# Send authentication errors back to the client so it knows
# that it needs to supply credentials for remote MCP servers.
raise
except Exception as e:
# Other errors that the client cannot fix are logged and
# those specific toolgroups are skipped.
logger.warning(f"Error listing tools for toolgroup {toolgroup.identifier}: {e}")
logger.debug(e, exc_info=True)
continue
all_tools.extend(self.toolgroups_to_tools[toolgroup.identifier])
return ListToolsResponse(data=all_tools)

View file

@ -14,7 +14,6 @@ from typing import Any
import yaml
from llama_stack.apis.agents import Agents
from llama_stack.apis.batch_inference import BatchInference
from llama_stack.apis.benchmarks import Benchmarks
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
@ -54,7 +53,6 @@ class LlamaStack(
Providers,
VectorDBs,
Inference,
BatchInference,
Agents,
Safety,
SyntheticDataGeneration,

View file

@ -96,11 +96,9 @@ class DiskDistributionRegistry(DistributionRegistry):
async def register(self, obj: RoutableObjectWithProvider) -> bool:
existing_obj = await self.get(obj.type, obj.identifier)
# warn if the object's providerid is different but proceed with registration
if existing_obj and existing_obj.provider_id != obj.provider_id:
logger.warning(
f"Object {existing_obj.type}:{existing_obj.identifier}'s {existing_obj.provider_id} provider is being replaced with {obj.provider_id}"
)
# dont register if the object's providerid already exists
if existing_obj and existing_obj.provider_id == obj.provider_id:
return False
await self.kvstore.set(
KEY_FORMAT.format(type=obj.type, identifier=obj.identifier),

View file

@ -18,8 +18,6 @@ from llama_stack.apis.common.content_types import (
ToolCallParseStatus,
)
from llama_stack.apis.inference import (
BatchChatCompletionResponse,
BatchCompletionResponse,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseEvent,
@ -219,41 +217,6 @@ class MetaReferenceInferenceImpl(
results = await self._nonstream_completion([request])
return results[0]
async def batch_completion(
self,
model_id: str,
content_batch: list[InterleavedContent],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> BatchCompletionResponse:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
content_batch = [
augment_content_with_response_format_prompt(response_format, content) for content in content_batch
]
request_batch = []
for content in content_batch:
request = CompletionRequest(
model=model_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
self.check_model(request)
request = await convert_request_to_raw(request)
request_batch.append(request)
results = await self._nonstream_completion(request_batch)
return BatchCompletionResponse(batch=results)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
tokenizer = self.generator.formatter.tokenizer
@ -399,49 +362,6 @@ class MetaReferenceInferenceImpl(
results = await self._nonstream_chat_completion([request])
return results[0]
async def batch_chat_completion(
self,
model_id: str,
messages_batch: list[list[Message]],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
tools: list[ToolDefinition] | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> BatchChatCompletionResponse:
if sampling_params is None:
sampling_params = SamplingParams()
if logprobs:
assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}"
# wrapper request to make it easier to pass around (internal only, not exposed to API)
request_batch = []
for messages in messages_batch:
request = ChatCompletionRequest(
model=model_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
logprobs=logprobs,
tool_config=tool_config or ToolConfig(),
)
self.check_model(request)
# augment and rewrite messages depending on the model
request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value)
# download media and convert to raw content so we can send it to the model
request = await convert_request_to_raw(request)
request_batch.append(request)
if self.config.create_distributed_process_group:
if SEMAPHORE.locked():
raise RuntimeError("Only one concurrent request is supported")
results = await self._nonstream_chat_completion(request_batch)
return BatchChatCompletionResponse(batch=results)
async def _nonstream_chat_completion(
self, request_batch: list[ChatCompletionRequest]
) -> list[ChatCompletionResponse]:

View file

@ -24,7 +24,6 @@ from llama_stack.apis.inference import (
LogProbConfig,
Message,
Model,
ModelType,
OpenAICompletion,
ResponseFormat,
SamplingParams,
@ -34,6 +33,7 @@ from llama_stack.apis.inference import (
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import ModelType
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin

View file

@ -64,6 +64,7 @@ class FireworksInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Nee
}
def __init__(self, config: FireworksImplConfig) -> None:
ModelRegistryHelper.__init__(self)
self.config = config
self.allowed_models = config.allowed_models

View file

@ -4,12 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import Inference
from .config import GroqConfig
async def get_adapter_impl(config: GroqConfig, _deps) -> Inference:
async def get_adapter_impl(config: GroqConfig, _deps):
# import dynamically so the import is used only when it is needed
from .groq import GroqInferenceAdapter

View file

@ -6,8 +6,7 @@
import asyncio
import base64
from collections.abc import AsyncGenerator, AsyncIterator
from collections.abc import AsyncGenerator
from typing import Any
from ollama import AsyncClient as AsyncOllamaClient
@ -33,10 +32,6 @@ from llama_stack.apis.inference import (
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAIMessageParam,
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
@ -62,7 +57,6 @@ from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
get_sampling_options,
prepare_openai_completion_params,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
@ -75,7 +69,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
content_has_media,
convert_image_content_to_url,
interleaved_content_as_str,
localize_image_content,
request_has_media,
)
@ -84,6 +77,7 @@ logger = get_logger(name=__name__, category="inference::ollama")
class OllamaInferenceAdapter(
OpenAIMixin,
ModelRegistryHelper,
InferenceProvider,
ModelsProtocolPrivate,
):
@ -129,6 +123,8 @@ class OllamaInferenceAdapter(
],
)
self.config = config
# Ollama does not support image urls, so we need to download the image and convert it to base64
self.download_images = True
self._clients: dict[asyncio.AbstractEventLoop, AsyncOllamaClient] = {}
@property
@ -173,9 +169,6 @@ class OllamaInferenceAdapter(
async def shutdown(self) -> None:
self._clients.clear()
async def unregister_model(self, model_id: str) -> None:
pass
async def _get_model(self, model_id: str) -> Model:
if not self.model_store:
raise ValueError("Model store not set")
@ -403,75 +396,6 @@ class OllamaInferenceAdapter(
raise UnsupportedModelError(model.provider_model_id, list(self._model_cache.keys()))
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
model_obj = await self._get_model(model)
# Ollama does not support image urls, so we need to download the image and convert it to base64
async def _convert_message(m: OpenAIMessageParam) -> OpenAIMessageParam:
if isinstance(m.content, list):
for c in m.content:
if c.type == "image_url" and c.image_url and c.image_url.url:
localize_result = await localize_image_content(c.image_url.url)
if localize_result is None:
raise ValueError(f"Failed to localize image content from {c.image_url.url}")
content, format = localize_result
c.image_url.url = f"data:image/{format};base64,{base64.b64encode(content).decode('utf-8')}"
return m
messages = [await _convert_message(m) for m in messages]
params = await prepare_openai_completion_params(
model=model_obj.provider_resource_id,
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
)
return await OpenAIMixin.openai_chat_completion(self, **params)
async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]:
async def _convert_content(content) -> dict:

View file

@ -21,8 +21,6 @@ logger = get_logger(name=__name__, category="inference::openai")
# | completion | LiteLLMOpenAIMixin |
# | chat_completion | LiteLLMOpenAIMixin |
# | embedding | LiteLLMOpenAIMixin |
# | batch_completion | LiteLLMOpenAIMixin |
# | batch_chat_completion | LiteLLMOpenAIMixin |
# | openai_completion | OpenAIMixin |
# | openai_chat_completion | OpenAIMixin |
# | openai_embeddings | OpenAIMixin |

View file

@ -4,12 +4,10 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.inference import Inference
from .config import SambaNovaImplConfig
async def get_adapter_impl(config: SambaNovaImplConfig, _deps) -> Inference:
async def get_adapter_impl(config: SambaNovaImplConfig, _deps):
from .sambanova import SambaNovaInferenceAdapter
assert isinstance(config, SambaNovaImplConfig), f"Unexpected config type: {type(config)}"

View file

@ -25,7 +25,7 @@ class SambaNovaInferenceAdapter(OpenAIMixin, LiteLLMOpenAIMixin):
def __init__(self, config: SambaNovaImplConfig):
self.config = config
self.environment_available_models = []
self.environment_available_models: list[str] = []
LiteLLMOpenAIMixin.__init__(
self,
litellm_provider_name="sambanova",

View file

@ -70,6 +70,7 @@ class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, Need
}
def __init__(self, config: TogetherImplConfig) -> None:
ModelRegistryHelper.__init__(self)
self.config = config
self.allowed_models = config.allowed_models
self._model_cache: dict[str, Model] = {}

View file

@ -20,7 +20,7 @@ logger = get_logger(name=__name__, category="providers::utils")
class RemoteInferenceProviderConfig(BaseModel):
allowed_models: list[str] | None = Field(
allowed_models: list[str] | None = Field( # TODO: make this non-optional and give a list() default
default=None,
description="List of models that should be registered with the model registry. If None, all models are allowed.",
)

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import uuid
from abc import ABC, abstractmethod
from collections.abc import AsyncIterator
@ -26,6 +27,7 @@ from llama_stack.apis.models import ModelType
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
from llama_stack.providers.utils.inference.prompt_adapter import localize_image_content
logger = get_logger(name=__name__, category="providers::utils")
@ -51,6 +53,10 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
# This is useful for providers that do not return a unique id in the response.
overwrite_completion_id: bool = False
# Allow subclasses to control whether to download images and convert to base64
# for providers that require base64 encoded images instead of URLs.
download_images: bool = False
# Embedding model metadata for this provider
# Can be set by subclasses or instances to provide embedding models
# Format: {"model_id": {"embedding_dimension": 1536, "context_length": 8192}}
@ -239,6 +245,24 @@ class OpenAIMixin(ModelRegistryHelper, ABC):
"""
Direct OpenAI chat completion API call.
"""
if self.download_images:
async def _localize_image_url(m: OpenAIMessageParam) -> OpenAIMessageParam:
if isinstance(m.content, list):
for c in m.content:
if c.type == "image_url" and c.image_url and c.image_url.url and "http" in c.image_url.url:
localize_result = await localize_image_content(c.image_url.url)
if localize_result is None:
raise ValueError(
f"Failed to localize image content from {c.image_url.url[:42]}{'...' if len(c.image_url.url) > 42 else ''}"
)
content, format = localize_result
c.image_url.url = f"data:image/{format};base64,{base64.b64encode(content).decode('utf-8')}"
# else it's a string and we don't need to modify it
return m
messages = [await _localize_image_url(m) for m in messages]
resp = await self.client.chat.completions.create(
**await prepare_openai_completion_params(
model=await self._get_provider_model_id(model),

View file

@ -28,7 +28,7 @@ class CommonConfig(BaseModel):
class RedisKVStoreConfig(CommonConfig):
type: Literal[KVStoreType.redis.value] = KVStoreType.redis.value
type: Literal["redis"] = KVStoreType.redis.value
host: str = "localhost"
port: int = 6379
@ -50,7 +50,7 @@ class RedisKVStoreConfig(CommonConfig):
class SqliteKVStoreConfig(CommonConfig):
type: Literal[KVStoreType.sqlite.value] = KVStoreType.sqlite.value
type: Literal["sqlite"] = KVStoreType.sqlite.value
db_path: str = Field(
default=(RUNTIME_BASE_DIR / "kvstore.db").as_posix(),
description="File path for the sqlite database",
@ -69,7 +69,7 @@ class SqliteKVStoreConfig(CommonConfig):
class PostgresKVStoreConfig(CommonConfig):
type: Literal[KVStoreType.postgres.value] = KVStoreType.postgres.value
type: Literal["postgres"] = KVStoreType.postgres.value
host: str = "localhost"
port: int = 5432
db: str = "llamastack"
@ -113,11 +113,11 @@ class PostgresKVStoreConfig(CommonConfig):
class MongoDBKVStoreConfig(CommonConfig):
type: Literal[KVStoreType.mongodb.value] = KVStoreType.mongodb.value
type: Literal["mongodb"] = KVStoreType.mongodb.value
host: str = "localhost"
port: int = 27017
db: str = "llamastack"
user: str = None
user: str | None = None
password: str | None = None
collection_name: str = "llamastack_kvstore"

View file

@ -7,6 +7,7 @@
from datetime import datetime
from pymongo import AsyncMongoClient
from pymongo.asynchronous.collection import AsyncCollection
from llama_stack.log import get_logger
from llama_stack.providers.utils.kvstore import KVStore
@ -19,8 +20,13 @@ log = get_logger(name=__name__, category="providers::utils")
class MongoDBKVStoreImpl(KVStore):
def __init__(self, config: MongoDBKVStoreConfig):
self.config = config
self.conn = None
self.collection = None
self.conn: AsyncMongoClient | None = None
@property
def collection(self) -> AsyncCollection:
if self.conn is None:
raise RuntimeError("MongoDB connection is not initialized")
return self.conn[self.config.db][self.config.collection_name]
async def initialize(self) -> None:
try:
@ -32,7 +38,6 @@ class MongoDBKVStoreImpl(KVStore):
}
conn_creds = {k: v for k, v in conn_creds.items() if v is not None}
self.conn = AsyncMongoClient(**conn_creds)
self.collection = self.conn[self.config.db][self.config.collection_name]
except Exception as e:
log.exception("Could not connect to MongoDB database server")
raise RuntimeError("Could not connect to MongoDB database server") from e

View file

@ -9,9 +9,13 @@ from datetime import datetime
import aiosqlite
from llama_stack.log import get_logger
from ..api import KVStore
from ..config import SqliteKVStoreConfig
logger = get_logger(name=__name__, category="providers::utils")
class SqliteKVStoreImpl(KVStore):
def __init__(self, config: SqliteKVStoreConfig):
@ -50,6 +54,9 @@ class SqliteKVStoreImpl(KVStore):
if row is None:
return None
value, expiration = row
if not isinstance(value, str):
logger.warning(f"Expected string value for key {key}, got {type(value)}, returning None")
return None
return value
async def delete(self, key: str) -> None:

View file

@ -18,7 +18,7 @@
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"framer-motion": "^12.23.12",
"llama-stack-client": "^0.2.22",
"llama-stack-client": "^0.2.23",
"lucide-react": "^0.542.0",
"next": "15.5.3",
"next-auth": "^4.24.11",
@ -10172,9 +10172,9 @@
"license": "MIT"
},
"node_modules/llama-stack-client": {
"version": "0.2.22",
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.22.tgz",
"integrity": "sha512-7aW3UQj5MwjV73Brd+yQ1e4W1W33nhozyeHM5tzOgbsVZ88tL78JNiNvyFqDR5w6V9XO4/uSGGiQVG6v83yR4w==",
"version": "0.2.23",
"resolved": "https://registry.npmjs.org/llama-stack-client/-/llama-stack-client-0.2.23.tgz",
"integrity": "sha512-J3YFH1HW2K70capejQxGlCyTgKdfx+sQf8Ab+HFi1j2Q00KtpHXB79RxejvBxjWC3X2E++P9iU57KdU2Tp/rIQ==",
"license": "MIT",
"dependencies": {
"@types/node": "^18.11.18",

View file

@ -23,7 +23,7 @@
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"framer-motion": "^12.23.12",
"llama-stack-client": "^0.2.22",
"llama-stack-client": "^0.2.23",
"lucide-react": "^0.542.0",
"next": "15.5.3",
"next-auth": "^4.24.11",

View file

@ -7,7 +7,7 @@ required-version = ">=0.7.0"
[project]
name = "llama_stack"
version = "0.2.22"
version = "0.2.23"
authors = [{ name = "Meta Llama", email = "llama-oss@meta.com" }]
description = "Llama Stack"
readme = "README.md"
@ -31,7 +31,7 @@ dependencies = [
"huggingface-hub>=0.34.0,<1.0",
"jinja2>=3.1.6",
"jsonschema",
"llama-stack-client>=0.2.22",
"llama-stack-client>=0.2.23",
"openai>=1.100.0", # for expires_after support
"prompt-toolkit",
"python-dotenv",
@ -55,7 +55,7 @@ dependencies = [
ui = [
"streamlit",
"pandas",
"llama-stack-client>=0.2.22",
"llama-stack-client>=0.2.23",
"streamlit-option-menu",
]
@ -259,15 +259,12 @@ exclude = [
"^llama_stack/models/llama/llama3/tokenizer\\.py$",
"^llama_stack/models/llama/llama3/tool_utils\\.py$",
"^llama_stack/providers/inline/agents/meta_reference/",
"^llama_stack/providers/inline/agents/meta_reference/agent_instance\\.py$",
"^llama_stack/providers/inline/agents/meta_reference/agents\\.py$",
"^llama_stack/providers/inline/datasetio/localfs/",
"^llama_stack/providers/inline/eval/meta_reference/eval\\.py$",
"^llama_stack/providers/inline/inference/meta_reference/inference\\.py$",
"^llama_stack/models/llama/llama3/generation\\.py$",
"^llama_stack/models/llama/llama3/multimodal/model\\.py$",
"^llama_stack/models/llama/llama4/",
"^llama_stack/providers/inline/inference/meta_reference/quantization/fp8_impls\\.py$",
"^llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers\\.py$",
"^llama_stack/providers/inline/post_training/common/validator\\.py$",
"^llama_stack/providers/inline/safety/code_scanner/",
@ -278,19 +275,13 @@ exclude = [
"^llama_stack/providers/remote/agents/sample/",
"^llama_stack/providers/remote/datasetio/huggingface/",
"^llama_stack/providers/remote/datasetio/nvidia/",
"^llama_stack/providers/remote/inference/anthropic/",
"^llama_stack/providers/remote/inference/bedrock/",
"^llama_stack/providers/remote/inference/cerebras/",
"^llama_stack/providers/remote/inference/databricks/",
"^llama_stack/providers/remote/inference/fireworks/",
"^llama_stack/providers/remote/inference/gemini/",
"^llama_stack/providers/remote/inference/groq/",
"^llama_stack/providers/remote/inference/nvidia/",
"^llama_stack/providers/remote/inference/openai/",
"^llama_stack/providers/remote/inference/passthrough/",
"^llama_stack/providers/remote/inference/runpod/",
"^llama_stack/providers/remote/inference/sambanova/",
"^llama_stack/providers/remote/inference/sample/",
"^llama_stack/providers/remote/inference/tgi/",
"^llama_stack/providers/remote/inference/together/",
"^llama_stack/providers/remote/inference/watsonx/",
@ -310,7 +301,6 @@ exclude = [
"^llama_stack/providers/remote/vector_io/qdrant/",
"^llama_stack/providers/remote/vector_io/sample/",
"^llama_stack/providers/remote/vector_io/weaviate/",
"^llama_stack/providers/tests/conftest\\.py$",
"^llama_stack/providers/utils/bedrock/client\\.py$",
"^llama_stack/providers/utils/bedrock/refreshable_boto_session\\.py$",
"^llama_stack/providers/utils/inference/embedding_mixin\\.py$",
@ -318,12 +308,9 @@ exclude = [
"^llama_stack/providers/utils/inference/model_registry\\.py$",
"^llama_stack/providers/utils/inference/openai_compat\\.py$",
"^llama_stack/providers/utils/inference/prompt_adapter\\.py$",
"^llama_stack/providers/utils/kvstore/config\\.py$",
"^llama_stack/providers/utils/kvstore/kvstore\\.py$",
"^llama_stack/providers/utils/kvstore/mongodb/mongodb\\.py$",
"^llama_stack/providers/utils/kvstore/postgres/postgres\\.py$",
"^llama_stack/providers/utils/kvstore/redis/redis\\.py$",
"^llama_stack/providers/utils/kvstore/sqlite/sqlite\\.py$",
"^llama_stack/providers/utils/memory/vector_store\\.py$",
"^llama_stack/providers/utils/scoring/aggregation_utils\\.py$",
"^llama_stack/providers/utils/scoring/base_scoring_fn\\.py$",
@ -331,13 +318,6 @@ exclude = [
"^llama_stack/providers/utils/telemetry/trace_protocol\\.py$",
"^llama_stack/providers/utils/telemetry/tracing\\.py$",
"^llama_stack/strong_typing/auxiliary\\.py$",
"^llama_stack/strong_typing/deserializer\\.py$",
"^llama_stack/strong_typing/inspection\\.py$",
"^llama_stack/strong_typing/schema\\.py$",
"^llama_stack/strong_typing/serializer\\.py$",
"^llama_stack/distributions/groq/groq\\.py$",
"^llama_stack/distributions/llama_api/llama_api\\.py$",
"^llama_stack/distributions/sambanova/sambanova\\.py$",
"^llama_stack/distributions/template\\.py$",
]

View file

@ -0,0 +1,77 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import pathlib
import pytest
@pytest.fixture
def image_path():
return pathlib.Path(__file__).parent / "dog.png"
@pytest.fixture
def base64_image_data(image_path):
return base64.b64encode(image_path.read_bytes()).decode("utf-8")
async def test_openai_chat_completion_image_url(openai_client, vision_model_id):
message = {
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://raw.githubusercontent.com/meta-llama/llama-stack/main/tests/integration/inference/dog.png"
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = openai_client.chat.completions.create(
model=vision_model_id,
messages=[message],
stream=False,
)
message_content = response.choices[0].message.content.lower().strip()
assert len(message_content) > 0
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})
async def test_openai_chat_completion_image_data(openai_client, vision_model_id, base64_image_data):
message = {
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image_data}",
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = openai_client.chat.completions.create(
model=vision_model_id,
messages=[message],
stream=False,
)
message_content = response.choices[0].message.content.lower().strip()
assert len(message_content) > 0
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})

View file

@ -10,6 +10,7 @@ from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.datasets.datasets import Dataset, DatasetPurpose, URIDataSource
from llama_stack.apis.datatypes import Api
@ -645,3 +646,25 @@ async def test_models_source_interaction_cleanup_provider_models(cached_disk_dis
# Cleanup
await table.shutdown()
async def test_tool_groups_routing_table_exception_handling(cached_disk_dist_registry):
"""Test that the tool group routing table handles exceptions when listing tools, like if an MCP server is unreachable."""
exception_throwing_tool_groups_impl = ToolGroupsImpl()
exception_throwing_tool_groups_impl.list_runtime_tools = AsyncMock(side_effect=Exception("Test exception"))
table = ToolGroupsRoutingTable(
{"test_provider": exception_throwing_tool_groups_impl}, cached_disk_dist_registry, {}
)
await table.initialize()
await table.register_tool_group(
toolgroup_id="test-toolgroup-exceptions",
provider_id="test_provider",
mcp_endpoint=URL(uri="http://localhost:8479/foo/bar"),
)
tools = await table.list_tools(toolgroup_id="test-toolgroup-exceptions")
assert len(tools.data) == 0

View file

@ -4,11 +4,11 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import MagicMock, PropertyMock, patch
from unittest.mock import AsyncMock, MagicMock, PropertyMock, patch
import pytest
from llama_stack.apis.inference import Model
from llama_stack.apis.inference import Model, OpenAIUserMessageParam
from llama_stack.apis.models import ModelType
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
@ -43,8 +43,17 @@ class OpenAIMixinWithEmbeddingsImpl(OpenAIMixin):
@pytest.fixture
def mixin():
"""Create a test instance of OpenAIMixin"""
return OpenAIMixinImpl()
"""Create a test instance of OpenAIMixin with mocked model_store"""
mixin_instance = OpenAIMixinImpl()
# just enough to satisfy _get_provider_model_id calls
mock_model_store = MagicMock()
mock_model = MagicMock()
mock_model.provider_resource_id = "test-provider-resource-id"
mock_model_store.get_model = AsyncMock(return_value=mock_model)
mixin_instance.model_store = mock_model_store
return mixin_instance
@pytest.fixture
@ -205,6 +214,74 @@ class TestOpenAIMixinCacheBehavior:
assert "final-mock-model-id" in mixin._model_cache
class TestOpenAIMixinImagePreprocessing:
"""Test cases for image preprocessing functionality"""
async def test_openai_chat_completion_with_image_preprocessing_enabled(self, mixin):
"""Test that image URLs are converted to base64 when download_images is True"""
mixin.download_images = True
message = OpenAIUserMessageParam(
role="user",
content=[
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": "http://example.com/image.jpg"}},
],
)
mock_client = MagicMock()
mock_response = MagicMock()
mock_client.chat.completions.create = AsyncMock(return_value=mock_response)
with patch.object(type(mixin), "client", new_callable=PropertyMock, return_value=mock_client):
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
mock_localize.return_value = (b"fake_image_data", "jpeg")
await mixin.openai_chat_completion(model="test-model", messages=[message])
mock_localize.assert_called_once_with("http://example.com/image.jpg")
mock_client.chat.completions.create.assert_called_once()
call_args = mock_client.chat.completions.create.call_args
processed_messages = call_args[1]["messages"]
assert len(processed_messages) == 1
content = processed_messages[0]["content"]
assert len(content) == 2
assert content[0]["type"] == "text"
assert content[1]["type"] == "image_url"
assert content[1]["image_url"]["url"] == ""
async def test_openai_chat_completion_with_image_preprocessing_disabled(self, mixin):
"""Test that image URLs are not modified when download_images is False"""
mixin.download_images = False # explicitly set to False
message = OpenAIUserMessageParam(
role="user",
content=[
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": "http://example.com/image.jpg"}},
],
)
mock_client = MagicMock()
mock_response = MagicMock()
mock_client.chat.completions.create = AsyncMock(return_value=mock_response)
with patch.object(type(mixin), "client", new_callable=PropertyMock, return_value=mock_client):
with patch("llama_stack.providers.utils.inference.openai_mixin.localize_image_content") as mock_localize:
await mixin.openai_chat_completion(model="test-model", messages=[message])
mock_localize.assert_not_called()
mock_client.chat.completions.create.assert_called_once()
call_args = mock_client.chat.completions.create.call_args
processed_messages = call_args[1]["messages"]
assert len(processed_messages) == 1
content = processed_messages[0]["content"]
assert len(content) == 2
assert content[1]["image_url"]["url"] == "http://example.com/image.jpg"
class TestOpenAIMixinEmbeddingModelMetadata:
"""Test cases for embedding_model_metadata attribute functionality"""

View file

@ -129,7 +129,7 @@ async def test_duplicate_provider_registration(cached_disk_dist_registry):
result = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
assert result is not None
assert result.embedding_model == duplicate_vector_db.embedding_model # Original values preserved
assert result.embedding_model == original_vector_db.embedding_model # Original values preserved
async def test_get_all_objects(cached_disk_dist_registry):
@ -174,14 +174,10 @@ async def test_parse_registry_values_error_handling(sqlite_kvstore):
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"),
valid_db.model_dump_json(),
KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"), valid_db.model_dump_json()
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"),
"{not valid json",
)
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"), "{not valid json")
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="missing_fields"),
@ -216,8 +212,7 @@ async def test_cached_registry_error_handling(sqlite_kvstore):
)
await sqlite_kvstore.set(
KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"),
valid_db.model_dump_json(),
KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"), valid_db.model_dump_json()
)
await sqlite_kvstore.set(

12
uv.lock generated
View file

@ -1749,7 +1749,7 @@ wheels = [
[[package]]
name = "llama-stack"
version = "0.2.22"
version = "0.2.23"
source = { editable = "." }
dependencies = [
{ name = "aiohttp" },
@ -1885,8 +1885,8 @@ requires-dist = [
{ name = "huggingface-hub", specifier = ">=0.34.0,<1.0" },
{ name = "jinja2", specifier = ">=3.1.6" },
{ name = "jsonschema" },
{ name = "llama-stack-client", specifier = ">=0.2.22" },
{ name = "llama-stack-client", marker = "extra == 'ui'", specifier = ">=0.2.22" },
{ name = "llama-stack-client", specifier = ">=0.2.23" },
{ name = "llama-stack-client", marker = "extra == 'ui'", specifier = ">=0.2.23" },
{ name = "openai", specifier = ">=1.100.0" },
{ name = "opentelemetry-exporter-otlp-proto-http", specifier = ">=1.30.0" },
{ name = "opentelemetry-sdk", specifier = ">=1.30.0" },
@ -1993,7 +1993,7 @@ unit = [
[[package]]
name = "llama-stack-client"
version = "0.2.22"
version = "0.2.23"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "anyio" },
@ -2012,9 +2012,9 @@ dependencies = [
{ name = "tqdm" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/60/80/4260816bfaaa889d515206c9df4906d08d405bf94c9b4d1be399b1923e46/llama_stack_client-0.2.22.tar.gz", hash = "sha256:9a0bc756b91ebd539858eeaf1f231c5e5c6900e1ea4fcced726c6717f3d27ca7", size = 318309, upload-time = "2025-09-16T19:43:33.212Z" }
sdist = { url = "https://files.pythonhosted.org/packages/9f/8f/306d5fcf2f97b3a6251219b03c194836a2ff4e0fcc8146c9970e50a72cd3/llama_stack_client-0.2.23.tar.gz", hash = "sha256:68f34e8ac8eea6a73ed9d4977d849992b2d8bd835804d770a11843431cd5bf74", size = 322288, upload-time = "2025-09-26T21:11:08.342Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d1/8e/1ebf6ac0dbb62b81038e856ed00768e283d927b14fcd614e3018a227092b/llama_stack_client-0.2.22-py3-none-any.whl", hash = "sha256:b260d73aec56fcfd8fa601b3b34c2f83c4fbcfb7261a246b02bbdf6c2da184fe", size = 369901, upload-time = "2025-09-16T19:43:32.089Z" },
{ url = "https://files.pythonhosted.org/packages/fa/75/3eb58e092a681804013dbec7b7f549d18f55acf6fd6e6b27de7e249766d8/llama_stack_client-0.2.23-py3-none-any.whl", hash = "sha256:eee42c74eee8f218f9455e5a06d5d4be43f8a8c82a7937ef51ce367f916df847", size = 379809, upload-time = "2025-09-26T21:11:06.856Z" },
]
[[package]]