mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
fix: multiple tool calls in remote-vllm chat_completion (#2161)
# What does this PR do? This fixes an issue in how we used the tool_call_buf from streaming tool calls in the remote-vllm provider where it would end up concatenating parameters from multiple different tool call results instead of aggregating the results from each tool call separately. It also fixes an issue found while digging into that where we were accidentally mixing the json string form of tool call parameters with the string representation of the python form, which mean we'd end up with single quotes in what should be double-quoted json strings. Closes #1120 ## Test Plan The following tests are now passing 100% for the remote-vllm provider, where some of the test_text_inference were failing before this change: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_text_inference.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_vision_inference.py --vision-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" ``` All but one of the agent tests are passing (including the multi-tool one). See the PR at https://github.com/vllm-project/vllm/pull/17917 and a gist at https://gist.github.com/bbrowning/4734240ce96b4264340caa9584e47c9e for changes needed there, which will have to get made upstream in vLLM. Agent tests: ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/agents/test_agents.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" ```` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
bb5fca9521
commit
10b1056dea
4 changed files with 225 additions and 34 deletions
|
@ -162,7 +162,7 @@ def _process_vllm_chat_completion_end_of_stream(
|
|||
finish_reason: str | None,
|
||||
last_chunk_content: str | None,
|
||||
current_event_type: ChatCompletionResponseEventType,
|
||||
tool_call_buf: UnparseableToolCall,
|
||||
tool_call_bufs: dict[str, UnparseableToolCall] | None = None,
|
||||
) -> list[OpenAIChatCompletionChunk]:
|
||||
chunks = []
|
||||
|
||||
|
@ -171,9 +171,8 @@ def _process_vllm_chat_completion_end_of_stream(
|
|||
else:
|
||||
stop_reason = StopReason.end_of_message
|
||||
|
||||
if tool_call_buf.tool_name:
|
||||
# at least one tool call request is received
|
||||
|
||||
tool_call_bufs = tool_call_bufs or {}
|
||||
for _index, tool_call_buf in sorted(tool_call_bufs.items()):
|
||||
args_str = tool_call_buf.arguments or "{}"
|
||||
try:
|
||||
args = json.loads(args_str)
|
||||
|
@ -225,8 +224,14 @@ def _process_vllm_chat_completion_end_of_stream(
|
|||
async def _process_vllm_chat_completion_stream_response(
|
||||
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
|
||||
) -> AsyncGenerator:
|
||||
event_type = ChatCompletionResponseEventType.start
|
||||
tool_call_buf = UnparseableToolCall()
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.start,
|
||||
delta=TextDelta(text=""),
|
||||
)
|
||||
)
|
||||
event_type = ChatCompletionResponseEventType.progress
|
||||
tool_call_bufs: dict[str, UnparseableToolCall] = {}
|
||||
end_of_stream_processed = False
|
||||
|
||||
async for chunk in stream:
|
||||
|
@ -235,17 +240,22 @@ async def _process_vllm_chat_completion_stream_response(
|
|||
return
|
||||
choice = chunk.choices[0]
|
||||
if choice.delta.tool_calls:
|
||||
tool_call = convert_tool_call(choice.delta.tool_calls[0])
|
||||
tool_call_buf.tool_name += str(tool_call.tool_name)
|
||||
tool_call_buf.call_id += tool_call.call_id
|
||||
# TODO: remove str() when dict type for 'arguments' is no longer allowed
|
||||
tool_call_buf.arguments += str(tool_call.arguments)
|
||||
for delta_tool_call in choice.delta.tool_calls:
|
||||
tool_call = convert_tool_call(delta_tool_call)
|
||||
if delta_tool_call.index not in tool_call_bufs:
|
||||
tool_call_bufs[delta_tool_call.index] = UnparseableToolCall()
|
||||
tool_call_buf = tool_call_bufs[delta_tool_call.index]
|
||||
tool_call_buf.tool_name += str(tool_call.tool_name)
|
||||
tool_call_buf.call_id += tool_call.call_id
|
||||
tool_call_buf.arguments += (
|
||||
tool_call.arguments if isinstance(tool_call.arguments, str) else json.dumps(tool_call.arguments)
|
||||
)
|
||||
if choice.finish_reason:
|
||||
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||
finish_reason=choice.finish_reason,
|
||||
last_chunk_content=choice.delta.content,
|
||||
current_event_type=event_type,
|
||||
tool_call_buf=tool_call_buf,
|
||||
tool_call_bufs=tool_call_bufs,
|
||||
)
|
||||
for c in chunks:
|
||||
yield c
|
||||
|
@ -266,7 +276,7 @@ async def _process_vllm_chat_completion_stream_response(
|
|||
# the stream ended without a chunk containing finish_reason - we have to generate the
|
||||
# respective completion chunks manually
|
||||
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||
finish_reason=None, last_chunk_content=None, current_event_type=event_type, tool_call_buf=tool_call_buf
|
||||
finish_reason=None, last_chunk_content=None, current_event_type=event_type, tool_call_bufs=tool_call_bufs
|
||||
)
|
||||
for c in chunks:
|
||||
yield c
|
||||
|
|
|
@ -531,13 +531,19 @@ async def convert_message_to_openai_dict(message: Message, download: bool = Fals
|
|||
tool_name = tc.tool_name
|
||||
if isinstance(tool_name, BuiltinTool):
|
||||
tool_name = tool_name.value
|
||||
|
||||
# arguments_json can be None, so attempt it first and fall back to arguments
|
||||
if hasattr(tc, "arguments_json") and tc.arguments_json:
|
||||
arguments = tc.arguments_json
|
||||
else:
|
||||
arguments = json.dumps(tc.arguments)
|
||||
result["tool_calls"].append(
|
||||
{
|
||||
"id": tc.call_id,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"arguments": tc.arguments_json if hasattr(tc, "arguments_json") else json.dumps(tc.arguments),
|
||||
"arguments": arguments,
|
||||
},
|
||||
}
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue