mirror of
https://github.com/meta-llama/llama-stack.git
synced 2026-01-02 03:10:02 +00:00
Merge remote-tracking branch 'upstream/main' into cdgamarose/add_nvidia_distro
merged with upstream
This commit is contained in:
commit
10faffcb44
404 changed files with 36136 additions and 8936 deletions
|
|
@ -1,6 +1,3 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Bedrock Distribution
|
||||
|
||||
```{toctree}
|
||||
|
|
@ -15,10 +12,14 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::bedrock` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `remote::bedrock` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
|
||||
|
|
@ -28,6 +29,13 @@ The following environment variables can be configured:
|
|||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (meta.llama3-1-8b-instruct-v1:0)`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct (meta.llama3-1-70b-instruct-v1:0)`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta.llama3-1-405b-instruct-v1:0)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
|
|
|||
62
docs/source/distributions/self_hosted_distro/cerebras.md
Normal file
62
docs/source/distributions/self_hosted_distro/cerebras.md
Normal file
|
|
@ -0,0 +1,62 @@
|
|||
# Cerebras Distribution
|
||||
|
||||
The `llamastack/distribution-cerebras` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::cerebras` |
|
||||
| memory | `inline::meta-reference` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `CEREBRAS_API_KEY`: Cerebras API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct (llama3.1-8b)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct (llama-3.3-70b)`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a Cerebras API Key. You can get one by visiting [cloud.cerebras.ai](https://cloud.cerebras.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with Cerebras
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ./run.yaml:/root/my-run.yaml \
|
||||
llamastack/distribution-cerebras \
|
||||
--yaml-config /root/my-run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template cerebras --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
|
||||
```
|
||||
|
|
@ -15,10 +15,14 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::fireworks` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
|
@ -39,6 +43,7 @@ The following models are available by default:
|
|||
- `meta-llama/Llama-3.2-3B-Instruct (fireworks/llama-v3p2-3b-instruct)`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct (fireworks/llama-v3p2-11b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct (fireworks/llama-v3p2-90b-vision-instruct)`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct (fireworks/llama-v3p3-70b-instruct)`
|
||||
- `meta-llama/Llama-Guard-3-8B (fireworks/llama-guard-3-8b)`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision (fireworks/llama-guard-3-11b-vision)`
|
||||
|
||||
|
|
|
|||
|
|
@ -15,10 +15,14 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
|
||||
|
|
@ -57,6 +61,7 @@ LLAMA_STACK_PORT=5001
|
|||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
|
|
@ -68,6 +73,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
|
|
|
|||
|
|
@ -15,10 +15,14 @@ The `llamastack/distribution-meta-reference-quantized-gpu` distribution consists
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `inline::meta-reference-quantized` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
|
||||
|
|
@ -57,6 +61,7 @@ LLAMA_STACK_PORT=5001
|
|||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
|
|
@ -68,6 +73,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
-v ~/.llama:/root/.llama \
|
||||
llamastack/distribution-meta-reference-quantized-gpu \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
|
|
|
|||
|
|
@ -15,10 +15,14 @@ The `llamastack/distribution-ollama` distribution consists of the following prov
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::ollama` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
|
||||
|
|
@ -119,7 +123,7 @@ llama stack run ./run-with-safety.yaml \
|
|||
### (Optional) Update Model Serving Configuration
|
||||
|
||||
```{note}
|
||||
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) variable for supported Ollama models.
|
||||
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
|
||||
```
|
||||
|
||||
To serve a new model with `ollama`
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following
|
|||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
|
||||
|
|
@ -28,7 +29,7 @@ The following environment variables can be configured:
|
|||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100}/v1`)
|
||||
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100/v1`)
|
||||
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
|
||||
- `SAFETY_VLLM_URL`: URL of the vLLM server with the safety model (default: `http://host.docker.internal:5101/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
|
|
|||
|
|
@ -16,10 +16,14 @@ The `llamastack/distribution-tgi` distribution consists of the following provide
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::tgi` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
|
|
|||
|
|
@ -15,10 +15,14 @@ The `llamastack/distribution-together` distribution consists of the following pr
|
|||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| datasetio | `remote::huggingface`, `inline::localfs` |
|
||||
| eval | `inline::meta-reference` |
|
||||
| inference | `remote::together` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
|
@ -38,6 +42,7 @@ The following models are available by default:
|
|||
- `meta-llama/Llama-3.2-3B-Instruct`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.3-70B-Instruct`
|
||||
- `meta-llama/Llama-Guard-3-8B`
|
||||
- `meta-llama/Llama-Guard-3-11B-Vision`
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue