mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-23 08:33:09 +00:00
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer targeted. We use the Responses implementation for knowledge_search which uses the `openai_vector_stores` pathway. --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
5aaf1a8bca
commit
0e96279bee
55 changed files with 17 additions and 3114 deletions
|
@ -4,138 +4,11 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.common.content_types import URL, TextContentItem
|
||||
from llama_stack.apis.tools import RAGDocument
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, content_from_doc
|
||||
|
||||
|
||||
async def test_content_from_doc_with_url():
|
||||
"""Test extracting content from RAGDocument with URL content."""
|
||||
mock_url = URL(uri="https://example.com")
|
||||
mock_doc = RAGDocument(document_id="foo", content=mock_url)
|
||||
|
||||
mock_response = MagicMock()
|
||||
mock_response.text = "Sample content from URL"
|
||||
|
||||
with patch("httpx.AsyncClient") as mock_client:
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.return_value = mock_response
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "Sample content from URL"
|
||||
mock_instance.get.assert_called_once_with(mock_url.uri)
|
||||
|
||||
|
||||
async def test_content_from_doc_with_pdf_url():
|
||||
"""Test extracting content from RAGDocument with URL pointing to a PDF."""
|
||||
mock_url = URL(uri="https://example.com/document.pdf")
|
||||
mock_doc = RAGDocument(document_id="foo", content=mock_url, mime_type="application/pdf")
|
||||
|
||||
mock_response = MagicMock()
|
||||
mock_response.content = b"PDF binary data"
|
||||
|
||||
with (
|
||||
patch("httpx.AsyncClient") as mock_client,
|
||||
patch("llama_stack.providers.utils.memory.vector_store.parse_pdf") as mock_parse_pdf,
|
||||
):
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.return_value = mock_response
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
mock_parse_pdf.return_value = "Extracted PDF content"
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "Extracted PDF content"
|
||||
mock_instance.get.assert_called_once_with(mock_url.uri)
|
||||
mock_parse_pdf.assert_called_once_with(b"PDF binary data")
|
||||
|
||||
|
||||
async def test_content_from_doc_with_data_url():
|
||||
"""Test extracting content from RAGDocument with data URL content."""
|
||||
data_url = "data:text/plain;base64,SGVsbG8gV29ybGQ=" # "Hello World" base64 encoded
|
||||
mock_url = URL(uri=data_url)
|
||||
mock_doc = RAGDocument(document_id="foo", content=mock_url)
|
||||
|
||||
with patch("llama_stack.providers.utils.memory.vector_store.content_from_data") as mock_content_from_data:
|
||||
mock_content_from_data.return_value = "Hello World"
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "Hello World"
|
||||
mock_content_from_data.assert_called_once_with(data_url)
|
||||
|
||||
|
||||
async def test_content_from_doc_with_string():
|
||||
"""Test extracting content from RAGDocument with string content."""
|
||||
content_string = "This is plain text content"
|
||||
mock_doc = RAGDocument(document_id="foo", content=content_string)
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == content_string
|
||||
|
||||
|
||||
async def test_content_from_doc_with_string_url():
|
||||
"""Test extracting content from RAGDocument with string URL content."""
|
||||
url_string = "https://example.com"
|
||||
mock_doc = RAGDocument(document_id="foo", content=url_string)
|
||||
|
||||
mock_response = MagicMock()
|
||||
mock_response.text = "Sample content from URL string"
|
||||
|
||||
with patch("httpx.AsyncClient") as mock_client:
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.return_value = mock_response
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "Sample content from URL string"
|
||||
mock_instance.get.assert_called_once_with(url_string)
|
||||
|
||||
|
||||
async def test_content_from_doc_with_string_pdf_url():
|
||||
"""Test extracting content from RAGDocument with string URL pointing to a PDF."""
|
||||
url_string = "https://example.com/document.pdf"
|
||||
mock_doc = RAGDocument(document_id="foo", content=url_string, mime_type="application/pdf")
|
||||
|
||||
mock_response = MagicMock()
|
||||
mock_response.content = b"PDF binary data"
|
||||
|
||||
with (
|
||||
patch("httpx.AsyncClient") as mock_client,
|
||||
patch("llama_stack.providers.utils.memory.vector_store.parse_pdf") as mock_parse_pdf,
|
||||
):
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.return_value = mock_response
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
mock_parse_pdf.return_value = "Extracted PDF content from string URL"
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "Extracted PDF content from string URL"
|
||||
mock_instance.get.assert_called_once_with(url_string)
|
||||
mock_parse_pdf.assert_called_once_with(b"PDF binary data")
|
||||
|
||||
|
||||
async def test_content_from_doc_with_interleaved_content():
|
||||
"""Test extracting content from RAGDocument with InterleavedContent (the new case added in the commit)."""
|
||||
interleaved_content = [TextContentItem(text="First item"), TextContentItem(text="Second item")]
|
||||
mock_doc = RAGDocument(document_id="foo", content=interleaved_content)
|
||||
|
||||
with patch("llama_stack.providers.utils.memory.vector_store.interleaved_content_as_str") as mock_interleaved:
|
||||
mock_interleaved.return_value = "First item\nSecond item"
|
||||
|
||||
result = await content_from_doc(mock_doc)
|
||||
|
||||
assert result == "First item\nSecond item"
|
||||
mock_interleaved.assert_called_once_with(interleaved_content)
|
||||
from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type
|
||||
|
||||
|
||||
def test_content_from_data_and_mime_type_success_utf8():
|
||||
|
@ -178,41 +51,3 @@ def test_content_from_data_and_mime_type_both_encodings_fail():
|
|||
# Should raise an exception instead of returning empty string
|
||||
with pytest.raises(UnicodeDecodeError):
|
||||
content_from_data_and_mime_type(data, mime_type)
|
||||
|
||||
|
||||
async def test_memory_tool_error_handling():
|
||||
"""Test that memory tool handles various failures gracefully without crashing."""
|
||||
from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig
|
||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||
|
||||
config = RagToolRuntimeConfig()
|
||||
memory_tool = MemoryToolRuntimeImpl(
|
||||
config=config,
|
||||
vector_io_api=AsyncMock(),
|
||||
inference_api=AsyncMock(),
|
||||
files_api=AsyncMock(),
|
||||
)
|
||||
|
||||
docs = [
|
||||
RAGDocument(document_id="good_doc", content="Good content", metadata={}),
|
||||
RAGDocument(document_id="bad_url_doc", content=URL(uri="https://bad.url"), metadata={}),
|
||||
RAGDocument(document_id="another_good_doc", content="Another good content", metadata={}),
|
||||
]
|
||||
|
||||
mock_file1 = MagicMock()
|
||||
mock_file1.id = "file_good1"
|
||||
mock_file2 = MagicMock()
|
||||
mock_file2.id = "file_good2"
|
||||
memory_tool.files_api.openai_upload_file.side_effect = [mock_file1, mock_file2]
|
||||
|
||||
with patch("httpx.AsyncClient") as mock_client:
|
||||
mock_instance = AsyncMock()
|
||||
mock_instance.get.side_effect = Exception("Bad URL")
|
||||
mock_client.return_value.__aenter__.return_value = mock_instance
|
||||
|
||||
# won't raise exception despite one document failing
|
||||
await memory_tool.insert(docs, "vector_store_123")
|
||||
|
||||
# processed 2 documents successfully, skipped 1
|
||||
assert memory_tool.files_api.openai_upload_file.call_count == 2
|
||||
assert memory_tool.vector_io_api.openai_attach_file_to_vector_store.call_count == 2
|
||||
|
|
|
@ -1,138 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.tools.rag_tool import RAGQueryConfig
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
ChunkMetadata,
|
||||
QueryChunksResponse,
|
||||
)
|
||||
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
||||
|
||||
|
||||
class TestRagQuery:
|
||||
async def test_query_raises_on_empty_vector_store_ids(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
||||
|
||||
async def test_query_chunk_metadata_handling(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
|
||||
)
|
||||
content = "test query content"
|
||||
vector_db_ids = ["db1"]
|
||||
|
||||
chunk_metadata = ChunkMetadata(
|
||||
document_id="doc1",
|
||||
chunk_id="chunk1",
|
||||
source="test_source",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
interleaved_content = MagicMock()
|
||||
chunk = Chunk(
|
||||
content=interleaved_content,
|
||||
metadata={
|
||||
"key1": "value1",
|
||||
"token_count": 10,
|
||||
"metadata_token_count": 5,
|
||||
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
|
||||
"document_id": "doc1",
|
||||
},
|
||||
stored_chunk_id="chunk1",
|
||||
chunk_metadata=chunk_metadata,
|
||||
)
|
||||
|
||||
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
|
||||
|
||||
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
|
||||
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
|
||||
|
||||
assert result is not None
|
||||
expected_metadata_string = (
|
||||
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
|
||||
)
|
||||
assert expected_metadata_string in result.content[1].text
|
||||
assert result.content is not None
|
||||
|
||||
async def test_query_raises_incorrect_mode(self):
|
||||
with pytest.raises(ValueError):
|
||||
RAGQueryConfig(mode="invalid_mode")
|
||||
|
||||
async def test_query_accepts_valid_modes(self):
|
||||
default_config = RAGQueryConfig() # Test default (vector)
|
||||
assert default_config.mode == "vector"
|
||||
vector_config = RAGQueryConfig(mode="vector") # Test vector
|
||||
assert vector_config.mode == "vector"
|
||||
keyword_config = RAGQueryConfig(mode="keyword") # Test keyword
|
||||
assert keyword_config.mode == "keyword"
|
||||
hybrid_config = RAGQueryConfig(mode="hybrid") # Test hybrid
|
||||
assert hybrid_config.mode == "hybrid"
|
||||
|
||||
# Test that invalid mode raises an error
|
||||
with pytest.raises(ValueError):
|
||||
RAGQueryConfig(mode="wrong_mode")
|
||||
|
||||
async def test_query_adds_vector_store_id_to_chunk_metadata(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(),
|
||||
vector_io_api=MagicMock(),
|
||||
inference_api=MagicMock(),
|
||||
files_api=MagicMock(),
|
||||
)
|
||||
|
||||
vector_db_ids = ["db1", "db2"]
|
||||
|
||||
# Fake chunks from each DB
|
||||
chunk_metadata1 = ChunkMetadata(
|
||||
document_id="doc1",
|
||||
chunk_id="chunk1",
|
||||
source="test_source1",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk1 = Chunk(
|
||||
content="chunk from db1",
|
||||
metadata={"vector_db_id": "db1", "document_id": "doc1"},
|
||||
stored_chunk_id="c1",
|
||||
chunk_metadata=chunk_metadata1,
|
||||
)
|
||||
|
||||
chunk_metadata2 = ChunkMetadata(
|
||||
document_id="doc2",
|
||||
chunk_id="chunk2",
|
||||
source="test_source2",
|
||||
metadata_token_count=5,
|
||||
)
|
||||
chunk2 = Chunk(
|
||||
content="chunk from db2",
|
||||
metadata={"vector_db_id": "db2", "document_id": "doc2"},
|
||||
stored_chunk_id="c2",
|
||||
chunk_metadata=chunk_metadata2,
|
||||
)
|
||||
|
||||
rag_tool.vector_io_api.query_chunks = AsyncMock(
|
||||
side_effect=[
|
||||
QueryChunksResponse(chunks=[chunk1], scores=[0.9]),
|
||||
QueryChunksResponse(chunks=[chunk2], scores=[0.8]),
|
||||
]
|
||||
)
|
||||
|
||||
result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids)
|
||||
returned_chunks = result.metadata["chunks"]
|
||||
returned_scores = result.metadata["scores"]
|
||||
returned_doc_ids = result.metadata["document_ids"]
|
||||
returned_vector_db_ids = result.metadata["vector_db_ids"]
|
||||
|
||||
assert returned_chunks == ["chunk from db1", "chunk from db2"]
|
||||
assert returned_scores == (0.9, 0.8)
|
||||
assert returned_doc_ids == ["doc1", "doc2"]
|
||||
assert returned_vector_db_ids == ["db1", "db2"]
|
|
@ -4,10 +4,6 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import base64
|
||||
import mimetypes
|
||||
import os
|
||||
from pathlib import Path
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import numpy as np
|
||||
|
@ -17,37 +13,13 @@ from llama_stack.apis.inference.inference import (
|
|||
OpenAIEmbeddingData,
|
||||
OpenAIEmbeddingsRequestWithExtraBody,
|
||||
)
|
||||
from llama_stack.apis.tools import RAGDocument
|
||||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
URL,
|
||||
VectorStoreWithIndex,
|
||||
_validate_embedding,
|
||||
content_from_doc,
|
||||
make_overlapped_chunks,
|
||||
)
|
||||
|
||||
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"
|
||||
# Depending on the machine, this can get parsed a couple of ways
|
||||
DUMMY_PDF_TEXT_CHOICES = ["Dummy PDF file", "Dumm y PDF file"]
|
||||
|
||||
|
||||
def read_file(file_path: str) -> bytes:
|
||||
with open(file_path, "rb") as file:
|
||||
return file.read()
|
||||
|
||||
|
||||
def data_url_from_file(file_path: str) -> str:
|
||||
with open(file_path, "rb") as file:
|
||||
file_content = file.read()
|
||||
|
||||
base64_content = base64.b64encode(file_content).decode("utf-8")
|
||||
mime_type, _ = mimetypes.guess_type(file_path)
|
||||
|
||||
data_url = f"data:{mime_type};base64,{base64_content}"
|
||||
|
||||
return data_url
|
||||
|
||||
|
||||
class TestChunk:
|
||||
def test_chunk(self):
|
||||
|
@ -116,45 +88,6 @@ class TestValidateEmbedding:
|
|||
|
||||
|
||||
class TestVectorStore:
|
||||
async def test_returns_content_from_pdf_data_uri(self):
|
||||
data_uri = data_url_from_file(DUMMY_PDF_PATH)
|
||||
doc = RAGDocument(
|
||||
document_id="dummy",
|
||||
content=data_uri,
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content in DUMMY_PDF_TEXT_CHOICES
|
||||
|
||||
@pytest.mark.allow_network
|
||||
async def test_downloads_pdf_and_returns_content(self):
|
||||
# Using GitHub to host the PDF file
|
||||
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
|
||||
doc = RAGDocument(
|
||||
document_id="dummy",
|
||||
content=url,
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content in DUMMY_PDF_TEXT_CHOICES
|
||||
|
||||
@pytest.mark.allow_network
|
||||
async def test_downloads_pdf_and_returns_content_with_url_object(self):
|
||||
# Using GitHub to host the PDF file
|
||||
url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf"
|
||||
doc = RAGDocument(
|
||||
document_id="dummy",
|
||||
content=URL(
|
||||
uri=url,
|
||||
),
|
||||
mime_type="application/pdf",
|
||||
metadata={},
|
||||
)
|
||||
content = await content_from_doc(doc)
|
||||
assert content in DUMMY_PDF_TEXT_CHOICES
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"window_len, overlap_len, expected_chunks",
|
||||
[
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue