mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 16:23:08 +00:00
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer targeted. We use the Responses implementation for knowledge_search which uses the `openai_vector_stores` pathway. --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
5aaf1a8bca
commit
0e96279bee
55 changed files with 17 additions and 3114 deletions
|
@ -1,5 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
|
@ -1,19 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
||||
from .config import RagToolRuntimeConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: RagToolRuntimeConfig, deps: dict[Api, Any]):
|
||||
from .memory import MemoryToolRuntimeImpl
|
||||
|
||||
impl = MemoryToolRuntimeImpl(config, deps[Api.vector_io], deps[Api.inference], deps[Api.files])
|
||||
await impl.initialize()
|
||||
return impl
|
|
@ -1,15 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class RagToolRuntimeConfig(BaseModel):
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]:
|
||||
return {}
|
|
@ -1,77 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
|
||||
from jinja2 import Template
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.inference import OpenAIChatCompletionRequestWithExtraBody, OpenAIUserMessageParam
|
||||
from llama_stack.apis.tools.rag_tool import (
|
||||
DefaultRAGQueryGeneratorConfig,
|
||||
LLMRAGQueryGeneratorConfig,
|
||||
RAGQueryGenerator,
|
||||
RAGQueryGeneratorConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
|
||||
async def generate_rag_query(
|
||||
config: RAGQueryGeneratorConfig,
|
||||
content: InterleavedContent,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Generates a query that will be used for
|
||||
retrieving relevant information from the memory bank.
|
||||
"""
|
||||
if config.type == RAGQueryGenerator.default.value:
|
||||
query = await default_rag_query_generator(config, content, **kwargs)
|
||||
elif config.type == RAGQueryGenerator.llm.value:
|
||||
query = await llm_rag_query_generator(config, content, **kwargs)
|
||||
else:
|
||||
raise NotImplementedError(f"Unsupported memory query generator {config.type}")
|
||||
return query
|
||||
|
||||
|
||||
async def default_rag_query_generator(
|
||||
config: DefaultRAGQueryGeneratorConfig,
|
||||
content: InterleavedContent,
|
||||
**kwargs,
|
||||
):
|
||||
return interleaved_content_as_str(content, sep=config.separator)
|
||||
|
||||
|
||||
async def llm_rag_query_generator(
|
||||
config: LLMRAGQueryGeneratorConfig,
|
||||
content: InterleavedContent,
|
||||
**kwargs,
|
||||
):
|
||||
assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api"
|
||||
inference_api = kwargs["inference_api"]
|
||||
|
||||
messages = []
|
||||
if isinstance(content, list):
|
||||
messages = [interleaved_content_as_str(m) for m in content]
|
||||
else:
|
||||
messages = [interleaved_content_as_str(content)]
|
||||
|
||||
template = Template(config.template)
|
||||
rendered_content: str = template.render({"messages": messages})
|
||||
|
||||
model = config.model
|
||||
message = OpenAIUserMessageParam(content=rendered_content)
|
||||
params = OpenAIChatCompletionRequestWithExtraBody(
|
||||
model=model,
|
||||
messages=[message],
|
||||
stream=False,
|
||||
)
|
||||
response = await inference_api.openai_chat_completion(params)
|
||||
|
||||
query = response.choices[0].message.content
|
||||
|
||||
return query
|
|
@ -1,332 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import io
|
||||
import mimetypes
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
from fastapi import UploadFile
|
||||
from pydantic import TypeAdapter
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
URL,
|
||||
InterleavedContent,
|
||||
InterleavedContentItem,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.files import Files, OpenAIFilePurpose
|
||||
from llama_stack.apis.inference import Inference
|
||||
from llama_stack.apis.tools import (
|
||||
ListToolDefsResponse,
|
||||
RAGDocument,
|
||||
RAGQueryConfig,
|
||||
RAGQueryResult,
|
||||
RAGToolRuntime,
|
||||
ToolDef,
|
||||
ToolGroup,
|
||||
ToolInvocationResult,
|
||||
ToolRuntime,
|
||||
)
|
||||
from llama_stack.apis.vector_io import (
|
||||
QueryChunksResponse,
|
||||
VectorIO,
|
||||
VectorStoreChunkingStrategyStatic,
|
||||
VectorStoreChunkingStrategyStaticConfig,
|
||||
)
|
||||
from llama_stack.log import get_logger
|
||||
from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str
|
||||
from llama_stack.providers.utils.memory.vector_store import parse_data_url
|
||||
|
||||
from .config import RagToolRuntimeConfig
|
||||
from .context_retriever import generate_rag_query
|
||||
|
||||
log = get_logger(name=__name__, category="tool_runtime")
|
||||
|
||||
|
||||
async def raw_data_from_doc(doc: RAGDocument) -> tuple[bytes, str]:
|
||||
"""Get raw binary data and mime type from a RAGDocument for file upload."""
|
||||
if isinstance(doc.content, URL):
|
||||
if doc.content.uri.startswith("data:"):
|
||||
parts = parse_data_url(doc.content.uri)
|
||||
mime_type = parts["mimetype"]
|
||||
data = parts["data"]
|
||||
|
||||
if parts["is_base64"]:
|
||||
file_data = base64.b64decode(data)
|
||||
else:
|
||||
file_data = data.encode("utf-8")
|
||||
|
||||
return file_data, mime_type
|
||||
else:
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(doc.content.uri)
|
||||
r.raise_for_status()
|
||||
mime_type = r.headers.get("content-type", "application/octet-stream")
|
||||
return r.content, mime_type
|
||||
else:
|
||||
if isinstance(doc.content, str):
|
||||
content_str = doc.content
|
||||
else:
|
||||
content_str = interleaved_content_as_str(doc.content)
|
||||
|
||||
if content_str.startswith("data:"):
|
||||
parts = parse_data_url(content_str)
|
||||
mime_type = parts["mimetype"]
|
||||
data = parts["data"]
|
||||
|
||||
if parts["is_base64"]:
|
||||
file_data = base64.b64decode(data)
|
||||
else:
|
||||
file_data = data.encode("utf-8")
|
||||
|
||||
return file_data, mime_type
|
||||
else:
|
||||
return content_str.encode("utf-8"), "text/plain"
|
||||
|
||||
|
||||
class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRuntime):
|
||||
def __init__(
|
||||
self,
|
||||
config: RagToolRuntimeConfig,
|
||||
vector_io_api: VectorIO,
|
||||
inference_api: Inference,
|
||||
files_api: Files,
|
||||
):
|
||||
self.config = config
|
||||
self.vector_io_api = vector_io_api
|
||||
self.inference_api = inference_api
|
||||
self.files_api = files_api
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def shutdown(self):
|
||||
pass
|
||||
|
||||
async def register_toolgroup(self, toolgroup: ToolGroup) -> None:
|
||||
pass
|
||||
|
||||
async def unregister_toolgroup(self, toolgroup_id: str) -> None:
|
||||
return
|
||||
|
||||
async def insert(
|
||||
self,
|
||||
documents: list[RAGDocument],
|
||||
vector_db_id: str,
|
||||
chunk_size_in_tokens: int = 512,
|
||||
) -> None:
|
||||
if not documents:
|
||||
return
|
||||
|
||||
for doc in documents:
|
||||
try:
|
||||
try:
|
||||
file_data, mime_type = await raw_data_from_doc(doc)
|
||||
except Exception as e:
|
||||
log.error(f"Failed to extract content from document {doc.document_id}: {e}")
|
||||
continue
|
||||
|
||||
file_extension = mimetypes.guess_extension(mime_type) or ".txt"
|
||||
filename = doc.metadata.get("filename", f"{doc.document_id}{file_extension}")
|
||||
|
||||
file_obj = io.BytesIO(file_data)
|
||||
file_obj.name = filename
|
||||
|
||||
upload_file = UploadFile(file=file_obj, filename=filename)
|
||||
|
||||
try:
|
||||
created_file = await self.files_api.openai_upload_file(
|
||||
file=upload_file, purpose=OpenAIFilePurpose.ASSISTANTS
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(f"Failed to upload file for document {doc.document_id}: {e}")
|
||||
continue
|
||||
|
||||
chunking_strategy = VectorStoreChunkingStrategyStatic(
|
||||
static=VectorStoreChunkingStrategyStaticConfig(
|
||||
max_chunk_size_tokens=chunk_size_in_tokens,
|
||||
chunk_overlap_tokens=chunk_size_in_tokens // 4,
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
await self.vector_io_api.openai_attach_file_to_vector_store(
|
||||
vector_store_id=vector_db_id,
|
||||
file_id=created_file.id,
|
||||
attributes=doc.metadata,
|
||||
chunking_strategy=chunking_strategy,
|
||||
)
|
||||
except Exception as e:
|
||||
log.error(
|
||||
f"Failed to attach file {created_file.id} to vector store {vector_db_id} for document {doc.document_id}: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"Unexpected error processing document {doc.document_id}: {e}")
|
||||
continue
|
||||
|
||||
async def query(
|
||||
self,
|
||||
content: InterleavedContent,
|
||||
vector_db_ids: list[str],
|
||||
query_config: RAGQueryConfig | None = None,
|
||||
) -> RAGQueryResult:
|
||||
if not vector_db_ids:
|
||||
raise ValueError(
|
||||
"No vector DBs were provided to the knowledge search tool. Please provide at least one vector DB ID."
|
||||
)
|
||||
|
||||
query_config = query_config or RAGQueryConfig()
|
||||
query = await generate_rag_query(
|
||||
query_config.query_generator_config,
|
||||
content,
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
tasks = [
|
||||
self.vector_io_api.query_chunks(
|
||||
vector_db_id=vector_db_id,
|
||||
query=query,
|
||||
params={
|
||||
"mode": query_config.mode,
|
||||
"max_chunks": query_config.max_chunks,
|
||||
"score_threshold": 0.0,
|
||||
"ranker": query_config.ranker,
|
||||
},
|
||||
)
|
||||
for vector_db_id in vector_db_ids
|
||||
]
|
||||
results: list[QueryChunksResponse] = await asyncio.gather(*tasks)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
|
||||
for vector_db_id, result in zip(vector_db_ids, results, strict=False):
|
||||
for chunk, score in zip(result.chunks, result.scores, strict=False):
|
||||
if not hasattr(chunk, "metadata") or chunk.metadata is None:
|
||||
chunk.metadata = {}
|
||||
chunk.metadata["vector_db_id"] = vector_db_id
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(score)
|
||||
|
||||
if not chunks:
|
||||
return RAGQueryResult(content=None)
|
||||
|
||||
# sort by score
|
||||
chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False) # type: ignore
|
||||
chunks = chunks[: query_config.max_chunks]
|
||||
|
||||
tokens = 0
|
||||
picked: list[InterleavedContentItem] = [
|
||||
TextContentItem(
|
||||
text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n"
|
||||
)
|
||||
]
|
||||
for i, chunk in enumerate(chunks):
|
||||
metadata = chunk.metadata
|
||||
tokens += metadata.get("token_count", 0)
|
||||
tokens += metadata.get("metadata_token_count", 0)
|
||||
|
||||
if tokens > query_config.max_tokens_in_context:
|
||||
log.error(
|
||||
f"Using {len(picked)} chunks; reached max tokens in context: {tokens}",
|
||||
)
|
||||
break
|
||||
|
||||
# Add useful keys from chunk_metadata to metadata and remove some from metadata
|
||||
chunk_metadata_keys_to_include_from_context = [
|
||||
"chunk_id",
|
||||
"document_id",
|
||||
"source",
|
||||
]
|
||||
metadata_keys_to_exclude_from_context = [
|
||||
"token_count",
|
||||
"metadata_token_count",
|
||||
"vector_db_id",
|
||||
]
|
||||
metadata_for_context = {}
|
||||
for k in chunk_metadata_keys_to_include_from_context:
|
||||
metadata_for_context[k] = getattr(chunk.chunk_metadata, k)
|
||||
for k in metadata:
|
||||
if k not in metadata_keys_to_exclude_from_context:
|
||||
metadata_for_context[k] = metadata[k]
|
||||
|
||||
text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_for_context)
|
||||
picked.append(TextContentItem(text=text_content))
|
||||
|
||||
picked.append(TextContentItem(text="END of knowledge_search tool results.\n"))
|
||||
picked.append(
|
||||
TextContentItem(
|
||||
text=f'The above results were retrieved to help answer the user\'s query: "{interleaved_content_as_str(content)}". Use them as supporting information only in answering this query.\n',
|
||||
)
|
||||
)
|
||||
|
||||
return RAGQueryResult(
|
||||
content=picked,
|
||||
metadata={
|
||||
"document_ids": [c.document_id for c in chunks[: len(picked)]],
|
||||
"chunks": [c.content for c in chunks[: len(picked)]],
|
||||
"scores": scores[: len(picked)],
|
||||
"vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]],
|
||||
},
|
||||
)
|
||||
|
||||
async def list_runtime_tools(
|
||||
self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None
|
||||
) -> ListToolDefsResponse:
|
||||
# Parameters are not listed since these methods are not yet invoked automatically
|
||||
# by the LLM. The method is only implemented so things like /tools can list without
|
||||
# encountering fatals.
|
||||
return ListToolDefsResponse(
|
||||
data=[
|
||||
ToolDef(
|
||||
name="insert_into_memory",
|
||||
description="Insert documents into memory",
|
||||
),
|
||||
ToolDef(
|
||||
name="knowledge_search",
|
||||
description="Search for information in a database.",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "The query to search for. Can be a natural language sentence or keywords.",
|
||||
}
|
||||
},
|
||||
"required": ["query"],
|
||||
},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult:
|
||||
vector_db_ids = kwargs.get("vector_db_ids", [])
|
||||
query_config = kwargs.get("query_config")
|
||||
if query_config:
|
||||
query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config)
|
||||
else:
|
||||
query_config = RAGQueryConfig()
|
||||
|
||||
query = kwargs["query"]
|
||||
result = await self.query(
|
||||
content=query,
|
||||
vector_db_ids=vector_db_ids,
|
||||
query_config=query_config,
|
||||
)
|
||||
|
||||
return ToolInvocationResult(
|
||||
content=result.content or [],
|
||||
metadata={
|
||||
**(result.metadata or {}),
|
||||
"citation_files": getattr(result, "citation_files", None),
|
||||
},
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue