mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-16 06:53:47 +00:00
add register model to unit test
This commit is contained in:
parent
e690eb7ad3
commit
1031f1404b
8 changed files with 23 additions and 89 deletions
|
@ -1,85 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import List, Optional
|
||||
|
||||
from llama_stack.apis.datasetio import * # noqa: F403
|
||||
|
||||
|
||||
import datasets as hf_datasets
|
||||
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
||||
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
||||
|
||||
from .benchmarks import llamastack_mmlu
|
||||
|
||||
from .config import HuggingfaceDatasetIOConfig
|
||||
|
||||
|
||||
def load_hf_dataset(dataset_def: DatasetDef):
|
||||
if dataset_def.metadata.get("path", None):
|
||||
return hf_datasets.load_dataset(**dataset_def.metadata)
|
||||
|
||||
df = get_dataframe_from_url(dataset_def.url)
|
||||
|
||||
if df is None:
|
||||
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
|
||||
|
||||
dataset = hf_datasets.Dataset.from_pandas(df)
|
||||
return dataset
|
||||
|
||||
|
||||
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
||||
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
|
||||
self.config = config
|
||||
# local registry for keeping track of datasets within the provider
|
||||
self.dataset_infos = {}
|
||||
|
||||
async def initialize(self) -> None:
|
||||
# pre-registered benchmark datasets
|
||||
pre_registered_datasets = [llamastack_mmlu]
|
||||
self.dataset_infos = {x.identifier: x for x in pre_registered_datasets}
|
||||
|
||||
async def shutdown(self) -> None: ...
|
||||
|
||||
async def register_dataset(
|
||||
self,
|
||||
dataset_def: DatasetDef,
|
||||
) -> None:
|
||||
self.dataset_infos[dataset_def.identifier] = dataset_def
|
||||
|
||||
async def list_datasets(self) -> List[DatasetDef]:
|
||||
return list(self.dataset_infos.values())
|
||||
|
||||
async def get_rows_paginated(
|
||||
self,
|
||||
dataset_id: str,
|
||||
rows_in_page: int,
|
||||
page_token: Optional[str] = None,
|
||||
filter_condition: Optional[str] = None,
|
||||
) -> PaginatedRowsResult:
|
||||
dataset_def = self.dataset_infos[dataset_id]
|
||||
loaded_dataset = load_hf_dataset(dataset_def)
|
||||
|
||||
if page_token and not page_token.isnumeric():
|
||||
raise ValueError("Invalid page_token")
|
||||
|
||||
if page_token is None or len(page_token) == 0:
|
||||
next_page_token = 0
|
||||
else:
|
||||
next_page_token = int(page_token)
|
||||
|
||||
start = next_page_token
|
||||
if rows_in_page == -1:
|
||||
end = len(loaded_dataset)
|
||||
else:
|
||||
end = min(start + rows_in_page, len(loaded_dataset))
|
||||
|
||||
rows = [loaded_dataset[i] for i in range(start, end)]
|
||||
|
||||
return PaginatedRowsResult(
|
||||
rows=rows,
|
||||
total_count=len(rows),
|
||||
next_page_token=str(end),
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue