diff --git a/.github/workflows/integration-tests.yml b/.github/workflows/integration-tests.yml index 665f8bd7e..0eb252695 100644 --- a/.github/workflows/integration-tests.yml +++ b/.github/workflows/integration-tests.yml @@ -34,22 +34,20 @@ jobs: uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 - name: Install uv - uses: astral-sh/setup-uv@22695119d769bdb6f7032ad67b9bca0ef8c4a174 # v5.4.0 + uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1 with: python-version: "3.10" - - name: Install Ollama + - name: Install and start Ollama run: | + # the ollama installer also starts the ollama service curl -fsSL https://ollama.com/install.sh | sh - name: Pull Ollama image run: | + # TODO: cache the model. OLLAMA_MODELS defaults to ~ollama/.ollama/models. ollama pull llama3.2:3b-instruct-fp16 - - name: Start Ollama in background - run: | - nohup ollama run llama3.2:3b-instruct-fp16 > ollama.log 2>&1 & - - name: Set Up Environment and Install Dependencies run: | uv sync --extra dev --extra test @@ -61,21 +59,6 @@ jobs: uv pip install -e . llama stack build --template ollama --image-type venv - - name: Wait for Ollama to start - run: | - echo "Waiting for Ollama..." - for i in {1..30}; do - if curl -s http://localhost:11434 | grep -q "Ollama is running"; then - echo "Ollama is running!" - exit 0 - fi - sleep 1 - done - echo "Ollama failed to start" - ollama ps - ollama.log - exit 1 - - name: Start Llama Stack server in background if: matrix.client-type == 'http' env: @@ -99,6 +82,17 @@ jobs: cat server.log exit 1 + - name: Verify Ollama status is OK + if: matrix.client-type == 'http' + run: | + echo "Verifying Ollama status..." + ollama_status=$(curl -s -L http://127.0.0.1:8321/v1/providers/ollama|jq --raw-output .health.status) + echo "Ollama status: $ollama_status" + if [ "$ollama_status" != "OK" ]; then + echo "Ollama health check failed" + exit 1 + fi + - name: Run Integration Tests env: INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct" diff --git a/.github/workflows/pre-commit.yml b/.github/workflows/pre-commit.yml index 847aaecd7..17a42dd26 100644 --- a/.github/workflows/pre-commit.yml +++ b/.github/workflows/pre-commit.yml @@ -31,3 +31,12 @@ jobs: - name: Verify if there are any diff files after pre-commit run: | git diff --exit-code || (echo "There are uncommitted changes, run pre-commit locally and commit again" && exit 1) + + - name: Verify if there are any new files after pre-commit + run: | + unstaged_files=$(git ls-files --others --exclude-standard) + if [ -n "$unstaged_files" ]; then + echo "There are uncommitted new files, run pre-commit locally and commit again" + echo "$unstaged_files" + exit 1 + fi diff --git a/.github/workflows/providers-build.yml b/.github/workflows/providers-build.yml index 915344221..117c8b6d2 100644 --- a/.github/workflows/providers-build.yml +++ b/.github/workflows/providers-build.yml @@ -56,7 +56,7 @@ jobs: python-version: '3.10' - name: Install uv - uses: astral-sh/setup-uv@22695119d769bdb6f7032ad67b9bca0ef8c4a174 # v5.4.0 + uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1 with: python-version: "3.10" @@ -81,3 +81,29 @@ jobs: run: | source test/bin/activate uv pip list + + build-single-provider: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Set up Python + uses: actions/setup-python@8d9ed9ac5c53483de85588cdf95a591a75ab9f55 # v5.5.0 + with: + python-version: '3.10' + + - name: Install uv + uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1 + with: + python-version: "3.10" + + - name: Install LlamaStack + run: | + uv venv + source .venv/bin/activate + uv pip install -e . + + - name: Build a single provider + run: | + USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --image-type venv --image-name test --providers inference=remote::ollama diff --git a/.github/workflows/test-external-providers.yml b/.github/workflows/test-external-providers.yml index 2ead8f845..f7801c8d3 100644 --- a/.github/workflows/test-external-providers.yml +++ b/.github/workflows/test-external-providers.yml @@ -9,6 +9,11 @@ on: jobs: test-external-providers: runs-on: ubuntu-latest + strategy: + matrix: + image-type: [venv] + # We don't do container yet, it's tricky to install a package from the host into the + # container and point 'uv pip install' to the correct path... steps: - name: Checkout repository uses: actions/checkout@v4 @@ -35,17 +40,25 @@ jobs: uv sync --extra dev --extra test uv pip install -e . - - name: Install Ollama custom provider + - name: Apply image type to config file + run: | + yq -i '.image_type = "${{ matrix.image-type }}"' tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml + cat tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml + + - name: Setup directory for Ollama custom provider run: | mkdir -p tests/external-provider/llama-stack-provider-ollama/src/ cp -a llama_stack/providers/remote/inference/ollama/ tests/external-provider/llama-stack-provider-ollama/src/llama_stack_provider_ollama - uv pip install tests/external-provider/llama-stack-provider-ollama - name: Create provider configuration run: | mkdir -p /tmp/providers.d/remote/inference cp tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml /tmp/providers.d/remote/inference/custom_ollama.yaml + - name: Build distro from config file + run: | + USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml + - name: Wait for Ollama to start run: | echo "Waiting for Ollama..." @@ -62,11 +75,13 @@ jobs: exit 1 - name: Start Llama Stack server in background + if: ${{ matrix.image-type }} == 'venv' env: INFERENCE_MODEL: "meta-llama/Llama-3.2-3B-Instruct" run: | - source .venv/bin/activate - nohup uv run llama stack run tests/external-provider/llama-stack-provider-ollama/run.yaml --image-type venv > server.log 2>&1 & + source ci-test/bin/activate + uv run pip list + nohup uv run --active llama stack run tests/external-provider/llama-stack-provider-ollama/run.yaml --image-type ${{ matrix.image-type }} > server.log 2>&1 & - name: Wait for Llama Stack server to be ready run: | diff --git a/.github/workflows/unit-tests.yml b/.github/workflows/unit-tests.yml index da7289afc..4b0c58b99 100644 --- a/.github/workflows/unit-tests.yml +++ b/.github/workflows/unit-tests.yml @@ -38,7 +38,7 @@ jobs: with: python-version: ${{ matrix.python }} - - uses: astral-sh/setup-uv@22695119d769bdb6f7032ad67b9bca0ef8c4a174 # v5.4.0 + - uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1 with: python-version: ${{ matrix.python }} enable-cache: false diff --git a/.github/workflows/update-readthedocs.yml b/.github/workflows/update-readthedocs.yml index 74bf0d0b0..794a727be 100644 --- a/.github/workflows/update-readthedocs.yml +++ b/.github/workflows/update-readthedocs.yml @@ -41,7 +41,7 @@ jobs: python-version: '3.11' - name: Install the latest version of uv - uses: astral-sh/setup-uv@22695119d769bdb6f7032ad67b9bca0ef8c4a174 # v5.4.0 + uses: astral-sh/setup-uv@0c5e2b8115b80b4c7c5ddf6ffdd634974642d182 # v5.4.1 - name: Sync with uv run: uv sync --extra docs diff --git a/README.md b/README.md index 617e5117b..8c201e43d 100644 --- a/README.md +++ b/README.md @@ -9,15 +9,16 @@ [**Quick Start**](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html) | [**Documentation**](https://llama-stack.readthedocs.io/en/latest/index.html) | [**Colab Notebook**](./docs/getting_started.ipynb) - ### ✨🎉 Llama 4 Support 🎉✨ We released [Version 0.2.0](https://github.com/meta-llama/llama-stack/releases/tag/v0.2.0) with support for the Llama 4 herd of models released by Meta. -You can now run Llama 4 models on Llama Stack. +
+👋 Click here to see how to run Llama 4 models on Llama Stack + +\ *Note you need 8xH100 GPU-host to run these models* - ```bash pip install -U llama_stack @@ -67,6 +68,9 @@ print(f"Assistant> {response.completion_message.content}") As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned! +
+ + ### Overview Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides diff --git a/docs/_static/css/my_theme.css b/docs/_static/css/my_theme.css index ccd7d2060..a587f866d 100644 --- a/docs/_static/css/my_theme.css +++ b/docs/_static/css/my_theme.css @@ -16,3 +16,14 @@ .hide-title h1 { display: none; } + +h2, h3, h4 { + font-weight: normal; +} +html[data-theme="dark"] .rst-content div[class^="highlight"] { + background-color: #0b0b0b; +} +pre { + white-space: pre-wrap !important; + word-break: break-all; +} diff --git a/docs/_static/js/detect_theme.js b/docs/_static/js/detect_theme.js new file mode 100644 index 000000000..712565ef7 --- /dev/null +++ b/docs/_static/js/detect_theme.js @@ -0,0 +1,32 @@ +document.addEventListener("DOMContentLoaded", function () { + const prefersDark = window.matchMedia("(prefers-color-scheme: dark)").matches; + const htmlElement = document.documentElement; + + // Check if theme is saved in localStorage + const savedTheme = localStorage.getItem("sphinx-rtd-theme"); + + if (savedTheme) { + // Use the saved theme preference + htmlElement.setAttribute("data-theme", savedTheme); + document.body.classList.toggle("dark", savedTheme === "dark"); + } else { + // Fall back to system preference + const theme = prefersDark ? "dark" : "light"; + htmlElement.setAttribute("data-theme", theme); + document.body.classList.toggle("dark", theme === "dark"); + // Save initial preference + localStorage.setItem("sphinx-rtd-theme", theme); + } + + // Listen for theme changes from the existing toggle + const observer = new MutationObserver(function(mutations) { + mutations.forEach(function(mutation) { + if (mutation.attributeName === "data-theme") { + const currentTheme = htmlElement.getAttribute("data-theme"); + localStorage.setItem("sphinx-rtd-theme", currentTheme); + } + }); + }); + + observer.observe(htmlElement, { attributes: true }); +}); diff --git a/docs/_static/llama-stack-spec.html b/docs/_static/llama-stack-spec.html index 567110829..4c5393947 100644 --- a/docs/_static/llama-stack-spec.html +++ b/docs/_static/llama-stack-spec.html @@ -85,7 +85,7 @@ } } }, - "/v1/batch-inference/chat-completion": { + "/v1/inference/batch-chat-completion": { "post": { "responses": { "200": { @@ -112,7 +112,7 @@ } }, "tags": [ - "BatchInference (Coming Soon)" + "Inference" ], "description": "", "parameters": [], @@ -128,7 +128,7 @@ } } }, - "/v1/batch-inference/completion": { + "/v1/inference/batch-completion": { "post": { "responses": { "200": { @@ -155,7 +155,7 @@ } }, "tags": [ - "BatchInference (Coming Soon)" + "Inference" ], "description": "", "parameters": [], @@ -239,7 +239,7 @@ } }, "tags": [ - "Inference" + "BatchInference (Coming Soon)" ], "description": "Generate a chat completion for the given messages using the specified model.", "parameters": [], @@ -287,7 +287,7 @@ } }, "tags": [ - "Inference" + "BatchInference (Coming Soon)" ], "description": "Generate a completion for the given content using the specified model.", "parameters": [], @@ -3092,6 +3092,132 @@ } } }, + "/v1/openai/v1/chat/completions": { + "post": { + "responses": { + "200": { + "description": "Response from an OpenAI-compatible chat completion request. **OR** Chunk from a streaming response to an OpenAI-compatible chat completion request.", + "content": { + "application/json": { + "schema": { + "oneOf": [ + { + "$ref": "#/components/schemas/OpenAIChatCompletion" + }, + { + "$ref": "#/components/schemas/OpenAIChatCompletionChunk" + } + ] + } + } + } + }, + "400": { + "$ref": "#/components/responses/BadRequest400" + }, + "429": { + "$ref": "#/components/responses/TooManyRequests429" + }, + "500": { + "$ref": "#/components/responses/InternalServerError500" + }, + "default": { + "$ref": "#/components/responses/DefaultError" + } + }, + "tags": [ + "Inference" + ], + "description": "Generate an OpenAI-compatible chat completion for the given messages using the specified model.", + "parameters": [], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/OpenaiChatCompletionRequest" + } + } + }, + "required": true + } + } + }, + "/v1/openai/v1/completions": { + "post": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/OpenAICompletion" + } + } + } + }, + "400": { + "$ref": "#/components/responses/BadRequest400" + }, + "429": { + "$ref": "#/components/responses/TooManyRequests429" + }, + "500": { + "$ref": "#/components/responses/InternalServerError500" + }, + "default": { + "$ref": "#/components/responses/DefaultError" + } + }, + "tags": [ + "Inference" + ], + "description": "Generate an OpenAI-compatible completion for the given prompt using the specified model.", + "parameters": [], + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/OpenaiCompletionRequest" + } + } + }, + "required": true + } + } + }, + "/v1/openai/v1/models": { + "get": { + "responses": { + "200": { + "description": "OK", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/OpenAIListModelsResponse" + } + } + } + }, + "400": { + "$ref": "#/components/responses/BadRequest400" + }, + "429": { + "$ref": "#/components/responses/TooManyRequests429" + }, + "500": { + "$ref": "#/components/responses/InternalServerError500" + }, + "default": { + "$ref": "#/components/responses/DefaultError" + } + }, + "tags": [ + "Models" + ], + "description": "", + "parameters": [] + } + }, "/v1/post-training/preference-optimize": { "post": { "responses": { @@ -4247,6 +4373,51 @@ ], "title": "ToolCall" }, + "ToolConfig": { + "type": "object", + "properties": { + "tool_choice": { + "oneOf": [ + { + "type": "string", + "enum": [ + "auto", + "required", + "none" + ], + "title": "ToolChoice", + "description": "Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model." + }, + { + "type": "string" + } + ], + "default": "auto", + "description": "(Optional) Whether tool use is automatic, required, or none. Can also specify a tool name to use a specific tool. Defaults to ToolChoice.auto." + }, + "tool_prompt_format": { + "type": "string", + "enum": [ + "json", + "function_tag", + "python_list" + ], + "description": "(Optional) Instructs the model how to format tool calls. By default, Llama Stack will attempt to use a format that is best adapted to the model. - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python syntax -- a list of function calls." + }, + "system_message_behavior": { + "type": "string", + "enum": [ + "append", + "replace" + ], + "description": "(Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`: Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`: Replaces the default system prompt with the provided system message. The system message can include the string '{{function_definitions}}' to indicate where the function definitions should be inserted.", + "default": "append" + } + }, + "additionalProperties": false, + "title": "ToolConfig", + "description": "Configuration for tool use." + }, "ToolDefinition": { "type": "object", "properties": { @@ -4435,7 +4606,7 @@ "BatchChatCompletionRequest": { "type": "object", "properties": { - "model": { + "model_id": { "type": "string" }, "messages_batch": { @@ -4456,25 +4627,8 @@ "$ref": "#/components/schemas/ToolDefinition" } }, - "tool_choice": { - "type": "string", - "enum": [ - "auto", - "required", - "none" - ], - "title": "ToolChoice", - "description": "Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model." - }, - "tool_prompt_format": { - "type": "string", - "enum": [ - "json", - "function_tag", - "python_list" - ], - "title": "ToolPromptFormat", - "description": "Prompt format for calling custom / zero shot tools." + "tool_config": { + "$ref": "#/components/schemas/ToolConfig" }, "response_format": { "$ref": "#/components/schemas/ResponseFormat" @@ -4494,7 +4648,7 @@ }, "additionalProperties": false, "required": [ - "model", + "model_id", "messages_batch" ], "title": "BatchChatCompletionRequest" @@ -4591,7 +4745,7 @@ "BatchCompletionRequest": { "type": "object", "properties": { - "model": { + "model_id": { "type": "string" }, "content_batch": { @@ -4621,7 +4775,7 @@ }, "additionalProperties": false, "required": [ - "model", + "model_id", "content_batch" ], "title": "BatchCompletionRequest" @@ -4693,51 +4847,6 @@ ], "title": "CancelTrainingJobRequest" }, - "ToolConfig": { - "type": "object", - "properties": { - "tool_choice": { - "oneOf": [ - { - "type": "string", - "enum": [ - "auto", - "required", - "none" - ], - "title": "ToolChoice", - "description": "Whether tool use is required or automatic. This is a hint to the model which may not be followed. It depends on the Instruction Following capabilities of the model." - }, - { - "type": "string" - } - ], - "default": "auto", - "description": "(Optional) Whether tool use is automatic, required, or none. Can also specify a tool name to use a specific tool. Defaults to ToolChoice.auto." - }, - "tool_prompt_format": { - "type": "string", - "enum": [ - "json", - "function_tag", - "python_list" - ], - "description": "(Optional) Instructs the model how to format tool calls. By default, Llama Stack will attempt to use a format that is best adapted to the model. - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python syntax -- a list of function calls." - }, - "system_message_behavior": { - "type": "string", - "enum": [ - "append", - "replace" - ], - "description": "(Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`: Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`: Replaces the default system prompt with the provided system message. The system message can include the string '{{function_definitions}}' to indicate where the function definitions should be inserted.", - "default": "append" - } - }, - "additionalProperties": false, - "title": "ToolConfig", - "description": "Configuration for tool use." - }, "ChatCompletionRequest": { "type": "object", "properties": { @@ -5112,17 +5221,25 @@ "default": 10 }, "model": { - "type": "string" + "type": "string", + "description": "The model identifier to use for the agent" }, "instructions": { - "type": "string" + "type": "string", + "description": "The system instructions for the agent" + }, + "name": { + "type": "string", + "description": "Optional name for the agent, used in telemetry and identification" }, "enable_session_persistence": { "type": "boolean", - "default": false + "default": false, + "description": "Optional flag indicating whether session data has to be persisted" }, "response_format": { - "$ref": "#/components/schemas/ResponseFormat" + "$ref": "#/components/schemas/ResponseFormat", + "description": "Optional response format configuration" } }, "additionalProperties": false, @@ -5130,7 +5247,8 @@ "model", "instructions" ], - "title": "AgentConfig" + "title": "AgentConfig", + "description": "Configuration for an agent." }, "AgentTool": { "oneOf": [ @@ -7787,7 +7905,13 @@ "type": "object", "properties": { "status": { - "type": "string" + "type": "string", + "enum": [ + "OK", + "Error", + "Not Implemented" + ], + "title": "HealthStatus" } }, "additionalProperties": false, @@ -7982,6 +8106,31 @@ } ] } + }, + "health": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } } }, "additionalProperties": false, @@ -7989,7 +8138,8 @@ "api", "provider_id", "provider_type", - "config" + "config", + "health" ], "title": "ProviderInfo" }, @@ -8713,6 +8863,1187 @@ ], "title": "LogEventRequest" }, + "OpenAIAssistantMessageParam": { + "type": "object", + "properties": { + "role": { + "type": "string", + "const": "assistant", + "default": "assistant", + "description": "Must be \"assistant\" to identify this as the model's response" + }, + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartParam" + } + } + ], + "description": "The content of the model's response" + }, + "name": { + "type": "string", + "description": "(Optional) The name of the assistant message participant." + }, + "tool_calls": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionToolCall" + }, + "description": "List of tool calls. Each tool call is an OpenAIChatCompletionToolCall object." + } + }, + "additionalProperties": false, + "required": [ + "role" + ], + "title": "OpenAIAssistantMessageParam", + "description": "A message containing the model's (assistant) response in an OpenAI-compatible chat completion request." + }, + "OpenAIChatCompletionContentPartImageParam": { + "type": "object", + "properties": { + "type": { + "type": "string", + "const": "image_url", + "default": "image_url" + }, + "image_url": { + "$ref": "#/components/schemas/OpenAIImageURL" + } + }, + "additionalProperties": false, + "required": [ + "type", + "image_url" + ], + "title": "OpenAIChatCompletionContentPartImageParam" + }, + "OpenAIChatCompletionContentPartParam": { + "oneOf": [ + { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartTextParam" + }, + { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartImageParam" + } + ], + "discriminator": { + "propertyName": "type", + "mapping": { + "text": "#/components/schemas/OpenAIChatCompletionContentPartTextParam", + "image_url": "#/components/schemas/OpenAIChatCompletionContentPartImageParam" + } + } + }, + "OpenAIChatCompletionContentPartTextParam": { + "type": "object", + "properties": { + "type": { + "type": "string", + "const": "text", + "default": "text" + }, + "text": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "type", + "text" + ], + "title": "OpenAIChatCompletionContentPartTextParam" + }, + "OpenAIChatCompletionToolCall": { + "type": "object", + "properties": { + "index": { + "type": "integer" + }, + "id": { + "type": "string" + }, + "type": { + "type": "string", + "const": "function", + "default": "function" + }, + "function": { + "$ref": "#/components/schemas/OpenAIChatCompletionToolCallFunction" + } + }, + "additionalProperties": false, + "required": [ + "type" + ], + "title": "OpenAIChatCompletionToolCall" + }, + "OpenAIChatCompletionToolCallFunction": { + "type": "object", + "properties": { + "name": { + "type": "string" + }, + "arguments": { + "type": "string" + } + }, + "additionalProperties": false, + "title": "OpenAIChatCompletionToolCallFunction" + }, + "OpenAIDeveloperMessageParam": { + "type": "object", + "properties": { + "role": { + "type": "string", + "const": "developer", + "default": "developer", + "description": "Must be \"developer\" to identify this as a developer message" + }, + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartParam" + } + } + ], + "description": "The content of the developer message" + }, + "name": { + "type": "string", + "description": "(Optional) The name of the developer message participant." + } + }, + "additionalProperties": false, + "required": [ + "role", + "content" + ], + "title": "OpenAIDeveloperMessageParam", + "description": "A message from the developer in an OpenAI-compatible chat completion request." + }, + "OpenAIImageURL": { + "type": "object", + "properties": { + "url": { + "type": "string" + }, + "detail": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "url" + ], + "title": "OpenAIImageURL" + }, + "OpenAIJSONSchema": { + "type": "object", + "properties": { + "name": { + "type": "string" + }, + "description": { + "type": "string" + }, + "strict": { + "type": "boolean" + }, + "schema": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + }, + "additionalProperties": false, + "required": [ + "name" + ], + "title": "OpenAIJSONSchema" + }, + "OpenAIMessageParam": { + "oneOf": [ + { + "$ref": "#/components/schemas/OpenAIUserMessageParam" + }, + { + "$ref": "#/components/schemas/OpenAISystemMessageParam" + }, + { + "$ref": "#/components/schemas/OpenAIAssistantMessageParam" + }, + { + "$ref": "#/components/schemas/OpenAIToolMessageParam" + }, + { + "$ref": "#/components/schemas/OpenAIDeveloperMessageParam" + } + ], + "discriminator": { + "propertyName": "role", + "mapping": { + "user": "#/components/schemas/OpenAIUserMessageParam", + "system": "#/components/schemas/OpenAISystemMessageParam", + "assistant": "#/components/schemas/OpenAIAssistantMessageParam", + "tool": "#/components/schemas/OpenAIToolMessageParam", + "developer": "#/components/schemas/OpenAIDeveloperMessageParam" + } + } + }, + "OpenAIResponseFormatJSONObject": { + "type": "object", + "properties": { + "type": { + "type": "string", + "const": "json_object", + "default": "json_object" + } + }, + "additionalProperties": false, + "required": [ + "type" + ], + "title": "OpenAIResponseFormatJSONObject" + }, + "OpenAIResponseFormatJSONSchema": { + "type": "object", + "properties": { + "type": { + "type": "string", + "const": "json_schema", + "default": "json_schema" + }, + "json_schema": { + "$ref": "#/components/schemas/OpenAIJSONSchema" + } + }, + "additionalProperties": false, + "required": [ + "type", + "json_schema" + ], + "title": "OpenAIResponseFormatJSONSchema" + }, + "OpenAIResponseFormatParam": { + "oneOf": [ + { + "$ref": "#/components/schemas/OpenAIResponseFormatText" + }, + { + "$ref": "#/components/schemas/OpenAIResponseFormatJSONSchema" + }, + { + "$ref": "#/components/schemas/OpenAIResponseFormatJSONObject" + } + ], + "discriminator": { + "propertyName": "type", + "mapping": { + "text": "#/components/schemas/OpenAIResponseFormatText", + "json_schema": "#/components/schemas/OpenAIResponseFormatJSONSchema", + "json_object": "#/components/schemas/OpenAIResponseFormatJSONObject" + } + } + }, + "OpenAIResponseFormatText": { + "type": "object", + "properties": { + "type": { + "type": "string", + "const": "text", + "default": "text" + } + }, + "additionalProperties": false, + "required": [ + "type" + ], + "title": "OpenAIResponseFormatText" + }, + "OpenAISystemMessageParam": { + "type": "object", + "properties": { + "role": { + "type": "string", + "const": "system", + "default": "system", + "description": "Must be \"system\" to identify this as a system message" + }, + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartParam" + } + } + ], + "description": "The content of the \"system prompt\". If multiple system messages are provided, they are concatenated. The underlying Llama Stack code may also add other system messages (for example, for formatting tool definitions)." + }, + "name": { + "type": "string", + "description": "(Optional) The name of the system message participant." + } + }, + "additionalProperties": false, + "required": [ + "role", + "content" + ], + "title": "OpenAISystemMessageParam", + "description": "A system message providing instructions or context to the model." + }, + "OpenAIToolMessageParam": { + "type": "object", + "properties": { + "role": { + "type": "string", + "const": "tool", + "default": "tool", + "description": "Must be \"tool\" to identify this as a tool response" + }, + "tool_call_id": { + "type": "string", + "description": "Unique identifier for the tool call this response is for" + }, + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartParam" + } + } + ], + "description": "The response content from the tool" + } + }, + "additionalProperties": false, + "required": [ + "role", + "tool_call_id", + "content" + ], + "title": "OpenAIToolMessageParam", + "description": "A message representing the result of a tool invocation in an OpenAI-compatible chat completion request." + }, + "OpenAIUserMessageParam": { + "type": "object", + "properties": { + "role": { + "type": "string", + "const": "user", + "default": "user", + "description": "Must be \"user\" to identify this as a user message" + }, + "content": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionContentPartParam" + } + } + ], + "description": "The content of the message, which can include text and other media" + }, + "name": { + "type": "string", + "description": "(Optional) The name of the user message participant." + } + }, + "additionalProperties": false, + "required": [ + "role", + "content" + ], + "title": "OpenAIUserMessageParam", + "description": "A message from the user in an OpenAI-compatible chat completion request." + }, + "OpenaiChatCompletionRequest": { + "type": "object", + "properties": { + "model": { + "type": "string", + "description": "The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint." + }, + "messages": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIMessageParam" + }, + "description": "List of messages in the conversation" + }, + "frequency_penalty": { + "type": "number", + "description": "(Optional) The penalty for repeated tokens" + }, + "function_call": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + ], + "description": "(Optional) The function call to use" + }, + "functions": { + "type": "array", + "items": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + }, + "description": "(Optional) List of functions to use" + }, + "logit_bias": { + "type": "object", + "additionalProperties": { + "type": "number" + }, + "description": "(Optional) The logit bias to use" + }, + "logprobs": { + "type": "boolean", + "description": "(Optional) The log probabilities to use" + }, + "max_completion_tokens": { + "type": "integer", + "description": "(Optional) The maximum number of tokens to generate" + }, + "max_tokens": { + "type": "integer", + "description": "(Optional) The maximum number of tokens to generate" + }, + "n": { + "type": "integer", + "description": "(Optional) The number of completions to generate" + }, + "parallel_tool_calls": { + "type": "boolean", + "description": "(Optional) Whether to parallelize tool calls" + }, + "presence_penalty": { + "type": "number", + "description": "(Optional) The penalty for repeated tokens" + }, + "response_format": { + "$ref": "#/components/schemas/OpenAIResponseFormatParam", + "description": "(Optional) The response format to use" + }, + "seed": { + "type": "integer", + "description": "(Optional) The seed to use" + }, + "stop": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "type": "string" + } + } + ], + "description": "(Optional) The stop tokens to use" + }, + "stream": { + "type": "boolean", + "description": "(Optional) Whether to stream the response" + }, + "stream_options": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + }, + "description": "(Optional) The stream options to use" + }, + "temperature": { + "type": "number", + "description": "(Optional) The temperature to use" + }, + "tool_choice": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + } + ], + "description": "(Optional) The tool choice to use" + }, + "tools": { + "type": "array", + "items": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + } + }, + "description": "(Optional) The tools to use" + }, + "top_logprobs": { + "type": "integer", + "description": "(Optional) The top log probabilities to use" + }, + "top_p": { + "type": "number", + "description": "(Optional) The top p to use" + }, + "user": { + "type": "string", + "description": "(Optional) The user to use" + } + }, + "additionalProperties": false, + "required": [ + "model", + "messages" + ], + "title": "OpenaiChatCompletionRequest" + }, + "OpenAIChatCompletion": { + "type": "object", + "properties": { + "id": { + "type": "string", + "description": "The ID of the chat completion" + }, + "choices": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChoice" + }, + "description": "List of choices" + }, + "object": { + "type": "string", + "const": "chat.completion", + "default": "chat.completion", + "description": "The object type, which will be \"chat.completion\"" + }, + "created": { + "type": "integer", + "description": "The Unix timestamp in seconds when the chat completion was created" + }, + "model": { + "type": "string", + "description": "The model that was used to generate the chat completion" + } + }, + "additionalProperties": false, + "required": [ + "id", + "choices", + "object", + "created", + "model" + ], + "title": "OpenAIChatCompletion", + "description": "Response from an OpenAI-compatible chat completion request." + }, + "OpenAIChatCompletionChunk": { + "type": "object", + "properties": { + "id": { + "type": "string", + "description": "The ID of the chat completion" + }, + "choices": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChunkChoice" + }, + "description": "List of choices" + }, + "object": { + "type": "string", + "const": "chat.completion.chunk", + "default": "chat.completion.chunk", + "description": "The object type, which will be \"chat.completion.chunk\"" + }, + "created": { + "type": "integer", + "description": "The Unix timestamp in seconds when the chat completion was created" + }, + "model": { + "type": "string", + "description": "The model that was used to generate the chat completion" + } + }, + "additionalProperties": false, + "required": [ + "id", + "choices", + "object", + "created", + "model" + ], + "title": "OpenAIChatCompletionChunk", + "description": "Chunk from a streaming response to an OpenAI-compatible chat completion request." + }, + "OpenAIChoice": { + "type": "object", + "properties": { + "message": { + "$ref": "#/components/schemas/OpenAIMessageParam", + "description": "The message from the model" + }, + "finish_reason": { + "type": "string", + "description": "The reason the model stopped generating" + }, + "index": { + "type": "integer", + "description": "The index of the choice" + }, + "logprobs": { + "$ref": "#/components/schemas/OpenAIChoiceLogprobs", + "description": "(Optional) The log probabilities for the tokens in the message" + } + }, + "additionalProperties": false, + "required": [ + "message", + "finish_reason", + "index" + ], + "title": "OpenAIChoice", + "description": "A choice from an OpenAI-compatible chat completion response." + }, + "OpenAIChoiceDelta": { + "type": "object", + "properties": { + "content": { + "type": "string", + "description": "(Optional) The content of the delta" + }, + "refusal": { + "type": "string", + "description": "(Optional) The refusal of the delta" + }, + "role": { + "type": "string", + "description": "(Optional) The role of the delta" + }, + "tool_calls": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIChatCompletionToolCall" + }, + "description": "(Optional) The tool calls of the delta" + } + }, + "additionalProperties": false, + "title": "OpenAIChoiceDelta", + "description": "A delta from an OpenAI-compatible chat completion streaming response." + }, + "OpenAIChoiceLogprobs": { + "type": "object", + "properties": { + "content": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAITokenLogProb" + }, + "description": "(Optional) The log probabilities for the tokens in the message" + }, + "refusal": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAITokenLogProb" + }, + "description": "(Optional) The log probabilities for the tokens in the message" + } + }, + "additionalProperties": false, + "title": "OpenAIChoiceLogprobs", + "description": "The log probabilities for the tokens in the message from an OpenAI-compatible chat completion response." + }, + "OpenAIChunkChoice": { + "type": "object", + "properties": { + "delta": { + "$ref": "#/components/schemas/OpenAIChoiceDelta", + "description": "The delta from the chunk" + }, + "finish_reason": { + "type": "string", + "description": "The reason the model stopped generating" + }, + "index": { + "type": "integer", + "description": "The index of the choice" + }, + "logprobs": { + "$ref": "#/components/schemas/OpenAIChoiceLogprobs", + "description": "(Optional) The log probabilities for the tokens in the message" + } + }, + "additionalProperties": false, + "required": [ + "delta", + "finish_reason", + "index" + ], + "title": "OpenAIChunkChoice", + "description": "A chunk choice from an OpenAI-compatible chat completion streaming response." + }, + "OpenAITokenLogProb": { + "type": "object", + "properties": { + "token": { + "type": "string" + }, + "bytes": { + "type": "array", + "items": { + "type": "integer" + } + }, + "logprob": { + "type": "number" + }, + "top_logprobs": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAITopLogProb" + } + } + }, + "additionalProperties": false, + "required": [ + "token", + "logprob", + "top_logprobs" + ], + "title": "OpenAITokenLogProb", + "description": "The log probability for a token from an OpenAI-compatible chat completion response." + }, + "OpenAITopLogProb": { + "type": "object", + "properties": { + "token": { + "type": "string" + }, + "bytes": { + "type": "array", + "items": { + "type": "integer" + } + }, + "logprob": { + "type": "number" + } + }, + "additionalProperties": false, + "required": [ + "token", + "logprob" + ], + "title": "OpenAITopLogProb", + "description": "The top log probability for a token from an OpenAI-compatible chat completion response." + }, + "OpenaiCompletionRequest": { + "type": "object", + "properties": { + "model": { + "type": "string", + "description": "The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint." + }, + "prompt": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "type": "string" + } + }, + { + "type": "array", + "items": { + "type": "integer" + } + }, + { + "type": "array", + "items": { + "type": "array", + "items": { + "type": "integer" + } + } + } + ], + "description": "The prompt to generate a completion for" + }, + "best_of": { + "type": "integer", + "description": "(Optional) The number of completions to generate" + }, + "echo": { + "type": "boolean", + "description": "(Optional) Whether to echo the prompt" + }, + "frequency_penalty": { + "type": "number", + "description": "(Optional) The penalty for repeated tokens" + }, + "logit_bias": { + "type": "object", + "additionalProperties": { + "type": "number" + }, + "description": "(Optional) The logit bias to use" + }, + "logprobs": { + "type": "boolean", + "description": "(Optional) The log probabilities to use" + }, + "max_tokens": { + "type": "integer", + "description": "(Optional) The maximum number of tokens to generate" + }, + "n": { + "type": "integer", + "description": "(Optional) The number of completions to generate" + }, + "presence_penalty": { + "type": "number", + "description": "(Optional) The penalty for repeated tokens" + }, + "seed": { + "type": "integer", + "description": "(Optional) The seed to use" + }, + "stop": { + "oneOf": [ + { + "type": "string" + }, + { + "type": "array", + "items": { + "type": "string" + } + } + ], + "description": "(Optional) The stop tokens to use" + }, + "stream": { + "type": "boolean", + "description": "(Optional) Whether to stream the response" + }, + "stream_options": { + "type": "object", + "additionalProperties": { + "oneOf": [ + { + "type": "null" + }, + { + "type": "boolean" + }, + { + "type": "number" + }, + { + "type": "string" + }, + { + "type": "array" + }, + { + "type": "object" + } + ] + }, + "description": "(Optional) The stream options to use" + }, + "temperature": { + "type": "number", + "description": "(Optional) The temperature to use" + }, + "top_p": { + "type": "number", + "description": "(Optional) The top p to use" + }, + "user": { + "type": "string", + "description": "(Optional) The user to use" + }, + "guided_choice": { + "type": "array", + "items": { + "type": "string" + } + }, + "prompt_logprobs": { + "type": "integer" + } + }, + "additionalProperties": false, + "required": [ + "model", + "prompt" + ], + "title": "OpenaiCompletionRequest" + }, + "OpenAICompletion": { + "type": "object", + "properties": { + "id": { + "type": "string" + }, + "choices": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAICompletionChoice" + } + }, + "created": { + "type": "integer" + }, + "model": { + "type": "string" + }, + "object": { + "type": "string", + "const": "text_completion", + "default": "text_completion" + } + }, + "additionalProperties": false, + "required": [ + "id", + "choices", + "created", + "model", + "object" + ], + "title": "OpenAICompletion", + "description": "Response from an OpenAI-compatible completion request." + }, + "OpenAICompletionChoice": { + "type": "object", + "properties": { + "finish_reason": { + "type": "string" + }, + "text": { + "type": "string" + }, + "index": { + "type": "integer" + }, + "logprobs": { + "$ref": "#/components/schemas/OpenAIChoiceLogprobs" + } + }, + "additionalProperties": false, + "required": [ + "finish_reason", + "text", + "index" + ], + "title": "OpenAICompletionChoice", + "description": "A choice from an OpenAI-compatible completion response." + }, + "OpenAIModel": { + "type": "object", + "properties": { + "id": { + "type": "string" + }, + "object": { + "type": "string", + "const": "model", + "default": "model" + }, + "created": { + "type": "integer" + }, + "owned_by": { + "type": "string" + } + }, + "additionalProperties": false, + "required": [ + "id", + "object", + "created", + "owned_by" + ], + "title": "OpenAIModel", + "description": "A model from OpenAI." + }, + "OpenAIListModelsResponse": { + "type": "object", + "properties": { + "data": { + "type": "array", + "items": { + "$ref": "#/components/schemas/OpenAIModel" + } + } + }, + "additionalProperties": false, + "required": [ + "data" + ], + "title": "OpenAIListModelsResponse" + }, "DPOAlignmentConfig": { "type": "object", "properties": { @@ -8846,13 +10177,16 @@ "type": "integer" }, "max_steps_per_epoch": { - "type": "integer" + "type": "integer", + "default": 1 }, "gradient_accumulation_steps": { - "type": "integer" + "type": "integer", + "default": 1 }, "max_validation_steps": { - "type": "integer" + "type": "integer", + "default": 1 }, "data_config": { "$ref": "#/components/schemas/DataConfig" @@ -8872,10 +10206,7 @@ "required": [ "n_epochs", "max_steps_per_epoch", - "gradient_accumulation_steps", - "max_validation_steps", - "data_config", - "optimizer_config" + "gradient_accumulation_steps" ], "title": "TrainingConfig" }, @@ -10051,8 +11382,7 @@ "job_uuid", "training_config", "hyperparam_search_config", - "logger_config", - "model" + "logger_config" ], "title": "SupervisedFineTuneRequest" }, @@ -10242,7 +11572,9 @@ "x-displayName": "Agents API for creating and interacting with agentic systems." }, { - "name": "BatchInference (Coming Soon)" + "name": "BatchInference (Coming Soon)", + "description": "This is an asynchronous API. If the request is successful, the response will be a job which can be polled for completion.\n\nNOTE: This API is not yet implemented and is subject to change in concert with other asynchronous APIs\nincluding (post-training, evals, etc).", + "x-displayName": "Batch inference API for generating completions and chat completions." }, { "name": "Benchmarks" diff --git a/docs/_static/llama-stack-spec.yaml b/docs/_static/llama-stack-spec.yaml index 1dfd17f55..a24f1a9db 100644 --- a/docs/_static/llama-stack-spec.yaml +++ b/docs/_static/llama-stack-spec.yaml @@ -40,7 +40,7 @@ paths: schema: $ref: '#/components/schemas/AppendRowsRequest' required: true - /v1/batch-inference/chat-completion: + /v1/inference/batch-chat-completion: post: responses: '200': @@ -60,7 +60,7 @@ paths: default: $ref: '#/components/responses/DefaultError' tags: - - BatchInference (Coming Soon) + - Inference description: '' parameters: [] requestBody: @@ -69,7 +69,7 @@ paths: schema: $ref: '#/components/schemas/BatchChatCompletionRequest' required: true - /v1/batch-inference/completion: + /v1/inference/batch-completion: post: responses: '200': @@ -89,7 +89,7 @@ paths: default: $ref: '#/components/responses/DefaultError' tags: - - BatchInference (Coming Soon) + - Inference description: '' parameters: [] requestBody: @@ -148,7 +148,7 @@ paths: default: $ref: '#/components/responses/DefaultError' tags: - - Inference + - BatchInference (Coming Soon) description: >- Generate a chat completion for the given messages using the specified model. parameters: [] @@ -183,7 +183,7 @@ paths: default: $ref: '#/components/responses/DefaultError' tags: - - Inference + - BatchInference (Coming Soon) description: >- Generate a completion for the given content using the specified model. parameters: [] @@ -2131,6 +2131,95 @@ paths: schema: $ref: '#/components/schemas/LogEventRequest' required: true + /v1/openai/v1/chat/completions: + post: + responses: + '200': + description: >- + Response from an OpenAI-compatible chat completion request. **OR** Chunk + from a streaming response to an OpenAI-compatible chat completion request. + content: + application/json: + schema: + oneOf: + - $ref: '#/components/schemas/OpenAIChatCompletion' + - $ref: '#/components/schemas/OpenAIChatCompletionChunk' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + description: >- + Generate an OpenAI-compatible chat completion for the given messages using + the specified model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiChatCompletionRequest' + required: true + /v1/openai/v1/completions: + post: + responses: + '200': + description: OK + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICompletion' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + description: >- + Generate an OpenAI-compatible completion for the given prompt using the specified + model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiCompletionRequest' + required: true + /v1/openai/v1/models: + get: + responses: + '200': + description: OK + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIListModelsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Models + description: '' + parameters: [] /v1/post-training/preference-optimize: post: responses: @@ -2924,6 +3013,54 @@ components: - tool_name - arguments title: ToolCall + ToolConfig: + type: object + properties: + tool_choice: + oneOf: + - type: string + enum: + - auto + - required + - none + title: ToolChoice + description: >- + Whether tool use is required or automatic. This is a hint to the model + which may not be followed. It depends on the Instruction Following + capabilities of the model. + - type: string + default: auto + description: >- + (Optional) Whether tool use is automatic, required, or none. Can also + specify a tool name to use a specific tool. Defaults to ToolChoice.auto. + tool_prompt_format: + type: string + enum: + - json + - function_tag + - python_list + description: >- + (Optional) Instructs the model how to format tool calls. By default, Llama + Stack will attempt to use a format that is best adapted to the model. + - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. + - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a + tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python + syntax -- a list of function calls. + system_message_behavior: + type: string + enum: + - append + - replace + description: >- + (Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`: + Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`: + Replaces the default system prompt with the provided system message. The + system message can include the string '{{function_definitions}}' to indicate + where the function definitions should be inserted. + default: append + additionalProperties: false + title: ToolConfig + description: Configuration for tool use. ToolDefinition: type: object properties: @@ -3060,7 +3197,7 @@ components: BatchChatCompletionRequest: type: object properties: - model: + model_id: type: string messages_batch: type: array @@ -3074,26 +3211,8 @@ components: type: array items: $ref: '#/components/schemas/ToolDefinition' - tool_choice: - type: string - enum: - - auto - - required - - none - title: ToolChoice - description: >- - Whether tool use is required or automatic. This is a hint to the model - which may not be followed. It depends on the Instruction Following capabilities - of the model. - tool_prompt_format: - type: string - enum: - - json - - function_tag - - python_list - title: ToolPromptFormat - description: >- - Prompt format for calling custom / zero shot tools. + tool_config: + $ref: '#/components/schemas/ToolConfig' response_format: $ref: '#/components/schemas/ResponseFormat' logprobs: @@ -3108,7 +3227,7 @@ components: title: LogProbConfig additionalProperties: false required: - - model + - model_id - messages_batch title: BatchChatCompletionRequest BatchChatCompletionResponse: @@ -3176,7 +3295,7 @@ components: BatchCompletionRequest: type: object properties: - model: + model_id: type: string content_batch: type: array @@ -3198,7 +3317,7 @@ components: title: LogProbConfig additionalProperties: false required: - - model + - model_id - content_batch title: BatchCompletionRequest BatchCompletionResponse: @@ -3250,54 +3369,6 @@ components: required: - job_uuid title: CancelTrainingJobRequest - ToolConfig: - type: object - properties: - tool_choice: - oneOf: - - type: string - enum: - - auto - - required - - none - title: ToolChoice - description: >- - Whether tool use is required or automatic. This is a hint to the model - which may not be followed. It depends on the Instruction Following - capabilities of the model. - - type: string - default: auto - description: >- - (Optional) Whether tool use is automatic, required, or none. Can also - specify a tool name to use a specific tool. Defaults to ToolChoice.auto. - tool_prompt_format: - type: string - enum: - - json - - function_tag - - python_list - description: >- - (Optional) Instructs the model how to format tool calls. By default, Llama - Stack will attempt to use a format that is best adapted to the model. - - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. - - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a - tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python - syntax -- a list of function calls. - system_message_behavior: - type: string - enum: - - append - - replace - description: >- - (Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`: - Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`: - Replaces the default system prompt with the provided system message. The - system message can include the string '{{function_definitions}}' to indicate - where the function definitions should be inserted. - default: append - additionalProperties: false - title: ToolConfig - description: Configuration for tool use. ChatCompletionRequest: type: object properties: @@ -3615,18 +3686,29 @@ components: default: 10 model: type: string + description: >- + The model identifier to use for the agent instructions: type: string + description: The system instructions for the agent + name: + type: string + description: >- + Optional name for the agent, used in telemetry and identification enable_session_persistence: type: boolean default: false + description: >- + Optional flag indicating whether session data has to be persisted response_format: $ref: '#/components/schemas/ResponseFormat' + description: Optional response format configuration additionalProperties: false required: - model - instructions title: AgentConfig + description: Configuration for an agent. AgentTool: oneOf: - type: string @@ -5396,6 +5478,11 @@ components: properties: status: type: string + enum: + - OK + - Error + - Not Implemented + title: HealthStatus additionalProperties: false required: - status @@ -5507,12 +5594,23 @@ components: - type: string - type: array - type: object + health: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object additionalProperties: false required: - api - provider_id - provider_type - config + - health title: ProviderInfo InvokeToolRequest: type: object @@ -5980,6 +6078,836 @@ components: - event - ttl_seconds title: LogEventRequest + OpenAIAssistantMessageParam: + type: object + properties: + role: + type: string + const: assistant + default: assistant + description: >- + Must be "assistant" to identify this as the model's response + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: The content of the model's response + name: + type: string + description: >- + (Optional) The name of the assistant message participant. + tool_calls: + type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionToolCall' + description: >- + List of tool calls. Each tool call is an OpenAIChatCompletionToolCall + object. + additionalProperties: false + required: + - role + title: OpenAIAssistantMessageParam + description: >- + A message containing the model's (assistant) response in an OpenAI-compatible + chat completion request. + "OpenAIChatCompletionContentPartImageParam": + type: object + properties: + type: + type: string + const: image_url + default: image_url + image_url: + $ref: '#/components/schemas/OpenAIImageURL' + additionalProperties: false + required: + - type + - image_url + title: >- + OpenAIChatCompletionContentPartImageParam + OpenAIChatCompletionContentPartParam: + oneOf: + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + discriminator: + propertyName: type + mapping: + text: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + image_url: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + OpenAIChatCompletionContentPartTextParam: + type: object + properties: + type: + type: string + const: text + default: text + text: + type: string + additionalProperties: false + required: + - type + - text + title: OpenAIChatCompletionContentPartTextParam + OpenAIChatCompletionToolCall: + type: object + properties: + index: + type: integer + id: + type: string + type: + type: string + const: function + default: function + function: + $ref: '#/components/schemas/OpenAIChatCompletionToolCallFunction' + additionalProperties: false + required: + - type + title: OpenAIChatCompletionToolCall + OpenAIChatCompletionToolCallFunction: + type: object + properties: + name: + type: string + arguments: + type: string + additionalProperties: false + title: OpenAIChatCompletionToolCallFunction + OpenAIDeveloperMessageParam: + type: object + properties: + role: + type: string + const: developer + default: developer + description: >- + Must be "developer" to identify this as a developer message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: The content of the developer message + name: + type: string + description: >- + (Optional) The name of the developer message participant. + additionalProperties: false + required: + - role + - content + title: OpenAIDeveloperMessageParam + description: >- + A message from the developer in an OpenAI-compatible chat completion request. + OpenAIImageURL: + type: object + properties: + url: + type: string + detail: + type: string + additionalProperties: false + required: + - url + title: OpenAIImageURL + OpenAIJSONSchema: + type: object + properties: + name: + type: string + description: + type: string + strict: + type: boolean + schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + additionalProperties: false + required: + - name + title: OpenAIJSONSchema + OpenAIMessageParam: + oneOf: + - $ref: '#/components/schemas/OpenAIUserMessageParam' + - $ref: '#/components/schemas/OpenAISystemMessageParam' + - $ref: '#/components/schemas/OpenAIAssistantMessageParam' + - $ref: '#/components/schemas/OpenAIToolMessageParam' + - $ref: '#/components/schemas/OpenAIDeveloperMessageParam' + discriminator: + propertyName: role + mapping: + user: '#/components/schemas/OpenAIUserMessageParam' + system: '#/components/schemas/OpenAISystemMessageParam' + assistant: '#/components/schemas/OpenAIAssistantMessageParam' + tool: '#/components/schemas/OpenAIToolMessageParam' + developer: '#/components/schemas/OpenAIDeveloperMessageParam' + OpenAIResponseFormatJSONObject: + type: object + properties: + type: + type: string + const: json_object + default: json_object + additionalProperties: false + required: + - type + title: OpenAIResponseFormatJSONObject + OpenAIResponseFormatJSONSchema: + type: object + properties: + type: + type: string + const: json_schema + default: json_schema + json_schema: + $ref: '#/components/schemas/OpenAIJSONSchema' + additionalProperties: false + required: + - type + - json_schema + title: OpenAIResponseFormatJSONSchema + OpenAIResponseFormatParam: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseFormatText' + - $ref: '#/components/schemas/OpenAIResponseFormatJSONSchema' + - $ref: '#/components/schemas/OpenAIResponseFormatJSONObject' + discriminator: + propertyName: type + mapping: + text: '#/components/schemas/OpenAIResponseFormatText' + json_schema: '#/components/schemas/OpenAIResponseFormatJSONSchema' + json_object: '#/components/schemas/OpenAIResponseFormatJSONObject' + OpenAIResponseFormatText: + type: object + properties: + type: + type: string + const: text + default: text + additionalProperties: false + required: + - type + title: OpenAIResponseFormatText + OpenAISystemMessageParam: + type: object + properties: + role: + type: string + const: system + default: system + description: >- + Must be "system" to identify this as a system message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: >- + The content of the "system prompt". If multiple system messages are provided, + they are concatenated. The underlying Llama Stack code may also add other + system messages (for example, for formatting tool definitions). + name: + type: string + description: >- + (Optional) The name of the system message participant. + additionalProperties: false + required: + - role + - content + title: OpenAISystemMessageParam + description: >- + A system message providing instructions or context to the model. + OpenAIToolMessageParam: + type: object + properties: + role: + type: string + const: tool + default: tool + description: >- + Must be "tool" to identify this as a tool response + tool_call_id: + type: string + description: >- + Unique identifier for the tool call this response is for + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: The response content from the tool + additionalProperties: false + required: + - role + - tool_call_id + - content + title: OpenAIToolMessageParam + description: >- + A message representing the result of a tool invocation in an OpenAI-compatible + chat completion request. + OpenAIUserMessageParam: + type: object + properties: + role: + type: string + const: user + default: user + description: >- + Must be "user" to identify this as a user message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: >- + The content of the message, which can include text and other media + name: + type: string + description: >- + (Optional) The name of the user message participant. + additionalProperties: false + required: + - role + - content + title: OpenAIUserMessageParam + description: >- + A message from the user in an OpenAI-compatible chat completion request. + OpenaiChatCompletionRequest: + type: object + properties: + model: + type: string + description: >- + The identifier of the model to use. The model must be registered with + Llama Stack and available via the /models endpoint. + messages: + type: array + items: + $ref: '#/components/schemas/OpenAIMessageParam' + description: List of messages in the conversation + frequency_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens + function_call: + oneOf: + - type: string + - type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The function call to use + functions: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) List of functions to use + logit_bias: + type: object + additionalProperties: + type: number + description: (Optional) The logit bias to use + logprobs: + type: boolean + description: (Optional) The log probabilities to use + max_completion_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate + max_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate + n: + type: integer + description: >- + (Optional) The number of completions to generate + parallel_tool_calls: + type: boolean + description: >- + (Optional) Whether to parallelize tool calls + presence_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens + response_format: + $ref: '#/components/schemas/OpenAIResponseFormatParam' + description: (Optional) The response format to use + seed: + type: integer + description: (Optional) The seed to use + stop: + oneOf: + - type: string + - type: array + items: + type: string + description: (Optional) The stop tokens to use + stream: + type: boolean + description: >- + (Optional) Whether to stream the response + stream_options: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The stream options to use + temperature: + type: number + description: (Optional) The temperature to use + tool_choice: + oneOf: + - type: string + - type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The tool choice to use + tools: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The tools to use + top_logprobs: + type: integer + description: >- + (Optional) The top log probabilities to use + top_p: + type: number + description: (Optional) The top p to use + user: + type: string + description: (Optional) The user to use + additionalProperties: false + required: + - model + - messages + title: OpenaiChatCompletionRequest + OpenAIChatCompletion: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChoice' + description: List of choices + object: + type: string + const: chat.completion + default: chat.completion + description: >- + The object type, which will be "chat.completion" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + additionalProperties: false + required: + - id + - choices + - object + - created + - model + title: OpenAIChatCompletion + description: >- + Response from an OpenAI-compatible chat completion request. + OpenAIChatCompletionChunk: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChunkChoice' + description: List of choices + object: + type: string + const: chat.completion.chunk + default: chat.completion.chunk + description: >- + The object type, which will be "chat.completion.chunk" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + additionalProperties: false + required: + - id + - choices + - object + - created + - model + title: OpenAIChatCompletionChunk + description: >- + Chunk from a streaming response to an OpenAI-compatible chat completion request. + OpenAIChoice: + type: object + properties: + message: + $ref: '#/components/schemas/OpenAIMessageParam' + description: The message from the model + finish_reason: + type: string + description: The reason the model stopped generating + index: + type: integer + description: The index of the choice + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + required: + - message + - finish_reason + - index + title: OpenAIChoice + description: >- + A choice from an OpenAI-compatible chat completion response. + OpenAIChoiceDelta: + type: object + properties: + content: + type: string + description: (Optional) The content of the delta + refusal: + type: string + description: (Optional) The refusal of the delta + role: + type: string + description: (Optional) The role of the delta + tool_calls: + type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionToolCall' + description: (Optional) The tool calls of the delta + additionalProperties: false + title: OpenAIChoiceDelta + description: >- + A delta from an OpenAI-compatible chat completion streaming response. + OpenAIChoiceLogprobs: + type: object + properties: + content: + type: array + items: + $ref: '#/components/schemas/OpenAITokenLogProb' + description: >- + (Optional) The log probabilities for the tokens in the message + refusal: + type: array + items: + $ref: '#/components/schemas/OpenAITokenLogProb' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + title: OpenAIChoiceLogprobs + description: >- + The log probabilities for the tokens in the message from an OpenAI-compatible + chat completion response. + OpenAIChunkChoice: + type: object + properties: + delta: + $ref: '#/components/schemas/OpenAIChoiceDelta' + description: The delta from the chunk + finish_reason: + type: string + description: The reason the model stopped generating + index: + type: integer + description: The index of the choice + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + required: + - delta + - finish_reason + - index + title: OpenAIChunkChoice + description: >- + A chunk choice from an OpenAI-compatible chat completion streaming response. + OpenAITokenLogProb: + type: object + properties: + token: + type: string + bytes: + type: array + items: + type: integer + logprob: + type: number + top_logprobs: + type: array + items: + $ref: '#/components/schemas/OpenAITopLogProb' + additionalProperties: false + required: + - token + - logprob + - top_logprobs + title: OpenAITokenLogProb + description: >- + The log probability for a token from an OpenAI-compatible chat completion + response. + OpenAITopLogProb: + type: object + properties: + token: + type: string + bytes: + type: array + items: + type: integer + logprob: + type: number + additionalProperties: false + required: + - token + - logprob + title: OpenAITopLogProb + description: >- + The top log probability for a token from an OpenAI-compatible chat completion + response. + OpenaiCompletionRequest: + type: object + properties: + model: + type: string + description: >- + The identifier of the model to use. The model must be registered with + Llama Stack and available via the /models endpoint. + prompt: + oneOf: + - type: string + - type: array + items: + type: string + - type: array + items: + type: integer + - type: array + items: + type: array + items: + type: integer + description: The prompt to generate a completion for + best_of: + type: integer + description: >- + (Optional) The number of completions to generate + echo: + type: boolean + description: (Optional) Whether to echo the prompt + frequency_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens + logit_bias: + type: object + additionalProperties: + type: number + description: (Optional) The logit bias to use + logprobs: + type: boolean + description: (Optional) The log probabilities to use + max_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate + n: + type: integer + description: >- + (Optional) The number of completions to generate + presence_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens + seed: + type: integer + description: (Optional) The seed to use + stop: + oneOf: + - type: string + - type: array + items: + type: string + description: (Optional) The stop tokens to use + stream: + type: boolean + description: >- + (Optional) Whether to stream the response + stream_options: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The stream options to use + temperature: + type: number + description: (Optional) The temperature to use + top_p: + type: number + description: (Optional) The top p to use + user: + type: string + description: (Optional) The user to use + guided_choice: + type: array + items: + type: string + prompt_logprobs: + type: integer + additionalProperties: false + required: + - model + - prompt + title: OpenaiCompletionRequest + OpenAICompletion: + type: object + properties: + id: + type: string + choices: + type: array + items: + $ref: '#/components/schemas/OpenAICompletionChoice' + created: + type: integer + model: + type: string + object: + type: string + const: text_completion + default: text_completion + additionalProperties: false + required: + - id + - choices + - created + - model + - object + title: OpenAICompletion + description: >- + Response from an OpenAI-compatible completion request. + OpenAICompletionChoice: + type: object + properties: + finish_reason: + type: string + text: + type: string + index: + type: integer + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + additionalProperties: false + required: + - finish_reason + - text + - index + title: OpenAICompletionChoice + description: >- + A choice from an OpenAI-compatible completion response. + OpenAIModel: + type: object + properties: + id: + type: string + object: + type: string + const: model + default: model + created: + type: integer + owned_by: + type: string + additionalProperties: false + required: + - id + - object + - created + - owned_by + title: OpenAIModel + description: A model from OpenAI. + OpenAIListModelsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/OpenAIModel' + additionalProperties: false + required: + - data + title: OpenAIListModelsResponse DPOAlignmentConfig: type: object properties: @@ -6079,10 +7007,13 @@ components: type: integer max_steps_per_epoch: type: integer + default: 1 gradient_accumulation_steps: type: integer + default: 1 max_validation_steps: type: integer + default: 1 data_config: $ref: '#/components/schemas/DataConfig' optimizer_config: @@ -6097,9 +7028,6 @@ components: - n_epochs - max_steps_per_epoch - gradient_accumulation_steps - - max_validation_steps - - data_config - - optimizer_config title: TrainingConfig PreferenceOptimizeRequest: type: object @@ -6833,7 +7761,6 @@ components: - training_config - hyperparam_search_config - logger_config - - model title: SupervisedFineTuneRequest SyntheticDataGenerateRequest: type: object @@ -6968,6 +7895,17 @@ tags: x-displayName: >- Agents API for creating and interacting with agentic systems. - name: BatchInference (Coming Soon) + description: >- + This is an asynchronous API. If the request is successful, the response will + be a job which can be polled for completion. + + + NOTE: This API is not yet implemented and is subject to change in concert with + other asynchronous APIs + + including (post-training, evals, etc). + x-displayName: >- + Batch inference API for generating completions and chat completions. - name: Benchmarks - name: DatasetIO - name: Datasets diff --git a/docs/source/building_applications/rag.md b/docs/source/building_applications/rag.md index 39d1ba333..db6303209 100644 --- a/docs/source/building_applications/rag.md +++ b/docs/source/building_applications/rag.md @@ -68,7 +68,8 @@ chunks_response = client.vector_io.query( ### Using the RAG Tool A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. -and automatically chunks them into smaller pieces. +and automatically chunks them into smaller pieces. More examples for how to format a RAGDocument can be found in the +[appendix](#more-ragdocument-examples). ```python from llama_stack_client import RAGDocument @@ -178,3 +179,38 @@ for vector_db_id in client.vector_dbs.list(): print(f"Unregistering vector database: {vector_db_id.identifier}") client.vector_dbs.unregister(vector_db_id=vector_db_id.identifier) ``` + +### Appendix + +#### More RAGDocument Examples +```python +from llama_stack_client import RAGDocument +import base64 + +RAGDocument(document_id="num-0", content={"uri": "file://path/to/file"}) +RAGDocument(document_id="num-1", content="plain text") +RAGDocument( + document_id="num-2", + content={ + "type": "text", + "text": "plain text input", + }, # for inputs that should be treated as text explicitly +) +RAGDocument( + document_id="num-3", + content={ + "type": "image", + "image": {"url": {"uri": "https://mywebsite.com/image.jpg"}}, + }, +) +B64_ENCODED_IMAGE = base64.b64encode( + requests.get( + "https://raw.githubusercontent.com/meta-llama/llama-stack/refs/heads/main/docs/_static/llama-stack.png" + ).content +) +RAGDocuemnt( + document_id="num-4", + content={"type": "image", "image": {"data": B64_ENCODED_IMAGE}}, +) +``` +for more strongly typed interaction use the typed dicts found [here](https://github.com/meta-llama/llama-stack-client-python/blob/38cd91c9e396f2be0bec1ee96a19771582ba6f17/src/llama_stack_client/types/shared_params/document.py). diff --git a/docs/source/building_applications/tools.md b/docs/source/building_applications/tools.md index 94841a773..6da1c5a6a 100644 --- a/docs/source/building_applications/tools.md +++ b/docs/source/building_applications/tools.md @@ -41,7 +41,7 @@ client.toolgroups.register( The tool requires an API key which can be provided either in the configuration or through the request header `X-LlamaStack-Provider-Data`. The format of the header is `{"_api_key": }`. - +> **NOTE:** When using Tavily Search and Bing Search, the inference output will still display "Brave Search." This is because Llama models have been trained with Brave Search as a built-in tool. Tavily and bing is just being used in lieu of Brave search. #### Code Interpreter @@ -214,3 +214,69 @@ response = agent.create_turn( session_id=session_id, ) ``` +## Simple Example 2: Using an Agent with the Web Search Tool +1. Start by registering a Tavily API key at [Tavily](https://tavily.com/). +2. [Optional] Provide the API key directly to the Llama Stack server +```bash +export TAVILY_SEARCH_API_KEY="your key" +``` +```bash +--env TAVILY_SEARCH_API_KEY=${TAVILY_SEARCH_API_KEY} +``` +3. Run the following script. +```python +from llama_stack_client.lib.agents.agent import Agent +from llama_stack_client.types.agent_create_params import AgentConfig +from llama_stack_client.lib.agents.event_logger import EventLogger +from llama_stack_client import LlamaStackClient + +client = LlamaStackClient( + base_url=f"http://localhost:8321", + provider_data={ + "tavily_search_api_key": "your_TAVILY_SEARCH_API_KEY" + }, # Set this from the client side. No need to provide it if it has already been configured on the Llama Stack server. +) + +agent = Agent( + client, + model="meta-llama/Llama-3.2-3B-Instruct", + instructions=( + "You are a web search assistant, must use websearch tool to look up the most current and precise information available. " + ), + tools=["builtin::websearch"], +) + +session_id = agent.create_session("websearch-session") + +response = agent.create_turn( + messages=[ + {"role": "user", "content": "How did the USA perform in the last Olympics?"} + ], + session_id=session_id, +) +for log in EventLogger().log(response): + log.print() +``` + +## Simple Example3: Using an Agent with the WolframAlpha Tool +1. Start by registering for a WolframAlpha API key at [WolframAlpha Developer Portal](https://developer.wolframalpha.com/access). +2. Provide the API key either when starting the Llama Stack server: + ```bash + --env WOLFRAM_ALPHA_API_KEY=${WOLFRAM_ALPHA_API_KEY} + ``` + or from the client side: + ```python + client = LlamaStackClient( + base_url="http://localhost:8321", + provider_data={"wolfram_alpha_api_key": wolfram_api_key}, + ) + ``` +3. Configure the tools in the Agent by setting `tools=["builtin::wolfram_alpha"]`. +4. Example user query: + ```python + response = agent.create_turn( + messages=[{"role": "user", "content": "Solve x^2 + 2x + 1 = 0 using WolframAlpha"}], + session_id=session_id, + ) + ``` +``` diff --git a/docs/source/conf.py b/docs/source/conf.py index 33654fe67..55c6383b2 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -112,6 +112,8 @@ html_theme_options = { # "style_nav_header_background": "#c3c9d4", } +default_dark_mode = False + html_static_path = ["../_static"] # html_logo = "../_static/llama-stack-logo.png" # html_style = "../_static/css/my_theme.css" @@ -119,6 +121,7 @@ html_static_path = ["../_static"] def setup(app): app.add_css_file("css/my_theme.css") + app.add_js_file("js/detect_theme.js") def dockerhub_role(name, rawtext, text, lineno, inliner, options={}, content=[]): url = f"https://hub.docker.com/r/llamastack/{text}" diff --git a/docs/source/distributions/building_distro.md b/docs/source/distributions/building_distro.md index e1e38d7ce..4c342b14b 100644 --- a/docs/source/distributions/building_distro.md +++ b/docs/source/distributions/building_distro.md @@ -176,7 +176,11 @@ distribution_spec: safety: inline::llama-guard agents: inline::meta-reference telemetry: inline::meta-reference +image_name: ollama image_type: conda + +# If some providers are external, you can specify the path to the implementation +external_providers_dir: /etc/llama-stack/providers.d ``` ``` @@ -184,6 +188,57 @@ llama stack build --config llama_stack/templates/ollama/build.yaml ``` ::: +:::{tab-item} Building with External Providers + +Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers. + +To build a distribution with external providers, you need to: + +1. Configure the `external_providers_dir` in your build configuration file: + +```yaml +# Example my-external-stack.yaml with external providers +version: '2' +distribution_spec: + description: Custom distro for CI tests + providers: + inference: + - remote::custom_ollama +# Add more providers as needed +image_type: container +image_name: ci-test +# Path to external provider implementations +external_providers_dir: /etc/llama-stack/providers.d +``` + +Here's an example for a custom Ollama provider: + +```yaml +adapter: + adapter_type: custom_ollama + pip_packages: + - ollama + - aiohttp + - llama-stack-provider-ollama # This is the provider package + config_class: llama_stack_ollama_provider.config.OllamaImplConfig + module: llama_stack_ollama_provider +api_dependencies: [] +optional_api_dependencies: [] +``` + +The `pip_packages` section lists the Python packages required by the provider, as well as the +provider package itself. The package must be available on PyPI or can be provided from a local +directory or a git repository (git must be installed on the build environment). + +2. Build your distribution using the config file: + +``` +llama stack build --config my-external-stack.yaml +``` + +For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external.md). +::: + :::{tab-item} Building Container ```{admonition} Podman Alternative @@ -231,7 +286,7 @@ options: -h, --help show this help message and exit --port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321) --image-name IMAGE_NAME - Name of the image to run. Defaults to the current conda environment (default: None) + Name of the image to run. Defaults to the current environment (default: None) --disable-ipv6 Disable IPv6 support (default: False) --env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: []) --tls-keyfile TLS_KEYFILE diff --git a/docs/source/distributions/configuration.md b/docs/source/distributions/configuration.md index 6cd5e161f..c06632991 100644 --- a/docs/source/distributions/configuration.md +++ b/docs/source/distributions/configuration.md @@ -2,7 +2,7 @@ The Llama Stack runtime configuration is specified as a YAML file. Here is a simplified version of an example configuration file for the Ollama distribution: -```{dropdown} Sample Configuration File +```{dropdown} 👋 Click here for a Sample Configuration File ```yaml version: 2 diff --git a/docs/source/distributions/kubernetes_deployment.md b/docs/source/distributions/kubernetes_deployment.md index 8ff3f0408..21ec02012 100644 --- a/docs/source/distributions/kubernetes_deployment.md +++ b/docs/source/distributions/kubernetes_deployment.md @@ -7,13 +7,18 @@ In this guide, we'll use a local [Kind](https://kind.sigs.k8s.io/) cluster and a First, create a local Kubernetes cluster via Kind: -```bash +``` kind create cluster --image kindest/node:v1.32.0 --name llama-stack-test ``` -First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model: +First set your hugging face token as an environment variable. +``` +export HF_TOKEN=$(echo -n "your-hf-token" | base64) +``` -```bash +Now create a Kubernetes PVC and Secret for downloading and storing Hugging Face model: + +``` cat </tmp/test-vllm-llama-stack/Containerfile.llama-stack-run-k8s <$tmp_dir/Containerfile.llama-stack-run-k8s < - -

- +2. Move the script to the top level of your Android app where the `app` directory resides. 3. Run `sh download-prebuilt-et-lib.sh` to create an `app/libs` directory and download the `executorch.aar` in that path. This generates an ExecuTorch library for the XNNPACK delegate. 4. Add the `executorch.aar` dependency in your `build.gradle.kts` file: ``` @@ -52,6 +48,8 @@ dependencies { } ``` +See other dependencies for the local RAG in Android app [README](https://github.com/meta-llama/llama-stack-client-kotlin/tree/latest-release/examples/android_app#quick-start). + ## Llama Stack APIs in Your Android App Breaking down the demo app, this section will show the core pieces that are used to initialize and run inference with Llama Stack using the Kotlin library. @@ -60,7 +58,7 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th ``` conda create -n stack-fireworks python=3.10 conda activate stack-fireworks -pip install --no-cache llama-stack==0.1.4 +pip install --no-cache llama-stack==0.2.2 llama stack build --template fireworks --image-type conda export FIREWORKS_API_KEY= llama stack run fireworks --port 5050 diff --git a/docs/source/distributions/remote_hosted_distro/nvidia.md b/docs/source/distributions/remote_hosted_distro/nvidia.md deleted file mode 100644 index 58731392d..000000000 --- a/docs/source/distributions/remote_hosted_distro/nvidia.md +++ /dev/null @@ -1,88 +0,0 @@ - -# NVIDIA Distribution - -The `llamastack/distribution-nvidia` distribution consists of the following provider configurations. - -| API | Provider(s) | -|-----|-------------| -| agents | `inline::meta-reference` | -| datasetio | `inline::localfs` | -| eval | `inline::meta-reference` | -| inference | `remote::nvidia` | -| post_training | `remote::nvidia` | -| safety | `remote::nvidia` | -| scoring | `inline::basic` | -| telemetry | `inline::meta-reference` | -| tool_runtime | `inline::rag-runtime` | -| vector_io | `inline::faiss` | - - -### Environment Variables - -The following environment variables can be configured: - -- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``) -- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`) -- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`) -- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`) -- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`) -- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`) -- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`) -- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`) -- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`) -- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`) - -### Models - -The following models are available by default: - -- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)` -- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)` -- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)` -- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)` -- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)` -- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)` -- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)` -- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)` -- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)` -- `nvidia/llama-3.2-nv-embedqa-1b-v2 ` -- `nvidia/nv-embedqa-e5-v5 ` -- `nvidia/nv-embedqa-mistral-7b-v2 ` -- `snowflake/arctic-embed-l ` - - -### Prerequisite: API Keys - -Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). - - -## Running Llama Stack with NVIDIA - -You can do this via Conda (build code) or Docker which has a pre-built image. - -### Via Docker - -This method allows you to get started quickly without having to build the distribution code. - -```bash -LLAMA_STACK_PORT=8321 -docker run \ - -it \ - --pull always \ - -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ - -v ./run.yaml:/root/my-run.yaml \ - llamastack/distribution-nvidia \ - --yaml-config /root/my-run.yaml \ - --port $LLAMA_STACK_PORT \ - --env NVIDIA_API_KEY=$NVIDIA_API_KEY -``` - -### Via Conda - -```bash -llama stack build --template nvidia --image-type conda -llama stack run ./run.yaml \ - --port 8321 \ - --env NVIDIA_API_KEY=$NVIDIA_API_KEY - --env INFERENCE_MODEL=$INFERENCE_MODEL -``` diff --git a/docs/source/distributions/self_hosted_distro/groq.md b/docs/source/distributions/self_hosted_distro/groq.md index 4f5a8a859..b18be1b2f 100644 --- a/docs/source/distributions/self_hosted_distro/groq.md +++ b/docs/source/distributions/self_hosted_distro/groq.md @@ -43,7 +43,9 @@ The following models are available by default: - `groq/llama-3.3-70b-versatile (aliases: meta-llama/Llama-3.3-70B-Instruct)` - `groq/llama-3.2-3b-preview (aliases: meta-llama/Llama-3.2-3B-Instruct)` - `groq/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)` +- `groq/meta-llama/llama-4-scout-17b-16e-instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)` - `groq/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)` +- `groq/meta-llama/llama-4-maverick-17b-128e-instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)` ### Prerequisite: API Keys diff --git a/docs/source/distributions/self_hosted_distro/nvidia.md b/docs/source/distributions/self_hosted_distro/nvidia.md index 0c0801f89..0922cb512 100644 --- a/docs/source/distributions/self_hosted_distro/nvidia.md +++ b/docs/source/distributions/self_hosted_distro/nvidia.md @@ -1,3 +1,4 @@ + # NVIDIA Distribution The `llamastack/distribution-nvidia` distribution consists of the following provider configurations. @@ -5,34 +6,130 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov | API | Provider(s) | |-----|-------------| | agents | `inline::meta-reference` | +| datasetio | `inline::localfs` | +| eval | `inline::meta-reference` | | inference | `remote::nvidia` | -| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` | -| safety | `inline::llama-guard` | +| post_training | `remote::nvidia` | +| safety | `remote::nvidia` | +| scoring | `inline::basic` | | telemetry | `inline::meta-reference` | +| tool_runtime | `inline::rag-runtime` | +| vector_io | `inline::faiss` | ### Environment Variables The following environment variables can be configured: -- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`) - `NVIDIA_API_KEY`: NVIDIA API Key (default: ``) +- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`) +- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`) +- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`) +- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`) +- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`) +- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`) +- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`) +- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`) +- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`) ### Models The following models are available by default: -- `${env.INFERENCE_MODEL} (None)` +- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)` +- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)` +- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)` +- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)` +- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)` +- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)` +- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)` +- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)` +- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)` +- `meta/llama-3.3-70b-instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)` +- `nvidia/llama-3.2-nv-embedqa-1b-v2 ` +- `nvidia/nv-embedqa-e5-v5 ` +- `nvidia/nv-embedqa-mistral-7b-v2 ` +- `snowflake/arctic-embed-l ` -### Prerequisite: API Keys +## Prerequisites +### NVIDIA API Keys -Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). +Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable. +### Deploy NeMo Microservices Platform +The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform. + +## Supported Services +Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints. + +### Inference: NVIDIA NIM +NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs: + 1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key) + 2. Self-hosted: NVIDIA NIMs that run on your own infrastructure. + +The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment. + +### Datasetio API: NeMo Data Store +The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint. + +See the [NVIDIA Datasetio docs](/llama_stack/providers/remote/datasetio/nvidia/README.md) for supported features and example usage. + +### Eval API: NeMo Evaluator +The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint. + +See the [NVIDIA Eval docs](/llama_stack/providers/remote/eval/nvidia/README.md) for supported features and example usage. + +### Post-Training API: NeMo Customizer +The NeMo Customizer microservice supports fine-tuning models. You can reference [this list of supported models](/llama_stack/providers/remote/post_training/nvidia/models.py) that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint. + +See the [NVIDIA Post-Training docs](/llama_stack/providers/remote/post_training/nvidia/README.md) for supported features and example usage. + +### Safety API: NeMo Guardrails +The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint. + +See the NVIDIA Safety docs for supported features and example usage. + +## Deploying models +In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`. + +Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart. +```sh +# URL to NeMo NIM Proxy service +export NEMO_URL="http://nemo.test" + +curl --location "$NEMO_URL/v1/deployment/model-deployments" \ + -H 'accept: application/json' \ + -H 'Content-Type: application/json' \ + -d '{ + "name": "llama-3.2-1b-instruct", + "namespace": "meta", + "config": { + "model": "meta/llama-3.2-1b-instruct", + "nim_deployment": { + "image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct", + "image_tag": "1.8.3", + "pvc_size": "25Gi", + "gpu": 1, + "additional_envs": { + "NIM_GUIDED_DECODING_BACKEND": "fast_outlines" + } + } + } + }' +``` +This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference. + +You can also remove a deployed NIM to free up GPU resources, if needed. +```sh +export NEMO_URL="http://nemo.test" + +curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct" +``` ## Running Llama Stack with NVIDIA -You can do this via Conda (build code) or Docker which has a pre-built image. +You can do this via Conda or venv (build code), or Docker which has a pre-built image. ### Via Docker @@ -54,8 +151,23 @@ docker run \ ### Via Conda ```bash +INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct llama stack build --template nvidia --image-type conda llama stack run ./run.yaml \ --port 8321 \ - --env NVIDIA_API_KEY=$NVIDIA_API_KEY + --env NVIDIA_API_KEY=$NVIDIA_API_KEY \ + --env INFERENCE_MODEL=$INFERENCE_MODEL +``` + +### Via venv + +If you've set up your local development environment, you can also build the image using your local virtual environment. + +```bash +INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct +llama stack build --template nvidia --image-type venv +llama stack run ./run.yaml \ + --port 8321 \ + --env NVIDIA_API_KEY=$NVIDIA_API_KEY \ + --env INFERENCE_MODEL=$INFERENCE_MODEL ``` diff --git a/docs/source/distributions/self_hosted_distro/remote-vllm.md b/docs/source/distributions/self_hosted_distro/remote-vllm.md index 457d703b3..46df56008 100644 --- a/docs/source/distributions/self_hosted_distro/remote-vllm.md +++ b/docs/source/distributions/self_hosted_distro/remote-vllm.md @@ -25,7 +25,7 @@ The `llamastack/distribution-remote-vllm` distribution consists of the following | vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` | -You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference. +You can use this distribution if you want to run an independent vLLM server for inference. ### Environment Variables @@ -41,7 +41,10 @@ The following environment variables can be configured: ## Setting up vLLM server -Both AMD and NVIDIA GPUs can serve as accelerators for the vLLM server, which acts as both the LLM inference provider and the safety provider. +In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM +server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also +[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and +that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging. ### Setting up vLLM server on AMD GPU @@ -159,6 +162,55 @@ docker run \ --port $SAFETY_PORT ``` +### Setting up vLLM server on Intel GPU + +Refer to [vLLM Documentation for XPU](https://docs.vllm.ai/en/v0.8.2/getting_started/installation/gpu.html?device=xpu) to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend: +- [intel/vllm](https://hub.docker.com/r/intel/vllm) + +Here is a sample script to start a vLLM server locally via Docker using Intel provided container: + +```bash +export INFERENCE_PORT=8000 +export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct +export ZE_AFFINITY_MASK=0 + +docker run \ + --pull always \ + --device /dev/dri \ + -v /dev/dri/by-path:/dev/dri/by-path \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ + --env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \ + -p $INFERENCE_PORT:$INFERENCE_PORT \ + --ipc=host \ + intel/vllm:xpu \ + --gpu-memory-utilization 0.7 \ + --model $INFERENCE_MODEL \ + --port $INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: + +```bash +export SAFETY_PORT=8081 +export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B +export ZE_AFFINITY_MASK=1 + +docker run \ + --pull always \ + --device /dev/dri \ + -v /dev/dri/by-path:/dev/dri/by-path \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ + --env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \ + -p $SAFETY_PORT:$SAFETY_PORT \ + --ipc=host \ + intel/vllm:xpu \ + --gpu-memory-utilization 0.7 \ + --model $SAFETY_MODEL \ + --port $SAFETY_PORT +``` + ## Running Llama Stack Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. diff --git a/docs/source/distributions/starting_llama_stack_server.md b/docs/source/distributions/starting_llama_stack_server.md index 9be2e9ec5..f74de6d48 100644 --- a/docs/source/distributions/starting_llama_stack_server.md +++ b/docs/source/distributions/starting_llama_stack_server.md @@ -2,22 +2,22 @@ You can run a Llama Stack server in one of the following ways: -**As a Library**: +## As a Library: This is the simplest way to get started. Using Llama Stack as a library means you do not need to start a server. This is especially useful when you are not running inference locally and relying on an external inference service (eg. fireworks, together, groq, etc.) See [Using Llama Stack as a Library](importing_as_library) -**Container**: +## Container: Another simple way to start interacting with Llama Stack is to just spin up a container (via Docker or Podman) which is pre-built with all the providers you need. We provide a number of pre-built images so you can start a Llama Stack server instantly. You can also build your own custom container. Which distribution to choose depends on the hardware you have. See [Selection of a Distribution](selection) for more details. -**Conda**: +## Conda: If you have a custom or an advanced setup or you are developing on Llama Stack you can also build a custom Llama Stack server. Using `llama stack build` and `llama stack run` you can build/run a custom Llama Stack server containing the exact combination of providers you wish. We have also provided various templates to make getting started easier. See [Building a Custom Distribution](building_distro) for more details. -**Kubernetes**: +## Kubernetes: If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](kubernetes_deployment) for more details. diff --git a/docs/source/getting_started/detailed_tutorial.md b/docs/source/getting_started/detailed_tutorial.md new file mode 100644 index 000000000..a1504f249 --- /dev/null +++ b/docs/source/getting_started/detailed_tutorial.md @@ -0,0 +1,541 @@ +# Detailed Tutorial + +In this guide, we'll walk through how you can use the Llama Stack (server and client SDK) to test a simple agent. +A Llama Stack agent is a simple integrated system that can perform tasks by combining a Llama model for reasoning with +tools (e.g., RAG, web search, code execution, etc.) for taking actions. +In Llama Stack, we provide a server exposing multiple APIs. These APIs are backed by implementations from different providers. + +Llama Stack is a stateful service with REST APIs to support seamless transition of AI applications across different environments. The server can be run in a variety of ways, including as a standalone binary, Docker container, or hosted service. You can build and test using a local server first and deploy to a hosted endpoint for production. + +In this guide, we'll walk through how to build a RAG agent locally using Llama Stack with [Ollama](https://ollama.com/) +as the inference [provider](../providers/index.md#inference) for a Llama Model. + +## Step 1: Installation and Setup + +Install Ollama by following the instructions on the [Ollama website](https://ollama.com/download), then +download Llama 3.2 3B model, and then start the Ollama service. +```bash +ollama pull llama3.2:3b +ollama run llama3.2:3b --keepalive 60m +``` + +Install [uv](https://docs.astral.sh/uv/) to setup your virtual environment + +::::{tab-set} + +:::{tab-item} macOS and Linux +Use `curl` to download the script and execute it with `sh`: +```console +curl -LsSf https://astral.sh/uv/install.sh | sh +``` +::: + +:::{tab-item} Windows +Use `irm` to download the script and execute it with `iex`: + +```console +powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" +``` +::: +:::: + +Setup your virtual environment. + +```bash +uv venv --python 3.10 +source .venv/bin/activate +``` +## Step 2: Run Llama Stack +Llama Stack is a server that exposes multiple APIs, you connect with it using the Llama Stack client SDK. + +::::{tab-set} + +:::{tab-item} Using `venv` +You can use Python to build and run the Llama Stack server, which is useful for testing and development. + +Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup, +which defines the providers and their settings. +Now let's build and run the Llama Stack config for Ollama. + +```bash +INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run +``` +::: +:::{tab-item} Using `conda` +You can use Python to build and run the Llama Stack server, which is useful for testing and development. + +Llama Stack uses a [YAML configuration file](../distributions/configuration.md) to specify the stack setup, +which defines the providers and their settings. +Now let's build and run the Llama Stack config for Ollama. + +```bash +INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type conda --image-name llama3-3b-conda --run +``` +::: +:::{tab-item} Using a Container +You can use a container image to run the Llama Stack server. We provide several container images for the server +component that works with different inference providers out of the box. For this guide, we will use +`llamastack/distribution-ollama` as the container image. If you'd like to build your own image or customize the +configurations, please check out [this guide](../references/index.md). +First lets setup some environment variables and create a local directory to mount into the container’s file system. +```bash +export INFERENCE_MODEL="llama3.2:3b" +export LLAMA_STACK_PORT=8321 +mkdir -p ~/.llama +``` +Then start the server using the container tool of your choice. For example, if you are running Docker you can use the +following command: +```bash +docker run -it \ + --pull always \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + -v ~/.llama:/root/.llama \ + llamastack/distribution-ollama \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env OLLAMA_URL=http://host.docker.internal:11434 +``` +Note to start the container with Podman, you can do the same but replace `docker` at the start of the command with +`podman`. If you are using `podman` older than `4.7.0`, please also replace `host.docker.internal` in the `OLLAMA_URL` +with `host.containers.internal`. + +The configuration YAML for the Ollama distribution is available at `distributions/ollama/run.yaml`. + +```{tip} + +Docker containers run in their own isolated network namespaces on Linux. To allow the container to communicate with services running on the host via `localhost`, you need `--network=host`. This makes the container use the host’s network directly so it can connect to Ollama running on `localhost:11434`. + +Linux users having issues running the above command should instead try the following: +```bash +docker run -it \ + --pull always \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + -v ~/.llama:/root/.llama \ + --network=host \ + llamastack/distribution-ollama \ + --port $LLAMA_STACK_PORT \ + --env INFERENCE_MODEL=$INFERENCE_MODEL \ + --env OLLAMA_URL=http://localhost:11434 +``` +::: +:::: +You will see output like below: +``` +INFO: Application startup complete. +INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) +``` + +Now you can use the Llama Stack client to run inference and build agents! + +You can reuse the server setup or use the [Llama Stack Client](https://github.com/meta-llama/llama-stack-client-python/). +Note that the client package is already included in the `llama-stack` package. + +## Step 3: Run Client CLI + +Open a new terminal and navigate to the same directory you started the server from. Then set up a new or activate your +existing server virtual environment. + +::::{tab-set} + +:::{tab-item} Reuse Server `venv` +```bash +# The client is included in the llama-stack package so we just activate the server venv +source .venv/bin/activate +``` +::: + +:::{tab-item} Install with `venv` +```bash +uv venv client --python 3.10 +source client/bin/activate +pip install llama-stack-client +``` +::: + +:::{tab-item} Install with `conda` +```bash +yes | conda create -n stack-client python=3.10 +conda activate stack-client +pip install llama-stack-client +``` +::: +:::: + +Now let's use the `llama-stack-client` [CLI](../references/llama_stack_client_cli_reference.md) to check the +connectivity to the server. + +```bash +llama-stack-client configure --endpoint http://localhost:8321 --api-key none +``` +You will see the below: +``` +Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:8321 +``` + +List the models +```bash +llama-stack-client models list +Available Models + +┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ +┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃ +┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ +│ embedding │ all-MiniLM-L6-v2 │ all-minilm:latest │ {'embedding_dimension': 384.0} │ ollama │ +├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼─────────────────┤ +│ llm │ llama3.2:3b │ llama3.2:3b │ │ ollama │ +└─────────────────┴─────────────────────────────────────┴─────────────────────────────────────┴───────────────────────────────────────────┴─────────────────┘ + +Total models: 2 + +``` +You can test basic Llama inference completion using the CLI. + +```bash +llama-stack-client inference chat-completion --message "tell me a joke" +``` +Sample output: +```python +ChatCompletionResponse( + completion_message=CompletionMessage( + content="Here's one:\n\nWhat do you call a fake noodle?\n\nAn impasta!", + role="assistant", + stop_reason="end_of_turn", + tool_calls=[], + ), + logprobs=None, + metrics=[ + Metric(metric="prompt_tokens", value=14.0, unit=None), + Metric(metric="completion_tokens", value=27.0, unit=None), + Metric(metric="total_tokens", value=41.0, unit=None), + ], +) +``` + +## Step 4: Run the Demos + +Note that these demos show the [Python Client SDK](../references/python_sdk_reference/index.md). +Other SDKs are also available, please refer to the [Client SDK](../index.md#client-sdks) list for the complete options. + +::::{tab-set} + +:::{tab-item} Basic Inference +Now you can run inference using the Llama Stack client SDK. + +### i. Create the Script + +Create a file `inference.py` and add the following code: +```python +from llama_stack_client import LlamaStackClient + +client = LlamaStackClient(base_url="http://localhost:8321") + +# List available models +models = client.models.list() + +# Select the first LLM +llm = next(m for m in models if m.model_type == "llm") +model_id = llm.identifier + +print("Model:", model_id) + +response = client.inference.chat_completion( + model_id=model_id, + messages=[ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "Write a haiku about coding"}, + ], +) +print(response.completion_message.content) +``` + +### ii. Run the Script +Let's run the script using `uv` +```bash +uv run python inference.py +``` +Which will output: +``` +Model: llama3.2:3b +Here is a haiku about coding: + +Lines of code unfold +Logic flows through digital night +Beauty in the bits +``` +::: + +:::{tab-item} Build a Simple Agent +Next we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server. +### i. Create the Script +Create a file `agent.py` and add the following code: + +```python +from llama_stack_client import LlamaStackClient +from llama_stack_client import Agent, AgentEventLogger +from rich.pretty import pprint +import uuid + +client = LlamaStackClient(base_url=f"http://localhost:8321") + +models = client.models.list() +llm = next(m for m in models if m.model_type == "llm") +model_id = llm.identifier + +agent = Agent(client, model=model_id, instructions="You are a helpful assistant.") + +s_id = agent.create_session(session_name=f"s{uuid.uuid4().hex}") + +print("Non-streaming ...") +response = agent.create_turn( + messages=[{"role": "user", "content": "Who are you?"}], + session_id=s_id, + stream=False, +) +print("agent>", response.output_message.content) + +print("Streaming ...") +stream = agent.create_turn( + messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True +) +for event in stream: + pprint(event) + +print("Streaming with print helper...") +stream = agent.create_turn( + messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True +) +for event in AgentEventLogger().log(stream): + event.print() +``` +### ii. Run the Script +Let's run the script using `uv` +```bash +uv run python agent.py +``` + +```{dropdown} 👋 Click here to see the sample output + Non-streaming ... + agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities. + + I can be used for a wide range of purposes, such as: + + * Providing definitions and explanations + * Offering suggestions and ideas + * Helping with language translation + * Assisting with writing and proofreading + * Generating text or responses to questions + * Playing simple games or chatting about topics of interest + + I'm constantly learning and improving my abilities, so feel free to ask me anything, and I'll do my best to help! + + Streaming ... + AgentTurnResponseStreamChunk( + │ event=TurnResponseEvent( + │ │ payload=AgentTurnResponseStepStartPayload( + │ │ │ event_type='step_start', + │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ step_type='inference', + │ │ │ metadata={} + │ │ ) + │ ) + ) + AgentTurnResponseStreamChunk( + │ event=TurnResponseEvent( + │ │ payload=AgentTurnResponseStepProgressPayload( + │ │ │ delta=TextDelta(text='As', type='text'), + │ │ │ event_type='step_progress', + │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ step_type='inference' + │ │ ) + │ ) + ) + AgentTurnResponseStreamChunk( + │ event=TurnResponseEvent( + │ │ payload=AgentTurnResponseStepProgressPayload( + │ │ │ delta=TextDelta(text=' a', type='text'), + │ │ │ event_type='step_progress', + │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ step_type='inference' + │ │ ) + │ ) + ) + ... + AgentTurnResponseStreamChunk( + │ event=TurnResponseEvent( + │ │ payload=AgentTurnResponseStepCompletePayload( + │ │ │ event_type='step_complete', + │ │ │ step_details=InferenceStep( + │ │ │ │ api_model_response=CompletionMessage( + │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', + │ │ │ │ │ role='assistant', + │ │ │ │ │ stop_reason='end_of_turn', + │ │ │ │ │ tool_calls=[] + │ │ │ │ ), + │ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ │ step_type='inference', + │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', + │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)), + │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC)) + │ │ │ ), + │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ step_type='inference' + │ │ ) + │ ) + ) + AgentTurnResponseStreamChunk( + │ event=TurnResponseEvent( + │ │ payload=AgentTurnResponseTurnCompletePayload( + │ │ │ event_type='turn_complete', + │ │ │ turn=Turn( + │ │ │ │ input_messages=[UserMessage(content='Who are you?', role='user', context=None)], + │ │ │ │ output_message=CompletionMessage( + │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', + │ │ │ │ │ role='assistant', + │ │ │ │ │ stop_reason='end_of_turn', + │ │ │ │ │ tool_calls=[] + │ │ │ │ ), + │ │ │ │ session_id='abd4afea-4324-43f4-9513-cfe3970d92e8', + │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28722, tzinfo=TzInfo(UTC)), + │ │ │ │ steps=[ + │ │ │ │ │ InferenceStep( + │ │ │ │ │ │ api_model_response=CompletionMessage( + │ │ │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', + │ │ │ │ │ │ │ role='assistant', + │ │ │ │ │ │ │ stop_reason='end_of_turn', + │ │ │ │ │ │ │ tool_calls=[] + │ │ │ │ │ │ ), + │ │ │ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', + │ │ │ │ │ │ step_type='inference', + │ │ │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', + │ │ │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)), + │ │ │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC)) + │ │ │ │ │ ) + │ │ │ │ ], + │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', + │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 727364, tzinfo=TzInfo(UTC)), + │ │ │ │ output_attachments=[] + │ │ │ ) + │ │ ) + │ ) + ) + + + Streaming with print helper... + inference> Déjà vu! + + As I mentioned earlier, I'm an artificial intelligence language model. I don't have a personal identity or consciousness like humans do. I exist solely to process and respond to text-based inputs, providing information and assistance on a wide range of topics. + + I'm a computer program designed to simulate human-like conversations, using natural language processing (NLP) and machine learning algorithms to understand and generate responses. My purpose is to help users like you with their questions, provide information, and engage in conversation. + + Think of me as a virtual companion, a helpful tool designed to make your interactions more efficient and enjoyable. I don't have personal opinions, emotions, or biases, but I'm here to provide accurate and informative responses to the best of my abilities. + + So, who am I? I'm just a computer program designed to help you! +``` +::: + +:::{tab-item} Build a RAG Agent + +For our last demo, we can build a RAG agent that can answer questions about the Torchtune project using the documents +in a vector database. +### i. Create the Script +Create a file `rag_agent.py` and add the following code: + +```python +from llama_stack_client import LlamaStackClient +from llama_stack_client import Agent, AgentEventLogger +from llama_stack_client.types import Document +import uuid +from termcolor import cprint + +client = LlamaStackClient(base_url="http://localhost:8321") + +# Create a vector database instance +embed_lm = next(m for m in client.models.list() if m.model_type == "embedding") +embedding_model = embed_lm.identifier +vector_db_id = f"v{uuid.uuid4().hex}" +client.vector_dbs.register( + vector_db_id=vector_db_id, + embedding_model=embedding_model, +) + +# Create Documents +urls = [ + "memory_optimizations.rst", + "chat.rst", + "llama3.rst", + "datasets.rst", + "qat_finetune.rst", + "lora_finetune.rst", +] +documents = [ + Document( + document_id=f"num-{i}", + content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", + mime_type="text/plain", + metadata={}, + ) + for i, url in enumerate(urls) +] + +# Insert documents +client.tool_runtime.rag_tool.insert( + documents=documents, + vector_db_id=vector_db_id, + chunk_size_in_tokens=512, +) + +# Get the model being served +llm = next(m for m in client.models.list() if m.model_type == "llm") +model = llm.identifier + +# Create the RAG agent +rag_agent = Agent( + client, + model=model, + instructions="You are a helpful assistant. Use the RAG tool to answer questions as needed.", + tools=[ + { + "name": "builtin::rag/knowledge_search", + "args": {"vector_db_ids": [vector_db_id]}, + } + ], +) + +session_id = rag_agent.create_session(session_name=f"s{uuid.uuid4().hex}") + +turns = ["what is torchtune", "tell me about dora"] + +for t in turns: + print("user>", t) + stream = rag_agent.create_turn( + messages=[{"role": "user", "content": t}], session_id=session_id, stream=True + ) + for event in AgentEventLogger().log(stream): + event.print() +``` +### ii. Run the Script +Let's run the script using `uv` +```bash +uv run python rag_agent.py +``` + +```{dropdown} 👋 Click here to see the sample output + user> what is torchtune + inference> [knowledge_search(query='TorchTune')] + tool_execution> Tool:knowledge_search Args:{'query': 'TorchTune'} + tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text='Result 1:\nDocument_id:num-1\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. ..., type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')] + inference> Here is a high-level overview of the text: + + **LoRA Finetuning with PyTorch Tune** + + PyTorch Tune provides a recipe for LoRA (Low-Rank Adaptation) finetuning, which is a technique to adapt pre-trained models to new tasks. The recipe uses the `lora_finetune_distributed` command. + ... + Overall, DORA is a powerful reinforcement learning algorithm that can learn complex tasks from human demonstrations. However, it requires careful consideration of the challenges and limitations to achieve optimal results. +``` +::: + +:::: + +**You're Ready to Build Your Own Apps!** + +Congrats! 🥳 Now you're ready to [build your own Llama Stack applications](../building_applications/index)! 🚀 diff --git a/docs/source/getting_started/index.md b/docs/source/getting_started/index.md index e9ad51961..e084f68b7 100644 --- a/docs/source/getting_started/index.md +++ b/docs/source/getting_started/index.md @@ -1,414 +1,65 @@ -# Quick Start +# Quickstart +Get started with Llama Stack in minutes! -Llama Stack is a stateful service with REST APIs to support seamless transition of AI applications across different environments. The server can be run in a variety of ways, including as a standalone binary, Docker container, or hosted service. You can build and test using a local server first and deploy to a hosted endpoint for production. +Llama Stack is a stateful service with REST APIs to support the seamless transition of AI applications across different +environments. You can build and test using a local server first and deploy to a hosted endpoint for production. -In this guide, we'll walk through how to build a RAG agent locally using Llama Stack with [Ollama](https://ollama.com/) to run inference on a Llama Model. - - -### 1. Download a Llama model with Ollama +In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/) +as the inference [provider](../providers/index.md#inference) for a Llama Model. +#### Step 1: Install and setup +1. Install [uv](https://docs.astral.sh/uv/) +2. Run inference on a Llama model with [Ollama](https://ollama.com/download) ```bash -ollama pull llama3.2:3b-instruct-fp16 +ollama run llama3.2:3b --keepalive 60m ``` - -This will instruct the Ollama service to download the Llama 3.2 3B Instruct model, which we'll use in the rest of this guide. - -```{admonition} Note -:class: tip - -If you do not have ollama, you can install it from [here](https://ollama.com/download). -``` - -### 2. Run Llama Stack locally - -We use `uv` to setup a virtual environment and install the Llama Stack package. - -:::{dropdown} [Click to Open] Instructions to setup uv - -Install [uv](https://docs.astral.sh/uv/) to setup your virtual environment. - - -#### For macOS and Linux: +#### Step 2: Run the Llama Stack server +We will use `uv` to run the Llama Stack server. ```bash -curl -LsSf https://astral.sh/uv/install.sh | sh -``` -#### For Windows: -Use `irm` to download the script and execute it with `iex`: -```powershell -powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex" +INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template ollama --image-type venv --run ``` +#### Step 3: Run the demo +Now open up a new terminal and copy the following script into a file named `demo_script.py`. -Setup venv -```bash -uv venv --python 3.10 -source .venv/bin/activate -``` -::: - -**Install the Llama Stack package** -```bash -uv pip install -U llama-stack -``` - -**Build and Run the Llama Stack server for Ollama.** -```bash -INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run -``` - -You will see the output end like below: -``` -... -INFO: Application startup complete. -INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) -``` - -Now you can use the llama stack client to run inference and build agents! - -### 3. Client CLI - -Install the client package -```bash -pip install llama-stack-client -``` - -:::{dropdown} OR reuse server setup -Open a new terminal and navigate to the same directory you started the server from. - -Setup venv (llama-stack already includes the llama-stack-client package) -```bash -source .venv/bin/activate -``` -::: - -#### 3.1 Configure the client to point to the local server -```bash -llama-stack-client configure --endpoint http://localhost:8321 --api-key none -``` -You will see the below: -``` -Done! You can now use the Llama Stack Client CLI with endpoint http://localhost:8321 -``` - -#### 3.2 List available models -``` -llama-stack-client models list -``` - -``` -Available Models - -┏━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ -┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃ -┡━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ -│ embedding │ all-MiniLM-L6-v2 │ all-minilm:latest │ {'embedding_dimension': 384.0} │ ollama │ -├─────────────────┼─────────────────────────────────────┼─────────────────────────────────────┼───────────────────────────────────────────┼─────────────────┤ -│ llm │ llama3.2:3b │ llama3.2:3b │ │ ollama │ -└─────────────────┴─────────────────────────────────────┴─────────────────────────────────────┴───────────────────────────────────────────┴─────────────────┘ - -Total models: 2 - -``` - -#### 3.3 Test basic inference -```bash -llama-stack-client inference chat-completion --message "tell me a joke" -``` -Sample output: ```python -ChatCompletionResponse( - completion_message=CompletionMessage( - content="Here's one:\n\nWhat do you call a fake noodle?\n\nAn impasta!", - role="assistant", - stop_reason="end_of_turn", - tool_calls=[], - ), - logprobs=None, - metrics=[ - Metric(metric="prompt_tokens", value=14.0, unit=None), - Metric(metric="completion_tokens", value=27.0, unit=None), - Metric(metric="total_tokens", value=41.0, unit=None), - ], -) -``` +from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient -### 4. Python SDK -Install the python client -```bash -pip install llama-stack-client -``` -:::{dropdown} OR reuse server setup -Open a new terminal and navigate to the same directory you started the server from. +vector_db_id = "my_demo_vector_db" +client = LlamaStackClient(base_url="http://localhost:8321") -Setup venv (llama-stack already includes the llama-stack-client package) -```bash -source .venv/bin/activate -``` -::: -#### 4.1 Basic Inference -Create a file `inference.py` and add the following code: -```python -from llama_stack_client import LlamaStackClient - -client = LlamaStackClient(base_url=f"http://localhost:8321") - -# List available models models = client.models.list() -# Select the first LLM -llm = next(m for m in models if m.model_type == "llm") -model_id = llm.identifier +# Select the first LLM and first embedding models +model_id = next(m for m in models if m.model_type == "llm").identifier +embedding_model_id = ( + em := next(m for m in models if m.model_type == "embedding") +).identifier +embedding_dimension = em.metadata["embedding_dimension"] -print("Model:", model_id) - -response = client.inference.chat_completion( - model_id=model_id, - messages=[ - {"role": "system", "content": "You are a helpful assistant."}, - {"role": "user", "content": "Write a haiku about coding"}, - ], -) -print(response.completion_message.content) -``` -Run the script -```bash -python inference.py -``` -Sample output: -``` -Model: llama3.2:3b-instruct-fp16 -Here is a haiku about coding: - -Lines of code unfold -Logic flows through digital night -Beauty in the bits -``` - -#### 4.2. Basic Agent - -Create a file `agent.py` and add the following code: -```python -from llama_stack_client import LlamaStackClient -from llama_stack_client import Agent, AgentEventLogger -from rich.pretty import pprint -import uuid - -client = LlamaStackClient(base_url=f"http://localhost:8321") - -models = client.models.list() -llm = next(m for m in models if m.model_type == "llm") -model_id = llm.identifier - -agent = Agent(client, model=model_id, instructions="You are a helpful assistant.") - -s_id = agent.create_session(session_name=f"s{uuid.uuid4().hex}") - -print("Non-streaming ...") -response = agent.create_turn( - messages=[{"role": "user", "content": "Who are you?"}], - session_id=s_id, - stream=False, -) -print("agent>", response.output_message.content) - -print("Streaming ...") -stream = agent.create_turn( - messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True -) -for event in stream: - pprint(event) - -print("Streaming with print helper...") -stream = agent.create_turn( - messages=[{"role": "user", "content": "Who are you?"}], session_id=s_id, stream=True -) -for event in AgentEventLogger().log(stream): - event.print() -``` - -Run the script: -```bash -python agent.py -``` - -:::{dropdown} `Sample output` -``` -Non-streaming ... -agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities. - -I can be used for a wide range of purposes, such as: - -* Providing definitions and explanations -* Offering suggestions and ideas -* Helping with language translation -* Assisting with writing and proofreading -* Generating text or responses to questions -* Playing simple games or chatting about topics of interest - -I'm constantly learning and improving my abilities, so feel free to ask me anything, and I'll do my best to help! - -Streaming ... -AgentTurnResponseStreamChunk( -│ event=TurnResponseEvent( -│ │ payload=AgentTurnResponseStepStartPayload( -│ │ │ event_type='step_start', -│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ step_type='inference', -│ │ │ metadata={} -│ │ ) -│ ) -) -AgentTurnResponseStreamChunk( -│ event=TurnResponseEvent( -│ │ payload=AgentTurnResponseStepProgressPayload( -│ │ │ delta=TextDelta(text='As', type='text'), -│ │ │ event_type='step_progress', -│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ step_type='inference' -│ │ ) -│ ) -) -AgentTurnResponseStreamChunk( -│ event=TurnResponseEvent( -│ │ payload=AgentTurnResponseStepProgressPayload( -│ │ │ delta=TextDelta(text=' a', type='text'), -│ │ │ event_type='step_progress', -│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ step_type='inference' -│ │ ) -│ ) -) -... -AgentTurnResponseStreamChunk( -│ event=TurnResponseEvent( -│ │ payload=AgentTurnResponseStepCompletePayload( -│ │ │ event_type='step_complete', -│ │ │ step_details=InferenceStep( -│ │ │ │ api_model_response=CompletionMessage( -│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', -│ │ │ │ │ role='assistant', -│ │ │ │ │ stop_reason='end_of_turn', -│ │ │ │ │ tool_calls=[] -│ │ │ │ ), -│ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ │ step_type='inference', -│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', -│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)), -│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC)) -│ │ │ ), -│ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ step_type='inference' -│ │ ) -│ ) -) -AgentTurnResponseStreamChunk( -│ event=TurnResponseEvent( -│ │ payload=AgentTurnResponseTurnCompletePayload( -│ │ │ event_type='turn_complete', -│ │ │ turn=Turn( -│ │ │ │ input_messages=[UserMessage(content='Who are you?', role='user', context=None)], -│ │ │ │ output_message=CompletionMessage( -│ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', -│ │ │ │ │ role='assistant', -│ │ │ │ │ stop_reason='end_of_turn', -│ │ │ │ │ tool_calls=[] -│ │ │ │ ), -│ │ │ │ session_id='abd4afea-4324-43f4-9513-cfe3970d92e8', -│ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28722, tzinfo=TzInfo(UTC)), -│ │ │ │ steps=[ -│ │ │ │ │ InferenceStep( -│ │ │ │ │ │ api_model_response=CompletionMessage( -│ │ │ │ │ │ │ content='As a conversational AI, I don\'t have a personal identity in the classical sense. I exist as a program running on computer servers, designed to process and respond to text-based inputs.\n\nI\'m an instance of a type of artificial intelligence called a "language model," which is trained on vast amounts of text data to generate human-like responses. My primary function is to understand and respond to natural language inputs, like our conversation right now.\n\nThink of me as a virtual assistant, a chatbot, or a conversational interface – I\'m here to provide information, answer questions, and engage in conversation to the best of my abilities. I don\'t have feelings, emotions, or consciousness like humans do, but I\'m designed to simulate human-like interactions to make our conversations feel more natural and helpful.\n\nSo, that\'s me in a nutshell! What can I help you with today?', -│ │ │ │ │ │ │ role='assistant', -│ │ │ │ │ │ │ stop_reason='end_of_turn', -│ │ │ │ │ │ │ tool_calls=[] -│ │ │ │ │ │ ), -│ │ │ │ │ │ step_id='69831607-fa75-424a-949b-e2049e3129d1', -│ │ │ │ │ │ step_type='inference', -│ │ │ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', -│ │ │ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 716174, tzinfo=TzInfo(UTC)), -│ │ │ │ │ │ started_at=datetime.datetime(2025, 4, 3, 1, 15, 14, 28823, tzinfo=TzInfo(UTC)) -│ │ │ │ │ ) -│ │ │ │ ], -│ │ │ │ turn_id='8b360202-f7cb-4786-baa9-166a1b46e2ca', -│ │ │ │ completed_at=datetime.datetime(2025, 4, 3, 1, 15, 21, 727364, tzinfo=TzInfo(UTC)), -│ │ │ │ output_attachments=[] -│ │ │ ) -│ │ ) -│ ) -) - - -Streaming with print helper... -inference> Déjà vu! - -As I mentioned earlier, I'm an artificial intelligence language model. I don't have a personal identity or consciousness like humans do. I exist solely to process and respond to text-based inputs, providing information and assistance on a wide range of topics. - -I'm a computer program designed to simulate human-like conversations, using natural language processing (NLP) and machine learning algorithms to understand and generate responses. My purpose is to help users like you with their questions, provide information, and engage in conversation. - -Think of me as a virtual companion, a helpful tool designed to make your interactions more efficient and enjoyable. I don't have personal opinions, emotions, or biases, but I'm here to provide accurate and informative responses to the best of my abilities. - -So, who am I? I'm just a computer program designed to help you! - -``` -::: - -#### 4.3. RAG agent - -Create a file `rag_agent.py` and add the following code: - -```python -from llama_stack_client import LlamaStackClient -from llama_stack_client import Agent, AgentEventLogger -from llama_stack_client.types import Document -import uuid - -client = LlamaStackClient(base_url=f"http://localhost:8321") - -# Create a vector database instance -embedlm = next(m for m in client.models.list() if m.model_type == "embedding") -embedding_model = embedlm.identifier -vector_db_id = f"v{uuid.uuid4().hex}" -client.vector_dbs.register( +_ = client.vector_dbs.register( vector_db_id=vector_db_id, - embedding_model=embedding_model, + embedding_model=embedding_model_id, + embedding_dimension=embedding_dimension, + provider_id="faiss", +) +source = "https://www.paulgraham.com/greatwork.html" +print("rag_tool> Ingesting document:", source) +document = RAGDocument( + document_id="document_1", + content=source, + mime_type="text/html", + metadata={}, ) - -# Create Documents -urls = [ - "memory_optimizations.rst", - "chat.rst", - "llama3.rst", - "datasets.rst", - "qat_finetune.rst", - "lora_finetune.rst", -] -documents = [ - Document( - document_id=f"num-{i}", - content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", - mime_type="text/plain", - metadata={}, - ) - for i, url in enumerate(urls) -] - -# Insert documents client.tool_runtime.rag_tool.insert( - documents=documents, + documents=[document], vector_db_id=vector_db_id, - chunk_size_in_tokens=512, + chunk_size_in_tokens=50, ) - -# Get the model being served -llm = next(m for m in client.models.list() if m.model_type == "llm") -model = llm.identifier - -# Create RAG agent -ragagent = Agent( +agent = Agent( client, - model=model, - instructions="You are a helpful assistant. Use the RAG tool to answer questions as needed.", + model=model_id, + instructions="You are a helpful assistant", tools=[ { "name": "builtin::rag/knowledge_search", @@ -417,39 +68,54 @@ ragagent = Agent( ], ) -s_id = ragagent.create_session(session_name=f"s{uuid.uuid4().hex}") +prompt = "How do you do great work?" +print("prompt>", prompt) -turns = ["what is torchtune", "tell me about dora"] +response = agent.create_turn( + messages=[{"role": "user", "content": prompt}], + session_id=agent.create_session("rag_session"), + stream=True, +) -for t in turns: - print("user>", t) - stream = ragagent.create_turn( - messages=[{"role": "user", "content": t}], session_id=s_id, stream=True - ) - for event in AgentEventLogger().log(stream): - event.print() +for log in AgentEventLogger().log(response): + log.print() ``` -Run the script: +We will use `uv` to run the script ``` -python rag_agent.py +uv run --with llama-stack-client demo_script.py ``` -:::{dropdown} `Sample output` +And you should see output like below. ``` -user> what is torchtune -inference> [knowledge_search(query='TorchTune')] -tool_execution> Tool:knowledge_search Args:{'query': 'TorchTune'} -tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text='Result 1:\nDocument_id:num-1\nContent: conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. ..., type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')] -inference> Here is a high-level overview of the text: +rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html -**LoRA Finetuning with PyTorch Tune** +prompt> How do you do great work? -PyTorch Tune provides a recipe for LoRA (Low-Rank Adaptation) finetuning, which is a technique to adapt pre-trained models to new tasks. The recipe uses the `lora_finetune_distributed` command. -... -Overall, DORA is a powerful reinforcement learning algorithm that can learn complex tasks from human demonstrations. However, it requires careful consideration of the challenges and limitations to achieve optimal results. +inference> [knowledge_search(query="What is the key to doing great work")] + +tool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'} + +tool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\nBEGIN of knowledge_search tool results.\n', type='text'), TextContentItem(text="Result 1:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 2:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 3:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 4:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text="Result 5:\nDocument_id:docum\nContent: work. Doing great work means doing something important\nso well that you expand people's ideas of what's possible. But\nthere's no threshold for importance. It's a matter of degree, and\noften hard to judge at the time anyway.\n", type='text'), TextContentItem(text='END of knowledge_search tool results.\n', type='text')] + +inference> Based on the search results, it seems that doing great work means doing something important so well that you expand people's ideas of what's possible. However, there is no clear threshold for importance, and it can be difficult to judge at the time. + +To further clarify, I would suggest that doing great work involves: + +* Completing tasks with high quality and attention to detail +* Expanding on existing knowledge or ideas +* Making a positive impact on others through your work +* Striving for excellence and continuous improvement + +Ultimately, great work is about making a meaningful contribution and leaving a lasting impression. ``` -::: +Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳 + ## Next Steps -- Go through the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb) -- Checkout more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks) -- See [References](../references/index.md) for more details about the llama CLI and Python SDK -- For example applications and more detailed tutorials, visit our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository. + +Now you're ready to dive deeper into Llama Stack! +- Explore the [Detailed Tutorial](./detailed_tutorial.md). +- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb). +- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks). +- Learn about Llama Stack [Concepts](../concepts/index.md). +- Discover how to [Build Llama Stacks](../distributions/index.md). +- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK. +- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials. diff --git a/docs/source/index.md b/docs/source/index.md index a0ac95957..0c2d5a015 100644 --- a/docs/source/index.md +++ b/docs/source/index.md @@ -1,3 +1,5 @@ +# Llama Stack +Welcome to Llama Stack, the open-source framework for building generative AI applications. ```{admonition} Llama 4 is here! :class: tip @@ -9,7 +11,6 @@ Check out [Getting Started with Llama 4](https://colab.research.google.com/githu Llama Stack {{ llama_stack_version }} is now available! See the {{ llama_stack_version_link }} for more details. ``` -# Llama Stack ## What is Llama Stack? @@ -98,8 +99,9 @@ A number of "adapters" are available for some popular Inference and Vector Store :maxdepth: 3 self -introduction/index getting_started/index +getting_started/detailed_tutorial +introduction/index concepts/index providers/index distributions/index diff --git a/docs/source/playground/index.md b/docs/source/playground/index.md index 9691609ab..ded2b5772 100644 --- a/docs/source/playground/index.md +++ b/docs/source/playground/index.md @@ -103,7 +103,5 @@ llama stack run together 2. Start Streamlit UI ```bash -cd llama_stack/distribution/ui -pip install -r requirements.txt -streamlit run app.py +uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py ``` diff --git a/docs/source/providers/external.md b/docs/source/providers/external.md index 90fc77979..4935b1fe6 100644 --- a/docs/source/providers/external.md +++ b/docs/source/providers/external.md @@ -50,9 +50,10 @@ Llama Stack supports two types of external providers: Here's a list of known external providers that you can use with Llama Stack: -| Type | Name | Description | Repository | -|------|------|-------------|------------| -| Remote | KubeFlow Training | Train models with KubeFlow | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) | +| Name | Description | API | Type | Repository | +|------|-------------|-----|------|------------| +| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) | +| RamaLama | Inference models with RamaLama | Inference | Remote | [llama-stack-provider-ramalama](https://github.com/containers/llama-stack-provider-ramalama) | ### Remote Provider Specification diff --git a/docs/source/providers/index.md b/docs/source/providers/index.md index 75faf7c00..1d1a6e081 100644 --- a/docs/source/providers/index.md +++ b/docs/source/providers/index.md @@ -1,8 +1,8 @@ # Providers Overview The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include: -- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.), -- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.), +- LLM inference providers (e.g., Ollama, Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.), +- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, SQLite-Vec, etc.), - Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.) Providers come in two flavors: diff --git a/llama_stack/apis/agents/agents.py b/llama_stack/apis/agents/agents.py index e13c4960b..dec43280b 100644 --- a/llama_stack/apis/agents/agents.py +++ b/llama_stack/apis/agents/agents.py @@ -225,8 +225,18 @@ class AgentConfigCommon(BaseModel): @json_schema_type class AgentConfig(AgentConfigCommon): + """Configuration for an agent. + + :param model: The model identifier to use for the agent + :param instructions: The system instructions for the agent + :param name: Optional name for the agent, used in telemetry and identification + :param enable_session_persistence: Optional flag indicating whether session data has to be persisted + :param response_format: Optional response format configuration + """ + model: str instructions: str + name: Optional[str] = None enable_session_persistence: Optional[bool] = False response_format: Optional[ResponseFormat] = None diff --git a/llama_stack/apis/batch_inference/batch_inference.py b/llama_stack/apis/batch_inference/batch_inference.py index 330a683ba..7a324128d 100644 --- a/llama_stack/apis/batch_inference/batch_inference.py +++ b/llama_stack/apis/batch_inference/batch_inference.py @@ -6,11 +6,8 @@ from typing import List, Optional, Protocol, runtime_checkable -from pydantic import BaseModel - +from llama_stack.apis.common.job_types import Job from llama_stack.apis.inference import ( - ChatCompletionResponse, - CompletionResponse, InterleavedContent, LogProbConfig, Message, @@ -20,41 +17,39 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) -from llama_stack.schema_utils import json_schema_type, webmethod - - -@json_schema_type -class BatchCompletionResponse(BaseModel): - batch: List[CompletionResponse] - - -@json_schema_type -class BatchChatCompletionResponse(BaseModel): - batch: List[ChatCompletionResponse] +from llama_stack.schema_utils import webmethod @runtime_checkable class BatchInference(Protocol): + """Batch inference API for generating completions and chat completions. + + This is an asynchronous API. If the request is successful, the response will be a job which can be polled for completion. + + NOTE: This API is not yet implemented and is subject to change in concert with other asynchronous APIs + including (post-training, evals, etc). + """ + @webmethod(route="/batch-inference/completion", method="POST") - async def batch_completion( + async def completion( self, model: str, content_batch: List[InterleavedContent], sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, logprobs: Optional[LogProbConfig] = None, - ) -> BatchCompletionResponse: ... + ) -> Job: ... @webmethod(route="/batch-inference/chat-completion", method="POST") - async def batch_chat_completion( + async def chat_completion( self, model: str, messages_batch: List[List[Message]], sampling_params: Optional[SamplingParams] = None, # zero-shot tool definitions as input to the model - tools: Optional[List[ToolDefinition]] = list, + tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, logprobs: Optional[LogProbConfig] = None, - ) -> BatchChatCompletionResponse: ... + ) -> Job: ... diff --git a/llama_stack/apis/inference/inference.py b/llama_stack/apis/inference/inference.py index e59132e33..309171f20 100644 --- a/llama_stack/apis/inference/inference.py +++ b/llama_stack/apis/inference/inference.py @@ -18,7 +18,7 @@ from typing import ( ) from pydantic import BaseModel, Field, field_validator -from typing_extensions import Annotated +from typing_extensions import Annotated, TypedDict from llama_stack.apis.common.content_types import ContentDelta, InterleavedContent, InterleavedContentItem from llama_stack.apis.models import Model @@ -442,6 +442,352 @@ class EmbeddingsResponse(BaseModel): embeddings: List[List[float]] +@json_schema_type +class OpenAIChatCompletionContentPartTextParam(BaseModel): + type: Literal["text"] = "text" + text: str + + +@json_schema_type +class OpenAIImageURL(BaseModel): + url: str + detail: Optional[str] = None + + +@json_schema_type +class OpenAIChatCompletionContentPartImageParam(BaseModel): + type: Literal["image_url"] = "image_url" + image_url: OpenAIImageURL + + +OpenAIChatCompletionContentPartParam = Annotated[ + Union[ + OpenAIChatCompletionContentPartTextParam, + OpenAIChatCompletionContentPartImageParam, + ], + Field(discriminator="type"), +] +register_schema(OpenAIChatCompletionContentPartParam, name="OpenAIChatCompletionContentPartParam") + + +OpenAIChatCompletionMessageContent = Union[str, List[OpenAIChatCompletionContentPartParam]] + + +@json_schema_type +class OpenAIUserMessageParam(BaseModel): + """A message from the user in an OpenAI-compatible chat completion request. + + :param role: Must be "user" to identify this as a user message + :param content: The content of the message, which can include text and other media + :param name: (Optional) The name of the user message participant. + """ + + role: Literal["user"] = "user" + content: OpenAIChatCompletionMessageContent + name: Optional[str] = None + + +@json_schema_type +class OpenAISystemMessageParam(BaseModel): + """A system message providing instructions or context to the model. + + :param role: Must be "system" to identify this as a system message + :param content: The content of the "system prompt". If multiple system messages are provided, they are concatenated. The underlying Llama Stack code may also add other system messages (for example, for formatting tool definitions). + :param name: (Optional) The name of the system message participant. + """ + + role: Literal["system"] = "system" + content: OpenAIChatCompletionMessageContent + name: Optional[str] = None + + +@json_schema_type +class OpenAIChatCompletionToolCallFunction(BaseModel): + name: Optional[str] = None + arguments: Optional[str] = None + + +@json_schema_type +class OpenAIChatCompletionToolCall(BaseModel): + index: Optional[int] = None + id: Optional[str] = None + type: Literal["function"] = "function" + function: Optional[OpenAIChatCompletionToolCallFunction] = None + + +@json_schema_type +class OpenAIAssistantMessageParam(BaseModel): + """A message containing the model's (assistant) response in an OpenAI-compatible chat completion request. + + :param role: Must be "assistant" to identify this as the model's response + :param content: The content of the model's response + :param name: (Optional) The name of the assistant message participant. + :param tool_calls: List of tool calls. Each tool call is an OpenAIChatCompletionToolCall object. + """ + + role: Literal["assistant"] = "assistant" + content: Optional[OpenAIChatCompletionMessageContent] = None + name: Optional[str] = None + tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None + + +@json_schema_type +class OpenAIToolMessageParam(BaseModel): + """A message representing the result of a tool invocation in an OpenAI-compatible chat completion request. + + :param role: Must be "tool" to identify this as a tool response + :param tool_call_id: Unique identifier for the tool call this response is for + :param content: The response content from the tool + """ + + role: Literal["tool"] = "tool" + tool_call_id: str + content: OpenAIChatCompletionMessageContent + + +@json_schema_type +class OpenAIDeveloperMessageParam(BaseModel): + """A message from the developer in an OpenAI-compatible chat completion request. + + :param role: Must be "developer" to identify this as a developer message + :param content: The content of the developer message + :param name: (Optional) The name of the developer message participant. + """ + + role: Literal["developer"] = "developer" + content: OpenAIChatCompletionMessageContent + name: Optional[str] = None + + +OpenAIMessageParam = Annotated[ + Union[ + OpenAIUserMessageParam, + OpenAISystemMessageParam, + OpenAIAssistantMessageParam, + OpenAIToolMessageParam, + OpenAIDeveloperMessageParam, + ], + Field(discriminator="role"), +] +register_schema(OpenAIMessageParam, name="OpenAIMessageParam") + + +@json_schema_type +class OpenAIResponseFormatText(BaseModel): + type: Literal["text"] = "text" + + +@json_schema_type +class OpenAIJSONSchema(TypedDict, total=False): + name: str + description: Optional[str] = None + strict: Optional[bool] = None + + # Pydantic BaseModel cannot be used with a schema param, since it already + # has one. And, we don't want to alias here because then have to handle + # that alias when converting to OpenAI params. So, to support schema, + # we use a TypedDict. + schema: Optional[Dict[str, Any]] = None + + +@json_schema_type +class OpenAIResponseFormatJSONSchema(BaseModel): + type: Literal["json_schema"] = "json_schema" + json_schema: OpenAIJSONSchema + + +@json_schema_type +class OpenAIResponseFormatJSONObject(BaseModel): + type: Literal["json_object"] = "json_object" + + +OpenAIResponseFormatParam = Annotated[ + Union[ + OpenAIResponseFormatText, + OpenAIResponseFormatJSONSchema, + OpenAIResponseFormatJSONObject, + ], + Field(discriminator="type"), +] +register_schema(OpenAIResponseFormatParam, name="OpenAIResponseFormatParam") + + +@json_schema_type +class OpenAITopLogProb(BaseModel): + """The top log probability for a token from an OpenAI-compatible chat completion response. + + :token: The token + :bytes: (Optional) The bytes for the token + :logprob: The log probability of the token + """ + + token: str + bytes: Optional[List[int]] = None + logprob: float + + +@json_schema_type +class OpenAITokenLogProb(BaseModel): + """The log probability for a token from an OpenAI-compatible chat completion response. + + :token: The token + :bytes: (Optional) The bytes for the token + :logprob: The log probability of the token + :top_logprobs: The top log probabilities for the token + """ + + token: str + bytes: Optional[List[int]] = None + logprob: float + top_logprobs: List[OpenAITopLogProb] + + +@json_schema_type +class OpenAIChoiceLogprobs(BaseModel): + """The log probabilities for the tokens in the message from an OpenAI-compatible chat completion response. + + :param content: (Optional) The log probabilities for the tokens in the message + :param refusal: (Optional) The log probabilities for the tokens in the message + """ + + content: Optional[List[OpenAITokenLogProb]] = None + refusal: Optional[List[OpenAITokenLogProb]] = None + + +@json_schema_type +class OpenAIChoiceDelta(BaseModel): + """A delta from an OpenAI-compatible chat completion streaming response. + + :param content: (Optional) The content of the delta + :param refusal: (Optional) The refusal of the delta + :param role: (Optional) The role of the delta + :param tool_calls: (Optional) The tool calls of the delta + """ + + content: Optional[str] = None + refusal: Optional[str] = None + role: Optional[str] = None + tool_calls: Optional[List[OpenAIChatCompletionToolCall]] = None + + +@json_schema_type +class OpenAIChunkChoice(BaseModel): + """A chunk choice from an OpenAI-compatible chat completion streaming response. + + :param delta: The delta from the chunk + :param finish_reason: The reason the model stopped generating + :param index: The index of the choice + :param logprobs: (Optional) The log probabilities for the tokens in the message + """ + + delta: OpenAIChoiceDelta + finish_reason: str + index: int + logprobs: Optional[OpenAIChoiceLogprobs] = None + + +@json_schema_type +class OpenAIChoice(BaseModel): + """A choice from an OpenAI-compatible chat completion response. + + :param message: The message from the model + :param finish_reason: The reason the model stopped generating + :param index: The index of the choice + :param logprobs: (Optional) The log probabilities for the tokens in the message + """ + + message: OpenAIMessageParam + finish_reason: str + index: int + logprobs: Optional[OpenAIChoiceLogprobs] = None + + +@json_schema_type +class OpenAIChatCompletion(BaseModel): + """Response from an OpenAI-compatible chat completion request. + + :param id: The ID of the chat completion + :param choices: List of choices + :param object: The object type, which will be "chat.completion" + :param created: The Unix timestamp in seconds when the chat completion was created + :param model: The model that was used to generate the chat completion + """ + + id: str + choices: List[OpenAIChoice] + object: Literal["chat.completion"] = "chat.completion" + created: int + model: str + + +@json_schema_type +class OpenAIChatCompletionChunk(BaseModel): + """Chunk from a streaming response to an OpenAI-compatible chat completion request. + + :param id: The ID of the chat completion + :param choices: List of choices + :param object: The object type, which will be "chat.completion.chunk" + :param created: The Unix timestamp in seconds when the chat completion was created + :param model: The model that was used to generate the chat completion + """ + + id: str + choices: List[OpenAIChunkChoice] + object: Literal["chat.completion.chunk"] = "chat.completion.chunk" + created: int + model: str + + +@json_schema_type +class OpenAICompletionLogprobs(BaseModel): + """The log probabilities for the tokens in the message from an OpenAI-compatible completion response. + + :text_offset: (Optional) The offset of the token in the text + :token_logprobs: (Optional) The log probabilities for the tokens + :tokens: (Optional) The tokens + :top_logprobs: (Optional) The top log probabilities for the tokens + """ + + text_offset: Optional[List[int]] = None + token_logprobs: Optional[List[float]] = None + tokens: Optional[List[str]] = None + top_logprobs: Optional[List[Dict[str, float]]] = None + + +@json_schema_type +class OpenAICompletionChoice(BaseModel): + """A choice from an OpenAI-compatible completion response. + + :finish_reason: The reason the model stopped generating + :text: The text of the choice + :index: The index of the choice + :logprobs: (Optional) The log probabilities for the tokens in the choice + """ + + finish_reason: str + text: str + index: int + logprobs: Optional[OpenAIChoiceLogprobs] = None + + +@json_schema_type +class OpenAICompletion(BaseModel): + """Response from an OpenAI-compatible completion request. + + :id: The ID of the completion + :choices: List of choices + :created: The Unix timestamp in seconds when the completion was created + :model: The model that was used to generate the completion + :object: The object type, which will be "text_completion" + """ + + id: str + choices: List[OpenAICompletionChoice] + created: int + model: str + object: Literal["text_completion"] = "text_completion" + + class ModelStore(Protocol): async def get_model(self, identifier: str) -> Model: ... @@ -470,6 +816,16 @@ class EmbeddingTaskType(Enum): document = "document" +@json_schema_type +class BatchCompletionResponse(BaseModel): + batch: List[CompletionResponse] + + +@json_schema_type +class BatchChatCompletionResponse(BaseModel): + batch: List[ChatCompletionResponse] + + @runtime_checkable @trace_protocol class Inference(Protocol): @@ -505,6 +861,17 @@ class Inference(Protocol): """ ... + @webmethod(route="/inference/batch-completion", method="POST", experimental=True) + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ) -> BatchCompletionResponse: + raise NotImplementedError("Batch completion is not implemented") + @webmethod(route="/inference/chat-completion", method="POST") async def chat_completion( self, @@ -545,6 +912,19 @@ class Inference(Protocol): """ ... + @webmethod(route="/inference/batch-chat-completion", method="POST", experimental=True) + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ) -> BatchChatCompletionResponse: + raise NotImplementedError("Batch chat completion is not implemented") + @webmethod(route="/inference/embeddings", method="POST") async def embeddings( self, @@ -564,3 +944,105 @@ class Inference(Protocol): :returns: An array of embeddings, one for each content. Each embedding is a list of floats. The dimensionality of the embedding is model-specific; you can check model metadata using /models/{model_id} """ ... + + @webmethod(route="/openai/v1/completions", method="POST") + async def openai_completion( + self, + # Standard OpenAI completion parameters + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + # vLLM-specific parameters + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + """Generate an OpenAI-compatible completion for the given prompt using the specified model. + + :param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint. + :param prompt: The prompt to generate a completion for + :param best_of: (Optional) The number of completions to generate + :param echo: (Optional) Whether to echo the prompt + :param frequency_penalty: (Optional) The penalty for repeated tokens + :param logit_bias: (Optional) The logit bias to use + :param logprobs: (Optional) The log probabilities to use + :param max_tokens: (Optional) The maximum number of tokens to generate + :param n: (Optional) The number of completions to generate + :param presence_penalty: (Optional) The penalty for repeated tokens + :param seed: (Optional) The seed to use + :param stop: (Optional) The stop tokens to use + :param stream: (Optional) Whether to stream the response + :param stream_options: (Optional) The stream options to use + :param temperature: (Optional) The temperature to use + :param top_p: (Optional) The top p to use + :param user: (Optional) The user to use + """ + ... + + @webmethod(route="/openai/v1/chat/completions", method="POST") + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + """Generate an OpenAI-compatible chat completion for the given messages using the specified model. + + :param model: The identifier of the model to use. The model must be registered with Llama Stack and available via the /models endpoint. + :param messages: List of messages in the conversation + :param frequency_penalty: (Optional) The penalty for repeated tokens + :param function_call: (Optional) The function call to use + :param functions: (Optional) List of functions to use + :param logit_bias: (Optional) The logit bias to use + :param logprobs: (Optional) The log probabilities to use + :param max_completion_tokens: (Optional) The maximum number of tokens to generate + :param max_tokens: (Optional) The maximum number of tokens to generate + :param n: (Optional) The number of completions to generate + :param parallel_tool_calls: (Optional) Whether to parallelize tool calls + :param presence_penalty: (Optional) The penalty for repeated tokens + :param response_format: (Optional) The response format to use + :param seed: (Optional) The seed to use + :param stop: (Optional) The stop tokens to use + :param stream: (Optional) Whether to stream the response + :param stream_options: (Optional) The stream options to use + :param temperature: (Optional) The temperature to use + :param tool_choice: (Optional) The tool choice to use + :param tools: (Optional) The tools to use + :param top_logprobs: (Optional) The top log probabilities to use + :param top_p: (Optional) The top p to use + :param user: (Optional) The user to use + """ + ... diff --git a/llama_stack/apis/inspect/inspect.py b/llama_stack/apis/inspect/inspect.py index 3896d67a9..863f90e14 100644 --- a/llama_stack/apis/inspect/inspect.py +++ b/llama_stack/apis/inspect/inspect.py @@ -8,6 +8,7 @@ from typing import List, Protocol, runtime_checkable from pydantic import BaseModel +from llama_stack.providers.datatypes import HealthStatus from llama_stack.schema_utils import json_schema_type, webmethod @@ -20,8 +21,7 @@ class RouteInfo(BaseModel): @json_schema_type class HealthInfo(BaseModel): - status: str - # TODO: add a provider level status + status: HealthStatus @json_schema_type diff --git a/llama_stack/apis/models/models.py b/llama_stack/apis/models/models.py index 893ebc179..97398ce75 100644 --- a/llama_stack/apis/models/models.py +++ b/llama_stack/apis/models/models.py @@ -56,12 +56,35 @@ class ListModelsResponse(BaseModel): data: List[Model] +@json_schema_type +class OpenAIModel(BaseModel): + """A model from OpenAI. + + :id: The ID of the model + :object: The object type, which will be "model" + :created: The Unix timestamp in seconds when the model was created + :owned_by: The owner of the model + """ + + id: str + object: Literal["model"] = "model" + created: int + owned_by: str + + +class OpenAIListModelsResponse(BaseModel): + data: List[OpenAIModel] + + @runtime_checkable @trace_protocol class Models(Protocol): @webmethod(route="/models", method="GET") async def list_models(self) -> ListModelsResponse: ... + @webmethod(route="/openai/v1/models", method="GET") + async def openai_list_models(self) -> OpenAIListModelsResponse: ... + @webmethod(route="/models/{model_id:path}", method="GET") async def get_model( self, diff --git a/llama_stack/apis/post_training/post_training.py b/llama_stack/apis/post_training/post_training.py index d49668e23..e5f1bcb65 100644 --- a/llama_stack/apis/post_training/post_training.py +++ b/llama_stack/apis/post_training/post_training.py @@ -60,11 +60,11 @@ class EfficiencyConfig(BaseModel): @json_schema_type class TrainingConfig(BaseModel): n_epochs: int - max_steps_per_epoch: int - gradient_accumulation_steps: int - max_validation_steps: int - data_config: DataConfig - optimizer_config: OptimizerConfig + max_steps_per_epoch: int = 1 + gradient_accumulation_steps: int = 1 + max_validation_steps: Optional[int] = 1 + data_config: Optional[DataConfig] = None + optimizer_config: Optional[OptimizerConfig] = None efficiency_config: Optional[EfficiencyConfig] = None dtype: Optional[str] = "bf16" @@ -177,9 +177,9 @@ class PostTraining(Protocol): training_config: TrainingConfig, hyperparam_search_config: Dict[str, Any], logger_config: Dict[str, Any], - model: str = Field( - default="Llama3.2-3B-Instruct", - description="Model descriptor from `llama model list`", + model: Optional[str] = Field( + default=None, + description="Model descriptor for training if not in provider config`", ), checkpoint_dir: Optional[str] = None, algorithm_config: Optional[AlgorithmConfig] = None, diff --git a/llama_stack/apis/providers/providers.py b/llama_stack/apis/providers/providers.py index 83d03d7c1..ea5f968ec 100644 --- a/llama_stack/apis/providers/providers.py +++ b/llama_stack/apis/providers/providers.py @@ -8,6 +8,7 @@ from typing import Any, Dict, List, Protocol, runtime_checkable from pydantic import BaseModel +from llama_stack.providers.datatypes import HealthResponse from llama_stack.schema_utils import json_schema_type, webmethod @@ -17,6 +18,7 @@ class ProviderInfo(BaseModel): provider_id: str provider_type: str config: Dict[str, Any] + health: HealthResponse class ListProvidersResponse(BaseModel): diff --git a/llama_stack/cli/stack/_build.py b/llama_stack/cli/stack/_build.py index ac1933e0e..26c09af4e 100644 --- a/llama_stack/cli/stack/_build.py +++ b/llama_stack/cli/stack/_build.py @@ -89,6 +89,43 @@ def run_stack_build_command(args: argparse.Namespace) -> None: color="red", ) sys.exit(1) + elif args.providers: + providers = dict() + for api_provider in args.providers.split(","): + if "=" not in api_provider: + cprint( + "Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2", + color="red", + ) + sys.exit(1) + api, provider = api_provider.split("=") + providers_for_api = get_provider_registry().get(Api(api), None) + if providers_for_api is None: + cprint( + f"{api} is not a valid API.", + color="red", + ) + sys.exit(1) + if provider in providers_for_api: + providers.setdefault(api, []).append(provider) + else: + cprint( + f"{provider} is not a valid provider for the {api} API.", + color="red", + ) + sys.exit(1) + distribution_spec = DistributionSpec( + providers=providers, + description=",".join(args.providers), + ) + if not args.image_type: + cprint( + f"Please specify a image-type (container | conda | venv) for {args.template}", + color="red", + ) + sys.exit(1) + + build_config = BuildConfig(image_type=args.image_type, distribution_spec=distribution_spec) elif not args.config and not args.template: name = prompt( "> Enter a name for your Llama Stack (e.g. my-local-stack): ", @@ -173,16 +210,9 @@ def run_stack_build_command(args: argparse.Namespace) -> None: ) sys.exit(1) - if build_config.image_type == LlamaStackImageType.CONTAINER.value and not args.image_name: - cprint( - "Please specify --image-name when building a container from a config file", - color="red", - ) - sys.exit(1) - if args.print_deps_only: print(f"# Dependencies for {args.template or args.config or image_name}") - normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers) + normal_deps, special_deps = get_provider_dependencies(build_config) normal_deps += SERVER_DEPENDENCIES print(f"uv pip install {' '.join(normal_deps)}") for special_dep in special_deps: @@ -198,10 +228,14 @@ def run_stack_build_command(args: argparse.Namespace) -> None: ) except (Exception, RuntimeError) as exc: + import traceback + cprint( f"Error building stack: {exc}", color="red", ) + cprint("Stack trace:", color="red") + traceback.print_exc() sys.exit(1) if run_config is None: cprint( @@ -233,9 +267,10 @@ def _generate_run_config( image_name=image_name, apis=apis, providers={}, + external_providers_dir=build_config.external_providers_dir if build_config.external_providers_dir else None, ) # build providers dict - provider_registry = get_provider_registry() + provider_registry = get_provider_registry(build_config) for api in apis: run_config.providers[api] = [] provider_types = build_config.distribution_spec.providers[api] @@ -249,8 +284,22 @@ def _generate_run_config( if p.deprecation_error: raise InvalidProviderError(p.deprecation_error) - config_type = instantiate_class_type(provider_registry[Api(api)][provider_type].config_class) - if hasattr(config_type, "sample_run_config"): + try: + config_type = instantiate_class_type(provider_registry[Api(api)][provider_type].config_class) + except ModuleNotFoundError: + # HACK ALERT: + # This code executes after building is done, the import cannot work since the + # package is either available in the venv or container - not available on the host. + # TODO: use a "is_external" flag in ProviderSpec to check if the provider is + # external + cprint( + f"Failed to import provider {provider_type} for API {api} - assuming it's external, skipping", + color="yellow", + ) + # Set config_type to None to avoid UnboundLocalError + config_type = None + + if config_type is not None and hasattr(config_type, "sample_run_config"): config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}") else: config = {} @@ -282,6 +331,7 @@ def _run_stack_build_command_from_build_config( template_name: Optional[str] = None, config_path: Optional[str] = None, ) -> str: + image_name = image_name or build_config.image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value: if template_name: image_name = f"distribution-{template_name}" @@ -313,7 +363,7 @@ def _run_stack_build_command_from_build_config( build_config, build_file_path, image_name, - template_or_config=template_name or config_path, + template_or_config=template_name or config_path or str(build_file_path), ) if return_code != 0: raise RuntimeError(f"Failed to build image {image_name}") diff --git a/llama_stack/cli/stack/build.py b/llama_stack/cli/stack/build.py index 0ada7c615..93e7d9b22 100644 --- a/llama_stack/cli/stack/build.py +++ b/llama_stack/cli/stack/build.py @@ -57,7 +57,7 @@ class StackBuild(Subcommand): type=str, help=textwrap.dedent( f"""[for image-type={"|".join(e.value for e in ImageType)}] Name of the conda or virtual environment to use for -the build. If not specified, currently active Conda environment will be used if found. +the build. If not specified, currently active environment will be used if found. """ ), default=None, @@ -75,6 +75,12 @@ the build. If not specified, currently active Conda environment will be used if default=False, help="Run the stack after building using the same image type, name, and other applicable arguments", ) + self.parser.add_argument( + "--providers", + type=str, + default=None, + help="Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.", + ) def _run_stack_build_command(self, args: argparse.Namespace) -> None: # always keep implementation completely silo-ed away from CLI so CLI diff --git a/llama_stack/cli/stack/run.py b/llama_stack/cli/stack/run.py index 92015187b..d8234bb46 100644 --- a/llama_stack/cli/stack/run.py +++ b/llama_stack/cli/stack/run.py @@ -45,7 +45,7 @@ class StackRun(Subcommand): "--image-name", type=str, default=os.environ.get("CONDA_DEFAULT_ENV"), - help="Name of the image to run. Defaults to the current conda environment", + help="Name of the image to run. Defaults to the current environment", ) self.parser.add_argument( "--disable-ipv6", diff --git a/llama_stack/distribution/build.py b/llama_stack/distribution/build.py index a8ee372da..5b61ae081 100644 --- a/llama_stack/distribution/build.py +++ b/llama_stack/distribution/build.py @@ -7,16 +7,16 @@ import importlib.resources import logging from pathlib import Path -from typing import Dict, List from pydantic import BaseModel from termcolor import cprint -from llama_stack.distribution.datatypes import BuildConfig, Provider +from llama_stack.distribution.datatypes import BuildConfig from llama_stack.distribution.distribution import get_provider_registry from llama_stack.distribution.utils.exec import run_command from llama_stack.distribution.utils.image_types import LlamaStackImageType from llama_stack.providers.datatypes import Api +from llama_stack.templates.template import DistributionTemplate log = logging.getLogger(__name__) @@ -37,19 +37,24 @@ class ApiInput(BaseModel): def get_provider_dependencies( - config_providers: Dict[str, List[Provider]], + config: BuildConfig | DistributionTemplate, ) -> tuple[list[str], list[str]]: """Get normal and special dependencies from provider configuration.""" - all_providers = get_provider_registry() + # Extract providers based on config type + if isinstance(config, DistributionTemplate): + providers = config.providers + elif isinstance(config, BuildConfig): + providers = config.distribution_spec.providers deps = [] + registry = get_provider_registry(config) - for api_str, provider_or_providers in config_providers.items(): - providers_for_api = all_providers[Api(api_str)] + for api_str, provider_or_providers in providers.items(): + providers_for_api = registry[Api(api_str)] providers = provider_or_providers if isinstance(provider_or_providers, list) else [provider_or_providers] for provider in providers: - # Providers from BuildConfig and RunConfig are subtly different – not great + # Providers from BuildConfig and RunConfig are subtly different – not great provider_type = provider if isinstance(provider, str) else provider.provider_type if provider_type not in providers_for_api: @@ -71,8 +76,8 @@ def get_provider_dependencies( return list(set(normal_deps)), list(set(special_deps)) -def print_pip_install_help(providers: Dict[str, List[Provider]]): - normal_deps, special_deps = get_provider_dependencies(providers) +def print_pip_install_help(config: BuildConfig): + normal_deps, special_deps = get_provider_dependencies(config) cprint( f"Please install needed dependencies using the following commands:\n\nuv pip install {' '.join(normal_deps)}", @@ -91,7 +96,7 @@ def build_image( ): container_base = build_config.distribution_spec.container_image or "python:3.10-slim" - normal_deps, special_deps = get_provider_dependencies(build_config.distribution_spec.providers) + normal_deps, special_deps = get_provider_dependencies(build_config) normal_deps += SERVER_DEPENDENCIES if build_config.image_type == LlamaStackImageType.CONTAINER.value: diff --git a/llama_stack/distribution/build_container.sh b/llama_stack/distribution/build_container.sh index ed83b7bff..fb4780432 100755 --- a/llama_stack/distribution/build_container.sh +++ b/llama_stack/distribution/build_container.sh @@ -72,9 +72,13 @@ if [[ $container_base == *"registry.access.redhat.com/ubi9"* ]]; then FROM $container_base WORKDIR /app +# We install the Python 3.11 dev headers and build tools so that any +# C‑extension wheels (e.g. polyleven, faiss‑cpu) can compile successfully. + RUN dnf -y update && dnf install -y iputils net-tools wget \ vim-minimal python3.11 python3.11-pip python3.11-wheel \ - python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all + python3.11-setuptools python3.11-devel gcc make && \ + ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all ENV UV_SYSTEM_PYTHON=1 RUN pip install uv @@ -86,7 +90,7 @@ WORKDIR /app RUN apt-get update && apt-get install -y \ iputils-ping net-tools iproute2 dnsutils telnet \ - curl wget telnet \ + curl wget telnet git\ procps psmisc lsof \ traceroute \ bubblewrap \ diff --git a/llama_stack/distribution/datatypes.py b/llama_stack/distribution/datatypes.py index b24b0ec50..38353c1ff 100644 --- a/llama_stack/distribution/datatypes.py +++ b/llama_stack/distribution/datatypes.py @@ -326,3 +326,12 @@ class BuildConfig(BaseModel): default="conda", description="Type of package to build (conda | container | venv)", ) + image_name: Optional[str] = Field( + default=None, + description="Name of the distribution to build", + ) + external_providers_dir: Optional[str] = Field( + default=None, + description="Path to directory containing external provider implementations. The providers packages will be resolved from this directory. " + "pip_packages MUST contain the provider package name.", + ) diff --git a/llama_stack/distribution/distribution.py b/llama_stack/distribution/distribution.py index d4447139c..f948ddf1c 100644 --- a/llama_stack/distribution/distribution.py +++ b/llama_stack/distribution/distribution.py @@ -12,7 +12,6 @@ from typing import Any, Dict, List import yaml from pydantic import BaseModel -from llama_stack.distribution.datatypes import StackRunConfig from llama_stack.log import get_logger from llama_stack.providers.datatypes import ( AdapterSpec, @@ -97,7 +96,9 @@ def _load_inline_provider_spec(spec_data: Dict[str, Any], api: Api, provider_nam return spec -def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dict[str, ProviderSpec]]: +def get_provider_registry( + config=None, +) -> Dict[Api, Dict[str, ProviderSpec]]: """Get the provider registry, optionally including external providers. This function loads both built-in providers and external providers from YAML files. @@ -122,7 +123,7 @@ def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dic llama-guard.yaml Args: - config: Optional StackRunConfig containing the external providers directory path + config: Optional object containing the external providers directory path Returns: A dictionary mapping APIs to their available providers @@ -142,7 +143,8 @@ def get_provider_registry(config: StackRunConfig | None = None) -> Dict[Api, Dic except ImportError as e: logger.warning(f"Failed to import module {name}: {e}") - if config and config.external_providers_dir: + # Check if config has the external_providers_dir attribute + if config and hasattr(config, "external_providers_dir") and config.external_providers_dir: external_providers_dir = os.path.abspath(config.external_providers_dir) if not os.path.exists(external_providers_dir): raise FileNotFoundError(f"External providers directory not found: {external_providers_dir}") diff --git a/llama_stack/distribution/inspect.py b/llama_stack/distribution/inspect.py index ba0ce5ea2..23f644ec6 100644 --- a/llama_stack/distribution/inspect.py +++ b/llama_stack/distribution/inspect.py @@ -17,6 +17,7 @@ from llama_stack.apis.inspect import ( ) from llama_stack.distribution.datatypes import StackRunConfig from llama_stack.distribution.server.endpoints import get_all_api_endpoints +from llama_stack.providers.datatypes import HealthStatus class DistributionInspectConfig(BaseModel): @@ -58,7 +59,7 @@ class DistributionInspectImpl(Inspect): return ListRoutesResponse(data=ret) async def health(self) -> HealthInfo: - return HealthInfo(status="OK") + return HealthInfo(status=HealthStatus.OK) async def version(self) -> VersionInfo: return VersionInfo(version=version("llama-stack")) diff --git a/llama_stack/distribution/library_client.py b/llama_stack/distribution/library_client.py index c0143363d..f426bcafe 100644 --- a/llama_stack/distribution/library_client.py +++ b/llama_stack/distribution/library_client.py @@ -43,9 +43,9 @@ from llama_stack.distribution.server.endpoints import ( from llama_stack.distribution.stack import ( construct_stack, get_stack_run_config_from_template, - redact_sensitive_fields, replace_env_vars, ) +from llama_stack.distribution.utils.config import redact_sensitive_fields from llama_stack.distribution.utils.context import preserve_contexts_async_generator from llama_stack.distribution.utils.exec import in_notebook from llama_stack.providers.utils.telemetry.tracing import ( diff --git a/llama_stack/distribution/providers.py b/llama_stack/distribution/providers.py index cf9b0b975..1c00ce264 100644 --- a/llama_stack/distribution/providers.py +++ b/llama_stack/distribution/providers.py @@ -4,14 +4,17 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +import asyncio +from typing import Any, Dict from pydantic import BaseModel from llama_stack.apis.providers import ListProvidersResponse, ProviderInfo, Providers from llama_stack.log import get_logger +from llama_stack.providers.datatypes import HealthResponse, HealthStatus from .datatypes import StackRunConfig -from .stack import redact_sensitive_fields +from .utils.config import redact_sensitive_fields logger = get_logger(name=__name__, category="core") @@ -41,19 +44,24 @@ class ProviderImpl(Providers): async def list_providers(self) -> ListProvidersResponse: run_config = self.config.run_config safe_config = StackRunConfig(**redact_sensitive_fields(run_config.model_dump())) + providers_health = await self.get_providers_health() ret = [] for api, providers in safe_config.providers.items(): - ret.extend( - [ + for p in providers: + ret.append( ProviderInfo( api=api, provider_id=p.provider_id, provider_type=p.provider_type, config=p.config, + health=providers_health.get(api, {}).get( + p.provider_id, + HealthResponse( + status=HealthStatus.NOT_IMPLEMENTED, message="Provider does not implement health check" + ), + ), ) - for p in providers - ] - ) + ) return ListProvidersResponse(data=ret) @@ -64,3 +72,57 @@ class ProviderImpl(Providers): return p raise ValueError(f"Provider {provider_id} not found") + + async def get_providers_health(self) -> Dict[str, Dict[str, HealthResponse]]: + """Get health status for all providers. + + Returns: + Dict[str, Dict[str, HealthResponse]]: A dictionary mapping API names to provider health statuses. + Each API maps to a dictionary of provider IDs to their health responses. + """ + providers_health: Dict[str, Dict[str, HealthResponse]] = {} + timeout = 1.0 + + async def check_provider_health(impl: Any) -> tuple[str, HealthResponse] | None: + # Skip special implementations (inspect/providers) that don't have provider specs + if not hasattr(impl, "__provider_spec__"): + return None + api_name = impl.__provider_spec__.api.name + if not hasattr(impl, "health"): + return ( + api_name, + HealthResponse( + status=HealthStatus.NOT_IMPLEMENTED, message="Provider does not implement health check" + ), + ) + + try: + health = await asyncio.wait_for(impl.health(), timeout=timeout) + return api_name, health + except asyncio.TimeoutError: + return ( + api_name, + HealthResponse( + status=HealthStatus.ERROR, message=f"Health check timed out after {timeout} seconds" + ), + ) + except Exception as e: + return ( + api_name, + HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}"), + ) + + # Create tasks for all providers + tasks = [check_provider_health(impl) for impl in self.deps.values()] + + # Wait for all health checks to complete + results = await asyncio.gather(*tasks) + + # Organize results by API and provider ID + for result in results: + if result is None: # Skip special implementations + continue + api_name, health_response = result + providers_health[api_name] = health_response + + return providers_health diff --git a/llama_stack/distribution/resolver.py b/llama_stack/distribution/resolver.py index 33ad343ec..e9a594eba 100644 --- a/llama_stack/distribution/resolver.py +++ b/llama_stack/distribution/resolver.py @@ -41,7 +41,6 @@ from llama_stack.providers.datatypes import ( Api, BenchmarksProtocolPrivate, DatasetsProtocolPrivate, - InlineProviderSpec, ModelsProtocolPrivate, ProviderSpec, RemoteProviderConfig, @@ -230,50 +229,9 @@ def sort_providers_by_deps( {k: list(v.values()) for k, v in providers_with_specs.items()} ) - # Append built-in "inspect" provider - apis = [x[1].spec.api for x in sorted_providers] - sorted_providers.append( - ( - "inspect", - ProviderWithSpec( - provider_id="__builtin__", - provider_type="__builtin__", - config={"run_config": run_config.model_dump()}, - spec=InlineProviderSpec( - api=Api.inspect, - provider_type="__builtin__", - config_class="llama_stack.distribution.inspect.DistributionInspectConfig", - module="llama_stack.distribution.inspect", - api_dependencies=apis, - deps__=[x.value for x in apis], - ), - ), - ) - ) - - sorted_providers.append( - ( - "providers", - ProviderWithSpec( - provider_id="__builtin__", - provider_type="__builtin__", - config={"run_config": run_config.model_dump()}, - spec=InlineProviderSpec( - api=Api.providers, - provider_type="__builtin__", - config_class="llama_stack.distribution.providers.ProviderImplConfig", - module="llama_stack.distribution.providers", - api_dependencies=apis, - deps__=[x.value for x in apis], - ), - ), - ) - ) - logger.debug(f"Resolved {len(sorted_providers)} providers") for api_str, provider in sorted_providers: logger.debug(f" {api_str} => {provider.provider_id}") - logger.debug("") return sorted_providers @@ -400,6 +358,8 @@ def check_protocol_compliance(obj: Any, protocol: Any) -> None: mro = type(obj).__mro__ for name, value in inspect.getmembers(protocol): if inspect.isfunction(value) and hasattr(value, "__webmethod__"): + if value.__webmethod__.experimental: + continue if not hasattr(obj, name): missing_methods.append((name, "missing")) elif not callable(getattr(obj, name)): diff --git a/llama_stack/distribution/routers/routers.py b/llama_stack/distribution/routers/routers.py index eed96a40a..17aecdaf8 100644 --- a/llama_stack/distribution/routers/routers.py +++ b/llama_stack/distribution/routers/routers.py @@ -4,6 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +import asyncio import time from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union @@ -17,6 +18,8 @@ from llama_stack.apis.datasetio import DatasetIO from llama_stack.apis.datasets import DatasetPurpose, DataSource from llama_stack.apis.eval import BenchmarkConfig, Eval, EvaluateResponse, Job from llama_stack.apis.inference import ( + BatchChatCompletionResponse, + BatchCompletionResponse, ChatCompletionResponse, ChatCompletionResponseEventType, ChatCompletionResponseStreamChunk, @@ -35,6 +38,13 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.apis.models import Model, ModelType from llama_stack.apis.safety import RunShieldResponse, Safety from llama_stack.apis.scoring import ( @@ -57,7 +67,7 @@ from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger from llama_stack.models.llama.llama3.chat_format import ChatFormat from llama_stack.models.llama.llama3.tokenizer import Tokenizer -from llama_stack.providers.datatypes import RoutingTable +from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable from llama_stack.providers.utils.telemetry.tracing import get_current_span logger = get_logger(name=__name__, category="core") @@ -333,6 +343,30 @@ class InferenceRouter(Inference): response.metrics = metrics if response.metrics is None else response.metrics + metrics return response + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ) -> BatchChatCompletionResponse: + logger.debug( + f"InferenceRouter.batch_chat_completion: {model_id=}, {len(messages_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}", + ) + provider = self.routing_table.get_provider_impl(model_id) + return await provider.batch_chat_completion( + model_id=model_id, + messages_batch=messages_batch, + tools=tools, + tool_config=tool_config, + sampling_params=sampling_params, + response_format=response_format, + logprobs=logprobs, + ) + async def completion( self, model_id: str, @@ -397,6 +431,20 @@ class InferenceRouter(Inference): response.metrics = metrics if response.metrics is None else response.metrics + metrics return response + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ) -> BatchCompletionResponse: + logger.debug( + f"InferenceRouter.batch_completion: {model_id=}, {len(content_batch)=}, {sampling_params=}, {response_format=}, {logprobs=}", + ) + provider = self.routing_table.get_provider_impl(model_id) + return await provider.batch_completion(model_id, content_batch, sampling_params, response_format, logprobs) + async def embeddings( self, model_id: str, @@ -419,6 +467,149 @@ class InferenceRouter(Inference): task_type=task_type, ) + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + logger.debug( + f"InferenceRouter.openai_completion: {model=}, {stream=}, {prompt=}", + ) + model_obj = await self.routing_table.get_model(model) + if model_obj is None: + raise ValueError(f"Model '{model}' not found") + if model_obj.model_type == ModelType.embedding: + raise ValueError(f"Model '{model}' is an embedding model and does not support completions") + + params = dict( + model=model_obj.identifier, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + guided_choice=guided_choice, + prompt_logprobs=prompt_logprobs, + ) + + provider = self.routing_table.get_provider_impl(model_obj.identifier) + return await provider.openai_completion(**params) + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + logger.debug( + f"InferenceRouter.openai_chat_completion: {model=}, {stream=}, {messages=}", + ) + model_obj = await self.routing_table.get_model(model) + if model_obj is None: + raise ValueError(f"Model '{model}' not found") + if model_obj.model_type == ModelType.embedding: + raise ValueError(f"Model '{model}' is an embedding model and does not support chat completions") + + params = dict( + model=model_obj.identifier, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + provider = self.routing_table.get_provider_impl(model_obj.identifier) + return await provider.openai_chat_completion(**params) + + async def health(self) -> Dict[str, HealthResponse]: + health_statuses = {} + timeout = 0.5 + for provider_id, impl in self.routing_table.impls_by_provider_id.items(): + try: + # check if the provider has a health method + if not hasattr(impl, "health"): + continue + health = await asyncio.wait_for(impl.health(), timeout=timeout) + health_statuses[provider_id] = health + except asyncio.TimeoutError: + health_statuses[provider_id] = HealthResponse( + status=HealthStatus.ERROR, + message=f"Health check timed out after {timeout} seconds", + ) + except NotImplementedError: + health_statuses[provider_id] = HealthResponse(status=HealthStatus.NOT_IMPLEMENTED) + except Exception as e: + health_statuses[provider_id] = HealthResponse( + status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}" + ) + return health_statuses + class SafetyRouter(Safety): def __init__( diff --git a/llama_stack/distribution/routers/routing_tables.py b/llama_stack/distribution/routers/routing_tables.py index f6adae49d..18b0c891f 100644 --- a/llama_stack/distribution/routers/routing_tables.py +++ b/llama_stack/distribution/routers/routing_tables.py @@ -5,6 +5,7 @@ # the root directory of this source tree. import logging +import time import uuid from typing import Any, Dict, List, Optional @@ -23,7 +24,7 @@ from llama_stack.apis.datasets import ( RowsDataSource, URIDataSource, ) -from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType +from llama_stack.apis.models import ListModelsResponse, Model, Models, ModelType, OpenAIListModelsResponse, OpenAIModel from llama_stack.apis.resource import ResourceType from llama_stack.apis.scoring_functions import ( ListScoringFunctionsResponse, @@ -254,6 +255,19 @@ class ModelsRoutingTable(CommonRoutingTableImpl, Models): async def list_models(self) -> ListModelsResponse: return ListModelsResponse(data=await self.get_all_with_type("model")) + async def openai_list_models(self) -> OpenAIListModelsResponse: + models = await self.get_all_with_type("model") + openai_models = [ + OpenAIModel( + id=model.identifier, + object="model", + created=int(time.time()), + owned_by="llama_stack", + ) + for model in models + ] + return OpenAIListModelsResponse(data=openai_models) + async def get_model(self, model_id: str) -> Model: model = await self.get_object_by_identifier("model", model_id) if model is None: diff --git a/llama_stack/distribution/server/server.py b/llama_stack/distribution/server/server.py index 7d4ec2a2f..50cf44ec9 100644 --- a/llama_stack/distribution/server/server.py +++ b/llama_stack/distribution/server/server.py @@ -38,10 +38,10 @@ from llama_stack.distribution.server.endpoints import ( ) from llama_stack.distribution.stack import ( construct_stack, - redact_sensitive_fields, replace_env_vars, validate_env_pair, ) +from llama_stack.distribution.utils.config import redact_sensitive_fields from llama_stack.distribution.utils.context import preserve_contexts_async_generator from llama_stack.log import get_logger from llama_stack.providers.datatypes import Api @@ -92,7 +92,7 @@ async def global_exception_handler(request: Request, exc: Exception): def translate_exception(exc: Exception) -> Union[HTTPException, RequestValidationError]: if isinstance(exc, ValidationError): - exc = RequestValidationError(exc.raw_errors) + exc = RequestValidationError(exc.errors()) if isinstance(exc, RequestValidationError): return HTTPException( @@ -162,9 +162,10 @@ async def maybe_await(value): return value -async def sse_generator(event_gen): +async def sse_generator(event_gen_coroutine): + event_gen = await event_gen_coroutine try: - async for item in await event_gen: + async for item in event_gen: yield create_sse_event(item) await asyncio.sleep(0.01) except asyncio.CancelledError: @@ -229,15 +230,30 @@ class TracingMiddleware: def __init__(self, app, impls): self.app = app self.impls = impls + # FastAPI built-in paths that should bypass custom routing + self.fastapi_paths = ("/docs", "/redoc", "/openapi.json", "/favicon.ico", "/static") async def __call__(self, scope, receive, send): if scope.get("type") == "lifespan": return await self.app(scope, receive, send) path = scope.get("path", "") + + # Check if the path is a FastAPI built-in path + if path.startswith(self.fastapi_paths): + # Pass through to FastAPI's built-in handlers + logger.debug(f"Bypassing custom routing for FastAPI built-in path: {path}") + return await self.app(scope, receive, send) + if not hasattr(self, "endpoint_impls"): self.endpoint_impls = initialize_endpoint_impls(self.impls) - _, _, trace_path = find_matching_endpoint(scope.get("method", "GET"), path, self.endpoint_impls) + + try: + _, _, trace_path = find_matching_endpoint(scope.get("method", "GET"), path, self.endpoint_impls) + except ValueError: + # If no matching endpoint is found, pass through to FastAPI + logger.debug(f"No matching endpoint found for path: {path}, falling back to FastAPI") + return await self.app(scope, receive, send) trace_context = await start_trace(trace_path, {"__location__": "server", "raw_path": path}) @@ -388,7 +404,12 @@ def main(args: Optional[argparse.Namespace] = None): safe_config = redact_sensitive_fields(config.model_dump()) logger.info(yaml.dump(safe_config, indent=2)) - app = FastAPI(lifespan=lifespan) + app = FastAPI( + lifespan=lifespan, + docs_url="/docs", + redoc_url="/redoc", + openapi_url="/openapi.json", + ) if not os.environ.get("LLAMA_STACK_DISABLE_VERSION_CHECK"): app.add_middleware(ClientVersionMiddleware) diff --git a/llama_stack/distribution/stack.py b/llama_stack/distribution/stack.py index d70878db4..a6dc3d2a0 100644 --- a/llama_stack/distribution/stack.py +++ b/llama_stack/distribution/stack.py @@ -35,6 +35,8 @@ from llama_stack.apis.vector_dbs import VectorDBs from llama_stack.apis.vector_io import VectorIO from llama_stack.distribution.datatypes import Provider, StackRunConfig from llama_stack.distribution.distribution import get_provider_registry +from llama_stack.distribution.inspect import DistributionInspectConfig, DistributionInspectImpl +from llama_stack.distribution.providers import ProviderImpl, ProviderImplConfig from llama_stack.distribution.resolver import ProviderRegistry, resolve_impls from llama_stack.distribution.store.registry import create_dist_registry from llama_stack.distribution.utils.dynamic import instantiate_class_type @@ -96,7 +98,10 @@ async def register_resources(run_config: StackRunConfig, impls: Dict[Api, Any]): method = getattr(impls[api], register_method) for obj in objects: - await method(**obj.model_dump()) + # we want to maintain the type information in arguments to method. + # instead of method(**obj.model_dump()), which may convert a typed attr to a dict, + # we use model_dump() to find all the attrs and then getattr to get the still typed value. + await method(**{k: getattr(obj, k) for k in obj.model_dump().keys()}) method = getattr(impls[api], list_method) response = await method() @@ -116,26 +121,6 @@ class EnvVarError(Exception): super().__init__(f"Environment variable '{var_name}' not set or empty{f' at {path}' if path else ''}") -def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]: - """Redact sensitive information from config before printing.""" - sensitive_patterns = ["api_key", "api_token", "password", "secret"] - - def _redact_dict(d: Dict[str, Any]) -> Dict[str, Any]: - result = {} - for k, v in d.items(): - if isinstance(v, dict): - result[k] = _redact_dict(v) - elif isinstance(v, list): - result[k] = [_redact_dict(i) if isinstance(i, dict) else i for i in v] - elif any(pattern in k.lower() for pattern in sensitive_patterns): - result[k] = "********" - else: - result[k] = v - return result - - return _redact_dict(data) - - def replace_env_vars(config: Any, path: str = "") -> Any: if isinstance(config, dict): result = {} @@ -212,6 +197,26 @@ def validate_env_pair(env_pair: str) -> tuple[str, str]: ) from e +def add_internal_implementations(impls: Dict[Api, Any], run_config: StackRunConfig) -> None: + """Add internal implementations (inspect and providers) to the implementations dictionary. + + Args: + impls: Dictionary of API implementations + run_config: Stack run configuration + """ + inspect_impl = DistributionInspectImpl( + DistributionInspectConfig(run_config=run_config), + deps=impls, + ) + impls[Api.inspect] = inspect_impl + + providers_impl = ProviderImpl( + ProviderImplConfig(run_config=run_config), + deps=impls, + ) + impls[Api.providers] = providers_impl + + # Produces a stack of providers for the given run config. Not all APIs may be # asked for in the run config. async def construct_stack( @@ -219,6 +224,10 @@ async def construct_stack( ) -> Dict[Api, Any]: dist_registry, _ = await create_dist_registry(run_config.metadata_store, run_config.image_name) impls = await resolve_impls(run_config, provider_registry or get_provider_registry(run_config), dist_registry) + + # Add internal implementations after all other providers are resolved + add_internal_implementations(impls, run_config) + await register_resources(run_config, impls) return impls diff --git a/llama_stack/distribution/start_stack.sh b/llama_stack/distribution/start_stack.sh index 964fcfaf7..d3e13c7dc 100755 --- a/llama_stack/distribution/start_stack.sh +++ b/llama_stack/distribution/start_stack.sh @@ -18,6 +18,7 @@ VIRTUAL_ENV=${VIRTUAL_ENV:-} set -euo pipefail RED='\033[0;31m' +GREEN='\033[0;32m' NC='\033[0m' # No Color error_handler() { @@ -73,7 +74,7 @@ done PYTHON_BINARY="python" case "$env_type" in "venv") - if [ -n "$VIRTUAL_ENV" && "$VIRTUAL_ENV" == "$env_path_or_name" ]; then + if [ -n "$VIRTUAL_ENV" ] && [ "$VIRTUAL_ENV" == "$env_path_or_name" ]; then echo -e "${GREEN}Virtual environment already activated${NC}" >&2 else # Activate virtual environment diff --git a/llama_stack/distribution/ui/README.md b/llama_stack/distribution/ui/README.md index fe660544f..51c2d2bc2 100644 --- a/llama_stack/distribution/ui/README.md +++ b/llama_stack/distribution/ui/README.md @@ -36,9 +36,7 @@ llama-stack-client benchmarks register \ 3. Start Streamlit UI ```bash -cd llama_stack/distribution/ui -pip install -r requirements.txt -streamlit run app.py +uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py ``` ## Environment Variables diff --git a/llama_stack/distribution/ui/page/playground/rag.py b/llama_stack/distribution/ui/page/playground/rag.py index bb31bd2a7..696d89bc2 100644 --- a/llama_stack/distribution/ui/page/playground/rag.py +++ b/llama_stack/distribution/ui/page/playground/rag.py @@ -9,6 +9,7 @@ import uuid import streamlit as st from llama_stack_client import Agent, AgentEventLogger, RAGDocument +from llama_stack.apis.common.content_types import ToolCallDelta from llama_stack.distribution.ui.modules.api import llama_stack_api from llama_stack.distribution.ui.modules.utils import data_url_from_file @@ -16,9 +17,23 @@ from llama_stack.distribution.ui.modules.utils import data_url_from_file def rag_chat_page(): st.title("🦙 RAG") + def reset_agent_and_chat(): + st.session_state.clear() + st.cache_resource.clear() + + def should_disable_input(): + return "displayed_messages" in st.session_state and len(st.session_state.displayed_messages) > 0 + + def log_message(message): + with st.chat_message(message["role"]): + if "tool_output" in message and message["tool_output"]: + with st.expander(label="Tool Output", expanded=False, icon="🛠"): + st.write(message["tool_output"]) + st.markdown(message["content"]) + with st.sidebar: # File/Directory Upload Section - st.subheader("Upload Documents") + st.subheader("Upload Documents", divider=True) uploaded_files = st.file_uploader( "Upload file(s) or directory", accept_multiple_files=True, @@ -29,11 +44,11 @@ def rag_chat_page(): st.success(f"Successfully uploaded {len(uploaded_files)} files") # Add memory bank name input field vector_db_name = st.text_input( - "Vector Database Name", + "Document Collection Name", value="rag_vector_db", - help="Enter a unique identifier for this vector database", + help="Enter a unique identifier for this document collection", ) - if st.button("Create Vector Database"): + if st.button("Create Document Collection"): documents = [ RAGDocument( document_id=uploaded_file.name, @@ -64,26 +79,45 @@ def rag_chat_page(): ) st.success("Vector database created successfully!") - st.subheader("Configure Agent") + st.subheader("RAG Parameters", divider=True) + + rag_mode = st.radio( + "RAG mode", + ["Direct", "Agent-based"], + captions=[ + "RAG is performed by directly retrieving the information and augmenting the user query", + "RAG is performed by an agent activating a dedicated knowledge search tool.", + ], + on_change=reset_agent_and_chat, + disabled=should_disable_input(), + ) + # select memory banks vector_dbs = llama_stack_api.client.vector_dbs.list() vector_dbs = [vector_db.identifier for vector_db in vector_dbs] selected_vector_dbs = st.multiselect( - "Select Vector Databases", - vector_dbs, + label="Select Document Collections to use in RAG queries", + options=vector_dbs, + on_change=reset_agent_and_chat, + disabled=should_disable_input(), ) + st.subheader("Inference Parameters", divider=True) available_models = llama_stack_api.client.models.list() available_models = [model.identifier for model in available_models if model.model_type == "llm"] selected_model = st.selectbox( - "Choose a model", - available_models, + label="Choose a model", + options=available_models, index=0, + on_change=reset_agent_and_chat, + disabled=should_disable_input(), ) system_prompt = st.text_area( "System Prompt", value="You are a helpful assistant. ", help="Initial instructions given to the AI to set its behavior and context", + on_change=reset_agent_and_chat, + disabled=should_disable_input(), ) temperature = st.slider( "Temperature", @@ -92,6 +126,8 @@ def rag_chat_page(): value=0.0, step=0.1, help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable", + on_change=reset_agent_and_chat, + disabled=should_disable_input(), ) top_p = st.slider( @@ -100,21 +136,24 @@ def rag_chat_page(): max_value=1.0, value=0.95, step=0.1, + on_change=reset_agent_and_chat, + disabled=should_disable_input(), ) # Add clear chat button to sidebar if st.button("Clear Chat", use_container_width=True): - st.session_state.clear() - st.cache_resource.clear() + reset_agent_and_chat() + st.rerun() # Chat Interface if "messages" not in st.session_state: st.session_state.messages = [] + if "displayed_messages" not in st.session_state: + st.session_state.displayed_messages = [] # Display chat history - for message in st.session_state.messages: - with st.chat_message(message["role"]): - st.markdown(message["content"]) + for message in st.session_state.displayed_messages: + log_message(message) if temperature > 0.0: strategy = { @@ -144,22 +183,18 @@ def rag_chat_page(): ], ) - agent = create_agent() + if rag_mode == "Agent-based": + agent = create_agent() + if "agent_session_id" not in st.session_state: + st.session_state["agent_session_id"] = agent.create_session(session_name=f"rag_demo_{uuid.uuid4()}") - if "agent_session_id" not in st.session_state: - st.session_state["agent_session_id"] = agent.create_session(session_name=f"rag_demo_{uuid.uuid4()}") + session_id = st.session_state["agent_session_id"] - session_id = st.session_state["agent_session_id"] - - # Chat input - if prompt := st.chat_input("Ask a question about your documents"): + def agent_process_prompt(prompt): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) - # Display user message - with st.chat_message("user"): - st.markdown(prompt) - + # Send the prompt to the agent response = agent.create_turn( messages=[ { @@ -172,7 +207,7 @@ def rag_chat_page(): # Display assistant response with st.chat_message("assistant"): - retrieval_message_placeholder = st.empty() + retrieval_message_placeholder = st.expander(label="Tool Output", expanded=False, icon="🛠") message_placeholder = st.empty() full_response = "" retrieval_response = "" @@ -180,13 +215,87 @@ def rag_chat_page(): log.print() if log.role == "tool_execution": retrieval_response += log.content.replace("====", "").strip() - retrieval_message_placeholder.info(retrieval_response) + retrieval_message_placeholder.write(retrieval_response) else: full_response += log.content message_placeholder.markdown(full_response + "▌") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) + st.session_state.displayed_messages.append( + {"role": "assistant", "content": full_response, "tool_output": retrieval_response} + ) + + def direct_process_prompt(prompt): + # Add the system prompt in the beginning of the conversation + if len(st.session_state.messages) == 0: + st.session_state.messages.append({"role": "system", "content": system_prompt}) + + # Query the vector DB + rag_response = llama_stack_api.client.tool_runtime.rag_tool.query( + content=prompt, vector_db_ids=list(selected_vector_dbs) + ) + prompt_context = rag_response.content + + with st.chat_message("assistant"): + with st.expander(label="Retrieval Output", expanded=False): + st.write(prompt_context) + + retrieval_message_placeholder = st.empty() + message_placeholder = st.empty() + full_response = "" + retrieval_response = "" + + # Construct the extended prompt + extended_prompt = f"Please answer the following query using the context below.\n\nCONTEXT:\n{prompt_context}\n\nQUERY:\n{prompt}" + + # Run inference directly + st.session_state.messages.append({"role": "user", "content": extended_prompt}) + response = llama_stack_api.client.inference.chat_completion( + messages=st.session_state.messages, + model_id=selected_model, + sampling_params={ + "strategy": strategy, + }, + stream=True, + ) + + # Display assistant response + for chunk in response: + response_delta = chunk.event.delta + if isinstance(response_delta, ToolCallDelta): + retrieval_response += response_delta.tool_call.replace("====", "").strip() + retrieval_message_placeholder.info(retrieval_response) + else: + full_response += chunk.event.delta.text + message_placeholder.markdown(full_response + "▌") + message_placeholder.markdown(full_response) + + response_dict = {"role": "assistant", "content": full_response, "stop_reason": "end_of_message"} + st.session_state.messages.append(response_dict) + st.session_state.displayed_messages.append(response_dict) + + # Chat input + if prompt := st.chat_input("Ask a question about your documents"): + # Add user message to chat history + st.session_state.displayed_messages.append({"role": "user", "content": prompt}) + + # Display user message + with st.chat_message("user"): + st.markdown(prompt) + + # store the prompt to process it after page refresh + st.session_state.prompt = prompt + + # force page refresh to disable the settings widgets + st.rerun() + + if "prompt" in st.session_state and st.session_state.prompt is not None: + if rag_mode == "Agent-based": + agent_process_prompt(st.session_state.prompt) + else: # rag_mode == "Direct" + direct_process_prompt(st.session_state.prompt) + st.session_state.prompt = None rag_chat_page() diff --git a/llama_stack/distribution/ui/page/playground/tools.py b/llama_stack/distribution/ui/page/playground/tools.py index e987f617b..96c6a1783 100644 --- a/llama_stack/distribution/ui/page/playground/tools.py +++ b/llama_stack/distribution/ui/page/playground/tools.py @@ -29,17 +29,39 @@ def tool_chat_page(): st.cache_resource.clear() with st.sidebar: + st.title("Configuration") st.subheader("Model") - model = st.selectbox(label="models", options=model_list, on_change=reset_agent) + model = st.selectbox(label="Model", options=model_list, on_change=reset_agent, label_visibility="collapsed") + + st.subheader("Available ToolGroups") - st.subheader("Builtin Tools") toolgroup_selection = st.pills( - label="Available ToolGroups", options=builtin_tools_list, selection_mode="multi", on_change=reset_agent + label="Built-in tools", + options=builtin_tools_list, + selection_mode="multi", + on_change=reset_agent, + format_func=lambda tool: "".join(tool.split("::")[1:]), + help="List of built-in tools from your llama stack server.", ) - st.subheader("MCP Servers") + if "builtin::rag" in toolgroup_selection: + vector_dbs = llama_stack_api.client.vector_dbs.list() or [] + if not vector_dbs: + st.info("No vector databases available for selection.") + vector_dbs = [vector_db.identifier for vector_db in vector_dbs] + selected_vector_dbs = st.multiselect( + label="Select Document Collections to use in RAG queries", + options=vector_dbs, + on_change=reset_agent, + ) + mcp_selection = st.pills( - label="Available MCP Servers", options=mcp_tools_list, selection_mode="multi", on_change=reset_agent + label="MCP Servers", + options=mcp_tools_list, + selection_mode="multi", + on_change=reset_agent, + format_func=lambda tool: "".join(tool.split("::")[1:]), + help="List of MCP servers registered to your llama stack server.", ) toolgroup_selection.extend(mcp_selection) @@ -53,9 +75,30 @@ def tool_chat_page(): ] ) - st.subheader(f"Active Tools: 🛠 {len(active_tool_list)}") + st.markdown(f"Active Tools: 🛠 {len(active_tool_list)}", help="List of currently active tools.") st.json(active_tool_list) + st.subheader("Agent Configurations") + max_tokens = st.slider( + "Max Tokens", + min_value=0, + max_value=4096, + value=512, + step=1, + help="The maximum number of tokens to generate", + on_change=reset_agent, + ) + + for i, tool_name in enumerate(toolgroup_selection): + if tool_name == "builtin::rag": + tool_dict = dict( + name="builtin::rag", + args={ + "vector_db_ids": list(selected_vector_dbs), + }, + ) + toolgroup_selection[i] = tool_dict + @st.cache_resource def create_agent(): return Agent( @@ -63,9 +106,7 @@ def tool_chat_page(): model=model, instructions="You are a helpful assistant. When you use a tool always respond with a summary of the result.", tools=toolgroup_selection, - sampling_params={ - "strategy": {"type": "greedy"}, - }, + sampling_params={"strategy": {"type": "greedy"}, "max_tokens": max_tokens}, ) agent = create_agent() @@ -103,7 +144,11 @@ def tool_chat_page(): yield response.event.payload.delta.text if response.event.payload.event_type == "step_complete": if response.event.payload.step_details.step_type == "tool_execution": - yield " 🛠 " + if response.event.payload.step_details.tool_calls: + tool_name = str(response.event.payload.step_details.tool_calls[0].tool_name) + yield f'\n\n🛠 :grey[_Using "{tool_name}" tool:_]\n\n' + else: + yield "No tool_calls present in step_details" else: yield f"Error occurred in the Llama Stack Cluster: {response}" diff --git a/llama_stack/distribution/ui/requirements.txt b/llama_stack/distribution/ui/requirements.txt index 1e0456267..61d42768d 100644 --- a/llama_stack/distribution/ui/requirements.txt +++ b/llama_stack/distribution/ui/requirements.txt @@ -1,5 +1,5 @@ streamlit pandas -llama-stack-client>=0.0.55 +llama-stack-client>=0.2.1 streamlit-option-menu -llama-stack>=0.1.9 +llama-stack>=0.2.1 diff --git a/llama_stack/distribution/utils/config.py b/llama_stack/distribution/utils/config.py new file mode 100644 index 000000000..5e78289b7 --- /dev/null +++ b/llama_stack/distribution/utils/config.py @@ -0,0 +1,30 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import Any, Dict + + +def redact_sensitive_fields(data: Dict[str, Any]) -> Dict[str, Any]: + """Redact sensitive information from config before printing.""" + sensitive_patterns = ["api_key", "api_token", "password", "secret"] + + def _redact_value(v: Any) -> Any: + if isinstance(v, dict): + return _redact_dict(v) + elif isinstance(v, list): + return [_redact_value(i) for i in v] + return v + + def _redact_dict(d: Dict[str, Any]) -> Dict[str, Any]: + result = {} + for k, v in d.items(): + if any(pattern in k.lower() for pattern in sensitive_patterns): + result[k] = "********" + else: + result[k] = _redact_value(v) + return result + + return _redact_dict(data) diff --git a/llama_stack/models/llama/llama3/chat_format.py b/llama_stack/models/llama/llama3/chat_format.py index f55cd5e1c..fe7a7a898 100644 --- a/llama_stack/models/llama/llama3/chat_format.py +++ b/llama_stack/models/llama/llama3/chat_format.py @@ -226,7 +226,6 @@ class ChatFormat: arguments_json=json.dumps(tool_arguments), ) ) - content = "" return RawMessage( role="assistant", diff --git a/llama_stack/models/llama/llama3/generation.py b/llama_stack/models/llama/llama3/generation.py index 8c6aa242b..35c140707 100644 --- a/llama_stack/models/llama/llama3/generation.py +++ b/llama_stack/models/llama/llama3/generation.py @@ -140,7 +140,12 @@ class Llama3: return Llama3(model, tokenizer, model_args) - def __init__(self, model: Transformer | CrossAttentionTransformer, tokenizer: Tokenizer, args: ModelArgs): + def __init__( + self, + model: Transformer | CrossAttentionTransformer, + tokenizer: Tokenizer, + args: ModelArgs, + ): self.args = args self.model = model self.tokenizer = tokenizer @@ -149,7 +154,7 @@ class Llama3: @torch.inference_mode() def generate( self, - model_inputs: List[LLMInput], + llm_inputs: List[LLMInput], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: Optional[int] = None, @@ -164,15 +169,15 @@ class Llama3: print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1" if print_model_input: - for inp in model_inputs: + for inp in llm_inputs: tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in inp.tokens] cprint( "Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n", "red", ) - prompt_tokens = [inp.tokens for inp in model_inputs] + prompt_tokens = [inp.tokens for inp in llm_inputs] - bsz = len(model_inputs) + bsz = len(llm_inputs) assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) @@ -193,8 +198,8 @@ class Llama3: is_vision = not isinstance(self.model, Transformer) if is_vision: - images = [inp.vision.images if inp.vision is not None else [] for inp in model_inputs] - mask = [inp.vision.mask if inp.vision is not None else [] for inp in model_inputs] + images = [inp.vision.images if inp.vision is not None else [] for inp in llm_inputs] + mask = [inp.vision.mask if inp.vision is not None else [] for inp in llm_inputs] xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks( batch_images=images, @@ -229,7 +234,7 @@ class Llama3: for cur_pos in range(min_prompt_len, total_len): if is_vision: position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long) - text_only_inference = all(inp.vision is None for inp in model_inputs) + text_only_inference = all(inp.vision is None for inp in llm_inputs) logits = self.model.forward( position_ids, tokens, @@ -285,7 +290,7 @@ class Llama3: source="output", logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None), batch_idx=idx, - finished=eos_reached[idx], + finished=eos_reached[idx].item(), ignore_token=cur_pos < len(prompt_tokens[idx]), ) ) diff --git a/llama_stack/models/llama/llama3/prompt_templates/system_prompts.py b/llama_stack/models/llama/llama3/prompt_templates/system_prompts.py index d4e825a22..fbc0127fd 100644 --- a/llama_stack/models/llama/llama3/prompt_templates/system_prompts.py +++ b/llama_stack/models/llama/llama3/prompt_templates/system_prompts.py @@ -229,6 +229,11 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801 You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you may or may not need to make one function/tool call to achieve the purpose. + If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] + If you decide to invoke a function, you SHOULD NOT include any other text in the response. besides the function call in the above format. + For a boolean parameter, be sure to use `True` or `False` (capitalized) for the value. + + {{ function_description }} """.strip("\n") ) @@ -243,10 +248,6 @@ class PythonListCustomToolGenerator(PromptTemplateGeneratorBase): # noqa: N801 def _gen_function_description(self, custom_tools: List[ToolDefinition]) -> PromptTemplate: template_str = textwrap.dedent( """ - If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] - For a boolean parameter, be sure to use `True` or `False` (capitalized) for the value. - You SHOULD NOT include any other text in the response. - Here is a list of functions in JSON format that you can invoke. [ diff --git a/llama_stack/models/llama/llama3/tool_utils.py b/llama_stack/models/llama/llama3/tool_utils.py index fc8287eb6..91b46ec98 100644 --- a/llama_stack/models/llama/llama3/tool_utils.py +++ b/llama_stack/models/llama/llama3/tool_utils.py @@ -4,13 +4,6 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# top-level folder for each specific model found within the models/ directory at -# the top-level of this source tree. -import ast import json import re from typing import Optional, Tuple @@ -35,80 +28,141 @@ def is_json(s): return True -def is_valid_python_list(input_string): - """Check if the input string is a valid Python list of function calls""" - try: - # Try to parse the string - tree = ast.parse(input_string) - - # Check if it's a single expression - if len(tree.body) != 1 or not isinstance(tree.body[0], ast.Expr): - return False - - # Check if the expression is a list - expr = tree.body[0].value - if not isinstance(expr, ast.List): - return False - - # Check if the list is empty - if len(expr.elts) == 0: - return False - - # Check if all elements in the list are function calls - for element in expr.elts: - if not isinstance(element, ast.Call): - return False - - # Check if the function call has a valid name - if not isinstance(element.func, ast.Name): - return False - - # Check if all arguments are keyword arguments - if element.args or not all(isinstance(arg, ast.keyword) for arg in element.keywords): - return False - - return True - - except SyntaxError: - # If parsing fails, it's not a valid Python expression - return False - - -def parse_python_list_for_function_calls(input_string): +def parse_llama_tool_call_format(input_string): """ - Parse a Python list of function calls and - return a list of tuples containing the function name and arguments - """ - # Parse the string into an AST - tree = ast.parse(input_string) + Parse tool calls in the format: + [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] - # Ensure the input is a list - if not isinstance(tree.body[0], ast.Expr) or not isinstance(tree.body[0].value, ast.List): - raise ValueError("Input must be a list of function calls") + Returns a list of (function_name, arguments_dict) tuples or None if parsing fails. + """ + # Strip outer brackets and whitespace + input_string = input_string.strip() + if not (input_string.startswith("[") and input_string.endswith("]")): + return None + + content = input_string[1:-1].strip() + if not content: + return None result = [] - # Iterate through each function call in the list - for node in tree.body[0].value.elts: - if isinstance(node, ast.Call): - function_name = node.func.id - function_args = {} + # State variables for parsing + pos = 0 + length = len(content) - # Extract keyword arguments - for keyword in node.keywords: - try: - function_args[keyword.arg] = ast.literal_eval(keyword.value) - except ValueError as e: - logger.error( - f"Error parsing tool call argument '{keyword.arg}': {e}, full input string: '{input_string}'" - ) - raise ValueError( - f"Error parsing tool call argument '{keyword.arg}', full input string: '{input_string}'" - ) from e + while pos < length: + # Find function name + name_end = content.find("(", pos) + if name_end == -1: + break - result.append((function_name, function_args)) + func_name = content[pos:name_end].strip() - return result + # Find closing parenthesis for this function call + paren_level = 1 + args_start = name_end + 1 + args_end = args_start + + while args_end < length and paren_level > 0: + if content[args_end] == "(": + paren_level += 1 + elif content[args_end] == ")": + paren_level -= 1 + args_end += 1 + + if paren_level != 0: + # Unmatched parentheses + return None + + # Parse arguments + args_str = content[args_start : args_end - 1].strip() + args_dict = {} + + if args_str: + # Split by commas, but respect nested structures + parts = [] + part_start = 0 + in_quotes = False + quote_char = None + nested_level = 0 + + for i, char in enumerate(args_str): + if char in ('"', "'") and (i == 0 or args_str[i - 1] != "\\"): + if not in_quotes: + in_quotes = True + quote_char = char + elif char == quote_char: + in_quotes = False + quote_char = None + elif not in_quotes: + if char in ("{", "["): + nested_level += 1 + elif char in ("}", "]"): + nested_level -= 1 + elif char == "," and nested_level == 0: + parts.append(args_str[part_start:i].strip()) + part_start = i + 1 + + parts.append(args_str[part_start:].strip()) + + # Process each key=value pair + for part in parts: + if "=" in part: + key, value = part.split("=", 1) + key = key.strip() + value = value.strip() + + # Try to convert value to appropriate Python type + if (value.startswith('"') and value.endswith('"')) or ( + value.startswith("'") and value.endswith("'") + ): + # String + value = value[1:-1] + elif value.lower() == "true": + value = True + elif value.lower() == "false": + value = False + elif value.lower() == "none": + value = None + elif value.startswith("{") and value.endswith("}"): + # This is a nested dictionary + try: + # Try to parse as JSON + value = json.loads(value.replace("'", '"')) + except json.JSONDecodeError: + # Keep as string if parsing fails + pass + elif value.startswith("[") and value.endswith("]"): + # This is a nested list + try: + # Try to parse as JSON + value = json.loads(value.replace("'", '"')) + except json.JSONDecodeError: + # Keep as string if parsing fails + pass + else: + # Try to convert to number + try: + if "." in value: + value = float(value) + else: + value = int(value) + except ValueError: + # Keep as string if not a valid number + pass + + args_dict[key] = value + + result.append((func_name, args_dict)) + + # Move to the next function call + pos = args_end + + # Skip the comma between function calls if present + if pos < length and content[pos] == ",": + pos += 1 + + return result if result else None class ToolUtils: @@ -150,17 +204,19 @@ class ToolUtils: return None elif is_json(message_body): response = json.loads(message_body) - if ("type" in response and response["type"] == "function") or ("name" in response): + if ("type" in response and response["type"] == "function") or ( + "name" in response and "parameters" in response + ): function_name = response["name"] args = response["parameters"] return function_name, args else: return None - elif is_valid_python_list(message_body): - res = parse_python_list_for_function_calls(message_body) + elif function_calls := parse_llama_tool_call_format(message_body): # FIXME: Enable multiple tool calls - return res[0] + return function_calls[0] else: + logger.debug(f"Did not parse tool call from message body: {message_body}") return None @staticmethod diff --git a/llama_stack/models/llama/llama4/args.py b/llama_stack/models/llama/llama4/args.py index 6d7c1d409..dd5f7cbde 100644 --- a/llama_stack/models/llama/llama4/args.py +++ b/llama_stack/models/llama/llama4/args.py @@ -70,6 +70,9 @@ class ModelArgs(BaseModel): attention_chunk_size: Optional[int] = None rope_theta: float = 500000 use_scaled_rope: bool = False + rope_scaling_factor: Optional[float] = None + rope_high_freq_factor: Optional[float] = None + nope_layer_interval: Optional[int] = None # No position encoding in every n layers use_qk_norm: bool = False # Set to True to enable inference-time temperature tuning (useful for very long context) @@ -92,4 +95,14 @@ class ModelArgs(BaseModel): f"n_heads ({self.n_heads}) must be divisible by n_kv_heads ({self.n_kv_heads})" ) assert self.dim % self.n_heads == 0, f"dim ({self.dim}) must be divisible by n_heads ({self.n_heads})" + + if self.use_scaled_rope: + # NOTE: ideally these values should have come from params.json. However, we have + # shipped the models everywhere. Only Llama-4-Scout uses scaled rope and needs these + # specific values. + if self.rope_scaling_factor is None: + self.rope_scaling_factor = 16 + if self.rope_high_freq_factor is None: + self.rope_high_freq_factor = 1 + return self diff --git a/llama_stack/models/llama/llama4/chat_format.py b/llama_stack/models/llama/llama4/chat_format.py index 160bb00f8..1debadcc5 100644 --- a/llama_stack/models/llama/llama4/chat_format.py +++ b/llama_stack/models/llama/llama4/chat_format.py @@ -5,6 +5,7 @@ # the root directory of this source tree. import io +import json import uuid from dataclasses import dataclass from typing import Dict, List, Optional, Tuple @@ -299,9 +300,9 @@ class ChatFormat: call_id=call_id, tool_name=tool_name, arguments=tool_arguments, + arguments_json=json.dumps(tool_arguments), ) ) - content = "" return RawMessage( role="assistant", diff --git a/llama_stack/models/llama/llama4/generation.py b/llama_stack/models/llama/llama4/generation.py index 7a4087c8f..8e94bb33a 100644 --- a/llama_stack/models/llama/llama4/generation.py +++ b/llama_stack/models/llama/llama4/generation.py @@ -233,7 +233,7 @@ class Llama4: source="output", logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None), batch_idx=idx, - finished=eos_reached[idx], + finished=eos_reached[idx].item(), ignore_token=cur_pos < len(prompt_tokens[idx]), ) ) diff --git a/llama_stack/models/llama/llama4/model.py b/llama_stack/models/llama/llama4/model.py index 08fac7714..2272b868d 100644 --- a/llama_stack/models/llama/llama4/model.py +++ b/llama_stack/models/llama/llama4/model.py @@ -23,37 +23,25 @@ from .ffn import FeedForward from .moe import MoE +def rmsnorm(x, eps): + def _norm(y): + return y * torch.rsqrt(y.pow(2).mean(-1, keepdim=True) + eps) + + return _norm(x.float()).type_as(x) + + class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) - def _norm(self, x): - return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) - def forward(self, x): - output = self._norm(x.float()).type_as(x) - return output * self.weight + return rmsnorm(x, self.eps) * self.weight -class L2Norm(torch.nn.Module): - def __init__(self, dim: int, eps: float = 1e-6): - super().__init__() - self.eps = eps - - def _norm(self, x): - return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) - - def forward(self, x): - return self._norm(x.float()).type_as(x) - - -def apply_scaling(freqs: torch.Tensor): - # Values obtained from grid search - scale_factor = 8 +def apply_scaling(freqs: torch.Tensor, scale_factor: float, high_freq_factor: float): low_freq_factor = 1 - high_freq_factor = 4 old_context_len = 8192 # original llama3 length low_freq_wavelen = old_context_len / low_freq_factor @@ -72,11 +60,18 @@ def apply_scaling(freqs: torch.Tensor): return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device) -def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False): +def precompute_freqs_cis( + dim: int, + end: int, + theta: float, + use_scaled: bool, + scale_factor: float, + high_freq_factor: float, +): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end, device=freqs.device, dtype=torch.float32) if use_scaled: - freqs = apply_scaling(freqs) + freqs = apply_scaling(freqs, scale_factor, high_freq_factor) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 return freqs_cis @@ -174,9 +169,7 @@ class Attention(nn.Module): self.head_dim, ) ).cuda() - self.qk_norm = None - if self.use_qk_norm: - self.qk_norm = L2Norm(args.norm_eps) + self.norm_eps = args.norm_eps self._register_load_state_dict_pre_hook(self.load_hook) def load_hook( @@ -220,8 +213,8 @@ class Attention(nn.Module): xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) if self.use_qk_norm: - xq = self.qk_norm(xq) - xk = self.qk_norm(xk) + xq = rmsnorm(xq, self.norm_eps) + xk = rmsnorm(xk, self.norm_eps) # We are applying temperature tuning (https://arxiv.org/abs/2501.19399) to NoPE layers, where # the inference-time temperature tuning function is customized to not affect short context @@ -362,6 +355,8 @@ class Transformer(nn.Module): args.max_seq_len * 2, args.rope_theta, args.use_scaled_rope, + args.rope_scaling_factor, + args.rope_high_freq_factor, ) vision_args = self.args.vision_args if vision_args: diff --git a/llama_stack/models/llama/llama4/quantization/loader.py b/llama_stack/models/llama/llama4/quantization/loader.py index b50432896..f11d83c60 100644 --- a/llama_stack/models/llama/llama4/quantization/loader.py +++ b/llama_stack/models/llama/llama4/quantization/loader.py @@ -91,7 +91,7 @@ def convert_to_quantized_model( log_status(f"Rank {rank}: Quantizing int4 weights from bf16") def apply_quantization(_, weight): - return quantize_int4(weight, fp8_activation_scale_ub, output_device=torch.device("cuda")) + return quantize_int4(weight, output_device=torch.device("cuda")) else: fp8_scales_path = os.path.join(checkpoint_dir, f"fp8_scales_{rank}.pt") diff --git a/llama_stack/models/llama/llama4/tokenizer.py b/llama_stack/models/llama/llama4/tokenizer.py index 8eabc3205..0d2cc7ce5 100644 --- a/llama_stack/models/llama/llama4/tokenizer.py +++ b/llama_stack/models/llama/llama4/tokenizer.py @@ -56,8 +56,8 @@ LLAMA4_TEXT_POST_TRAIN_SPECIAL_TOKENS = [ "<|text_post_train_reserved_special_token_3|>", "<|text_post_train_reserved_special_token_4|>", "<|text_post_train_reserved_special_token_5|>", - "<|text_post_train_reserved_special_token_6|>", - "<|text_post_train_reserved_special_token_7|>", + "<|python_start|>", + "<|python_end|>", "<|finetune_right_pad|>", ] + get_reserved_special_tokens( "text_post_train", 61, 8 diff --git a/llama_stack/models/llama/quantize_impls.py b/llama_stack/models/llama/quantize_impls.py index 6e1d15cf6..a5da01588 100644 --- a/llama_stack/models/llama/quantize_impls.py +++ b/llama_stack/models/llama/quantize_impls.py @@ -65,7 +65,7 @@ class Int4Weights( Int4ScaledWeights, collections.namedtuple( "Int4Weights", - ["weight", "scale", "zero_point", "shape", "activation_scale_ub"], + ["weight", "scale", "zero_point", "shape"], ), ): pass @@ -184,20 +184,13 @@ def quantize_fp8( @torch.inference_mode() def quantize_int4( w: Tensor, - fp8_activation_scale_ub: float, output_device: Optional[torch.device] = None, ) -> Int4Weights: """Quantize [n, k/2] weight tensor. Args: w (Tensor): [n, k/2] input high precision tensor to quantize. - fp8_activation_scale_ub (float): Upper bound for activation max. """ - activation_scale_ub = torch.tensor( - [fp8_activation_scale_ub], - dtype=torch.float, - device=output_device, - ) if w.ndim >= 3: wq, scale, zero_point = zip(*[int4_row_quantize(i) for i in w], strict=False) wq = torch.stack([pack_int4(i) for i in wq], dim=0) @@ -212,7 +205,6 @@ def quantize_int4( scale=scale.to(output_device), zero_point=zero_point.to(output_device), shape=wq.shape, - activation_scale_ub=activation_scale_ub, ) @@ -247,26 +239,18 @@ def load_int4( w: Tensor, scale: Tensor, zero_point: Tensor, - fp8_activation_scale_ub: float, output_device: Optional[torch.device] = None, ) -> Int4Weights: """Load INT4 [n, k/2] weight tensor. Args: w (Tensor): [n, k/2] input INT4. - fp8_activation_scale_ub (float): Upper bound for activation max. """ - activation_scale_ub = torch.tensor( - [fp8_activation_scale_ub], - dtype=torch.float, - device=output_device, - ) return Int4Weights( weight=w.to(torch.int8).to(device=output_device), scale=scale.to(device=output_device), zero_point=zero_point.to(device=output_device), shape=w.shape, - activation_scale_ub=activation_scale_ub, ) diff --git a/llama_stack/providers/datatypes.py b/llama_stack/providers/datatypes.py index 32dfba30c..c3141f807 100644 --- a/llama_stack/providers/datatypes.py +++ b/llama_stack/providers/datatypes.py @@ -4,6 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +from enum import Enum from typing import Any, List, Optional, Protocol from urllib.parse import urlparse @@ -201,3 +202,12 @@ def remote_provider_spec( adapter=adapter, api_dependencies=api_dependencies or [], ) + + +class HealthStatus(str, Enum): + OK = "OK" + ERROR = "Error" + NOT_IMPLEMENTED = "Not Implemented" + + +HealthResponse = dict[str, Any] diff --git a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py index f441d6eb6..b5714b438 100644 --- a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py +++ b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py @@ -178,6 +178,8 @@ class ChatAgent(ShieldRunnerMixin): span.set_attribute("request", request.model_dump_json()) turn_id = str(uuid.uuid4()) span.set_attribute("turn_id", turn_id) + if self.agent_config.name: + span.set_attribute("agent_name", self.agent_config.name) await self._initialize_tools(request.toolgroups) async for chunk in self._run_turn(request, turn_id): @@ -190,6 +192,8 @@ class ChatAgent(ShieldRunnerMixin): span.set_attribute("session_id", request.session_id) span.set_attribute("request", request.model_dump_json()) span.set_attribute("turn_id", request.turn_id) + if self.agent_config.name: + span.set_attribute("agent_name", self.agent_config.name) await self._initialize_tools() async for chunk in self._run_turn(request): @@ -498,6 +502,8 @@ class ChatAgent(ShieldRunnerMixin): stop_reason = None async with tracing.span("inference") as span: + if self.agent_config.name: + span.set_attribute("agent_name", self.agent_config.name) async for chunk in await self.inference_api.chat_completion( self.agent_config.model, input_messages, diff --git a/llama_stack/providers/inline/inference/meta_reference/config.py b/llama_stack/providers/inline/inference/meta_reference/config.py index 315667506..6f796d0d4 100644 --- a/llama_stack/providers/inline/inference/meta_reference/config.py +++ b/llama_stack/providers/inline/inference/meta_reference/config.py @@ -52,14 +52,17 @@ class MetaReferenceInferenceConfig(BaseModel): checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}", quantization_type: str = "${env.QUANTIZATION_TYPE:bf16}", model_parallel_size: str = "${env.MODEL_PARALLEL_SIZE:0}", + max_batch_size: str = "${env.MAX_BATCH_SIZE:1}", + max_seq_len: str = "${env.MAX_SEQ_LEN:4096}", **kwargs, ) -> Dict[str, Any]: return { "model": model, - "max_seq_len": 4096, "checkpoint_dir": checkpoint_dir, "quantization": { "type": quantization_type, }, "model_parallel_size": model_parallel_size, + "max_batch_size": max_batch_size, + "max_seq_len": max_seq_len, } diff --git a/llama_stack/providers/inline/inference/meta_reference/generators.py b/llama_stack/providers/inline/inference/meta_reference/generators.py index 34dd58a9a..0a928ce73 100644 --- a/llama_stack/providers/inline/inference/meta_reference/generators.py +++ b/llama_stack/providers/inline/inference/meta_reference/generators.py @@ -22,7 +22,7 @@ from llama_stack.models.llama.llama3.generation import Llama3 from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer from llama_stack.models.llama.llama4.generation import Llama4 from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer -from llama_stack.models.llama.sku_types import Model +from llama_stack.models.llama.sku_types import Model, ModelFamily from llama_stack.providers.utils.inference.prompt_adapter import ( ChatCompletionRequestWithRawContent, CompletionRequestWithRawContent, @@ -113,8 +113,7 @@ def _infer_tool_prompt_format(request: ChatCompletionRequestWithRawContent): return get_default_tool_prompt_format(request.model) -# TODO: combine Llama3 and Llama4 generators since they are almost identical now -class Llama4Generator: +class LlamaGenerator: def __init__( self, config: MetaReferenceInferenceConfig, @@ -144,7 +143,8 @@ class Llama4Generator: else: quantization_mode = None - self.inner_generator = Llama4.build( + cls = Llama4 if llama_model.model_family == ModelFamily.llama4 else Llama3 + self.inner_generator = cls.build( ckpt_dir=ckpt_dir, max_seq_len=config.max_seq_len, max_batch_size=config.max_batch_size, @@ -158,142 +158,55 @@ class Llama4Generator: def completion( self, - request: CompletionRequestWithRawContent, + request_batch: List[CompletionRequestWithRawContent], ) -> Generator: - sampling_params = request.sampling_params or SamplingParams() + first_request = request_batch[0] + sampling_params = first_request.sampling_params or SamplingParams() max_gen_len = sampling_params.max_tokens if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len: max_gen_len = self.args.max_seq_len - 1 temperature, top_p = _infer_sampling_params(sampling_params) for result in self.inner_generator.generate( - llm_inputs=[self.formatter.encode_content(request.content)], + llm_inputs=[self.formatter.encode_content(request.content) for request in request_batch], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, - logprobs=bool(request.logprobs), + logprobs=bool(first_request.logprobs), echo=False, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, - request.response_format, + first_request.response_format, ), ): - yield result[0] + yield result def chat_completion( self, - request: ChatCompletionRequestWithRawContent, + request_batch: List[ChatCompletionRequestWithRawContent], ) -> Generator: - sampling_params = request.sampling_params or SamplingParams() + first_request = request_batch[0] + sampling_params = first_request.sampling_params or SamplingParams() max_gen_len = sampling_params.max_tokens if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len: max_gen_len = self.args.max_seq_len - 1 temperature, top_p = _infer_sampling_params(sampling_params) for result in self.inner_generator.generate( - llm_inputs=[self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))], + llm_inputs=[ + self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request)) + for request in request_batch + ], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, - logprobs=bool(request.logprobs), + logprobs=bool(first_request.logprobs), echo=False, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, - request.response_format, + first_request.response_format, ), ): - yield result[0] - - -class Llama3Generator: - def __init__( - self, - config: MetaReferenceInferenceConfig, - model_id: str, - llama_model: Model, - ): - if config.checkpoint_dir and config.checkpoint_dir != "null": - ckpt_dir = config.checkpoint_dir - else: - resolved_model = resolve_model(model_id) - if resolved_model is None: - # if the model is not a native llama model, get the default checkpoint_dir based on model id - ckpt_dir = model_checkpoint_dir(model_id) - else: - # if the model is a native llama model, get the default checkpoint_dir based on model core_model_id value - ckpt_dir = model_checkpoint_dir(resolved_model.descriptor()) - - if config.quantization: - if config.quantization.type == "fp8_mixed": - quantization_mode = QuantizationMode.fp8_mixed - elif config.quantization.type == "int4_mixed": - quantization_mode = QuantizationMode.int4_mixed - elif config.quantization.type == "bf16": - quantization_mode = None - else: - raise ValueError(f"Unsupported quantization mode {config.quantization}") - else: - quantization_mode = None - - self.inner_generator = Llama3.build( - ckpt_dir=ckpt_dir, - max_seq_len=config.max_seq_len, - max_batch_size=config.max_batch_size, - world_size=config.model_parallel_size or llama_model.pth_file_count, - quantization_mode=quantization_mode, - ) - self.tokenizer = self.inner_generator.tokenizer - self.args = self.inner_generator.args - self.formatter = self.inner_generator.formatter - - def completion( - self, - request: CompletionRequestWithRawContent, - ) -> Generator: - sampling_params = request.sampling_params or SamplingParams() - max_gen_len = sampling_params.max_tokens - if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len: - max_gen_len = self.args.max_seq_len - 1 - - temperature, top_p = _infer_sampling_params(sampling_params) - for result in self.inner_generator.generate( - model_inputs=[self.formatter.encode_content(request.content)], - max_gen_len=max_gen_len, - temperature=temperature, - top_p=top_p, - logprobs=bool(request.logprobs), - echo=False, - logits_processor=get_logits_processor( - self.tokenizer, - self.args.vocab_size, - request.response_format, - ), - ): - yield result[0] - - def chat_completion( - self, - request: ChatCompletionRequestWithRawContent, - ) -> Generator: - sampling_params = request.sampling_params or SamplingParams() - max_gen_len = sampling_params.max_tokens - if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len: - max_gen_len = self.args.max_seq_len - 1 - - temperature, top_p = _infer_sampling_params(sampling_params) - for result in self.inner_generator.generate( - model_inputs=[self.formatter.encode_dialog_prompt(request.messages, _infer_tool_prompt_format(request))], - max_gen_len=max_gen_len, - temperature=temperature, - top_p=top_p, - logprobs=bool(request.logprobs), - echo=False, - logits_processor=get_logits_processor( - self.tokenizer, - self.args.vocab_size, - request.response_format, - ), - ): - yield result[0] + yield result diff --git a/llama_stack/providers/inline/inference/meta_reference/inference.py b/llama_stack/providers/inline/inference/meta_reference/inference.py index 5f81d6421..0e69c2e7e 100644 --- a/llama_stack/providers/inline/inference/meta_reference/inference.py +++ b/llama_stack/providers/inline/inference/meta_reference/inference.py @@ -5,10 +5,10 @@ # the root directory of this source tree. import asyncio -import logging import os from typing import AsyncGenerator, List, Optional, Union +from pydantic import BaseModel from termcolor import cprint from llama_stack.apis.common.content_types import ( @@ -17,6 +17,8 @@ from llama_stack.apis.common.content_types import ( ToolCallParseStatus, ) from llama_stack.apis.inference import ( + BatchChatCompletionResponse, + BatchCompletionResponse, ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseEvent, @@ -38,8 +40,10 @@ from llama_stack.apis.inference import ( ToolConfig, ToolDefinition, ToolPromptFormat, + UserMessage, ) from llama_stack.apis.models import Model, ModelType +from llama_stack.log import get_logger from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat @@ -54,6 +58,10 @@ from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, build_hf_repo_model_entry, ) +from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +) from llama_stack.providers.utils.inference.prompt_adapter import ( augment_content_with_response_format_prompt, chat_completion_request_to_messages, @@ -61,24 +69,22 @@ from llama_stack.providers.utils.inference.prompt_adapter import ( ) from .config import MetaReferenceInferenceConfig -from .generators import Llama3Generator, Llama4Generator +from .generators import LlamaGenerator from .model_parallel import LlamaModelParallelGenerator -log = logging.getLogger(__name__) +log = get_logger(__name__, category="inference") # there's a single model parallel process running serving the model. for now, # we don't support multiple concurrent requests to this process. SEMAPHORE = asyncio.Semaphore(1) -def llama3_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> Llama3Generator: - return Llama3Generator(config, model_id, llama_model) - - -def llama4_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> Llama4Generator: - return Llama4Generator(config, model_id, llama_model) +def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> LlamaGenerator: + return LlamaGenerator(config, model_id, llama_model) class MetaReferenceInferenceImpl( + OpenAICompletionToLlamaStackMixin, + OpenAIChatCompletionToLlamaStackMixin, SentenceTransformerEmbeddingMixin, Inference, ModelsProtocolPrivate, @@ -133,24 +139,12 @@ class MetaReferenceInferenceImpl( async def load_model(self, model_id, llama_model) -> None: log.info(f"Loading model `{model_id}`") - if llama_model.model_family in { - ModelFamily.llama3, - ModelFamily.llama3_1, - ModelFamily.llama3_2, - ModelFamily.llama3_3, - }: - builder_fn = llama3_builder_fn - elif llama_model.model_family == ModelFamily.llama4: - builder_fn = llama4_builder_fn - else: - raise ValueError(f"Unsupported model family: {llama_model.model_family}") - builder_params = [self.config, model_id, llama_model] if self.config.create_distributed_process_group: self.generator = LlamaModelParallelGenerator( model_parallel_size=self.config.model_parallel_size or llama_model.pth_file_count, - builder_fn=builder_fn, + builder_fn=llama_builder_fn, builder_params=builder_params, formatter=( Llama4ChatFormat(Llama4Tokenizer.get_instance()) @@ -160,11 +154,24 @@ class MetaReferenceInferenceImpl( ) self.generator.start() else: - self.generator = builder_fn(*builder_params) + self.generator = llama_builder_fn(*builder_params) self.model_id = model_id self.llama_model = llama_model + log.info("Warming up...") + await self.completion( + model_id=model_id, + content="Hello, world!", + sampling_params=SamplingParams(max_tokens=10), + ) + await self.chat_completion( + model_id=model_id, + messages=[UserMessage(content="Hi how are you?")], + sampling_params=SamplingParams(max_tokens=20), + ) + log.info("Warmed up!") + def check_model(self, request) -> None: if self.model_id is None or self.llama_model is None: raise RuntimeError( @@ -202,7 +209,43 @@ class MetaReferenceInferenceImpl( if request.stream: return self._stream_completion(request) else: - return await self._nonstream_completion(request) + results = await self._nonstream_completion([request]) + return results[0] + + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + stream: Optional[bool] = False, + logprobs: Optional[LogProbConfig] = None, + ) -> BatchCompletionResponse: + if sampling_params is None: + sampling_params = SamplingParams() + if logprobs: + assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}" + + content_batch = [ + augment_content_with_response_format_prompt(response_format, content) for content in content_batch + ] + + request_batch = [] + for content in content_batch: + request = CompletionRequest( + model=model_id, + content=content, + sampling_params=sampling_params, + response_format=response_format, + stream=stream, + logprobs=logprobs, + ) + self.check_model(request) + request = await convert_request_to_raw(request) + request_batch.append(request) + + results = await self._nonstream_completion(request_batch) + return BatchCompletionResponse(batch=results) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: tokenizer = self.generator.formatter.tokenizer @@ -247,37 +290,54 @@ class MetaReferenceInferenceImpl( for x in impl(): yield x - async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: + async def _nonstream_completion(self, request_batch: List[CompletionRequest]) -> List[CompletionResponse]: tokenizer = self.generator.formatter.tokenizer + first_request = request_batch[0] + + class ItemState(BaseModel): + tokens: List[int] = [] + logprobs: List[TokenLogProbs] = [] + stop_reason: StopReason | None = None + finished: bool = False + def impl(): - tokens = [] - logprobs = [] - stop_reason = None + states = [ItemState() for _ in request_batch] - for token_result in self.generator.completion(request): - tokens.append(token_result.token) - if token_result.token == tokenizer.eot_id: - stop_reason = StopReason.end_of_turn - elif token_result.token == tokenizer.eom_id: - stop_reason = StopReason.end_of_message + results = [] + for token_results in self.generator.completion(request_batch): + for result in token_results: + idx = result.batch_idx + state = states[idx] + if state.finished or result.ignore_token: + continue - if request.logprobs: - assert len(token_result.logprobs) == 1 + state.finished = result.finished + if first_request.logprobs: + state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]})) - logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})) + state.tokens.append(result.token) + if result.token == tokenizer.eot_id: + state.stop_reason = StopReason.end_of_turn + elif result.token == tokenizer.eom_id: + state.stop_reason = StopReason.end_of_message - if stop_reason is None: - stop_reason = StopReason.out_of_tokens + for state in states: + if state.stop_reason is None: + state.stop_reason = StopReason.out_of_tokens - if tokens[-1] in self.generator.formatter.tokenizer.stop_tokens: - tokens = tokens[:-1] - content = self.generator.formatter.tokenizer.decode(tokens) - return CompletionResponse( - content=content, - stop_reason=stop_reason, - logprobs=logprobs if request.logprobs else None, - ) + if state.tokens[-1] in self.generator.formatter.tokenizer.stop_tokens: + state.tokens = state.tokens[:-1] + content = self.generator.formatter.tokenizer.decode(state.tokens) + results.append( + CompletionResponse( + content=content, + stop_reason=state.stop_reason, + logprobs=state.logprobs if first_request.logprobs else None, + ) + ) + + return results if self.config.create_distributed_process_group: async with SEMAPHORE: @@ -312,7 +372,7 @@ class MetaReferenceInferenceImpl( response_format=response_format, stream=stream, logprobs=logprobs, - tool_config=tool_config, + tool_config=tool_config or ToolConfig(), ) self.check_model(request) @@ -328,44 +388,110 @@ class MetaReferenceInferenceImpl( if request.stream: return self._stream_chat_completion(request) else: - return await self._nonstream_chat_completion(request) + results = await self._nonstream_chat_completion([request]) + return results[0] - async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + tools: Optional[List[ToolDefinition]] = None, + stream: Optional[bool] = False, + logprobs: Optional[LogProbConfig] = None, + tool_config: Optional[ToolConfig] = None, + ) -> BatchChatCompletionResponse: + if sampling_params is None: + sampling_params = SamplingParams() + if logprobs: + assert logprobs.top_k == 1, f"Unexpected top_k={logprobs.top_k}" + + # wrapper request to make it easier to pass around (internal only, not exposed to API) + request_batch = [] + for messages in messages_batch: + request = ChatCompletionRequest( + model=model_id, + messages=messages, + sampling_params=sampling_params, + tools=tools or [], + response_format=response_format, + logprobs=logprobs, + tool_config=tool_config or ToolConfig(), + ) + self.check_model(request) + + # augment and rewrite messages depending on the model + request.messages = chat_completion_request_to_messages(request, self.llama_model.core_model_id.value) + # download media and convert to raw content so we can send it to the model + request = await convert_request_to_raw(request) + request_batch.append(request) + + if self.config.create_distributed_process_group: + if SEMAPHORE.locked(): + raise RuntimeError("Only one concurrent request is supported") + + results = await self._nonstream_chat_completion(request_batch) + return BatchChatCompletionResponse(batch=results) + + async def _nonstream_chat_completion( + self, request_batch: List[ChatCompletionRequest] + ) -> List[ChatCompletionResponse]: tokenizer = self.generator.formatter.tokenizer + first_request = request_batch[0] + + class ItemState(BaseModel): + tokens: List[int] = [] + logprobs: List[TokenLogProbs] = [] + stop_reason: StopReason | None = None + finished: bool = False + def impl(): - tokens = [] - logprobs = [] - stop_reason = None + states = [ItemState() for _ in request_batch] - for token_result in self.generator.chat_completion(request): - if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1": - cprint(token_result.text, "cyan", end="") + for token_results in self.generator.chat_completion(request_batch): + first = token_results[0] + if not first.finished and not first.ignore_token: + if os.environ.get("LLAMA_MODELS_DEBUG", "0") in ("1", "2"): + cprint(first.text, "cyan", end="") + if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "2": + cprint(f"<{first.token}>", "magenta", end="") - tokens.append(token_result.token) + for result in token_results: + idx = result.batch_idx + state = states[idx] + if state.finished or result.ignore_token: + continue - if token_result.token == tokenizer.eot_id: - stop_reason = StopReason.end_of_turn - elif token_result.token == tokenizer.eom_id: - stop_reason = StopReason.end_of_message + state.finished = result.finished + if first_request.logprobs: + state.logprobs.append(TokenLogProbs(logprobs_by_token={result.text: result.logprobs[0]})) - if request.logprobs: - assert len(token_result.logprobs) == 1 + state.tokens.append(result.token) + if result.token == tokenizer.eot_id: + state.stop_reason = StopReason.end_of_turn + elif result.token == tokenizer.eom_id: + state.stop_reason = StopReason.end_of_message - logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})) + results = [] + for state in states: + if state.stop_reason is None: + state.stop_reason = StopReason.out_of_tokens - if stop_reason is None: - stop_reason = StopReason.out_of_tokens + raw_message = self.generator.formatter.decode_assistant_message(state.tokens, state.stop_reason) + results.append( + ChatCompletionResponse( + completion_message=CompletionMessage( + content=raw_message.content, + stop_reason=raw_message.stop_reason, + tool_calls=raw_message.tool_calls, + ), + logprobs=state.logprobs if first_request.logprobs else None, + ) + ) - raw_message = self.generator.formatter.decode_assistant_message(tokens, stop_reason) - return ChatCompletionResponse( - completion_message=CompletionMessage( - content=raw_message.content, - stop_reason=raw_message.stop_reason, - tool_calls=raw_message.tool_calls, - ), - logprobs=logprobs if request.logprobs else None, - ) + return results if self.config.create_distributed_process_group: async with SEMAPHORE: @@ -389,9 +515,26 @@ class MetaReferenceInferenceImpl( stop_reason = None ipython = False - for token_result in self.generator.chat_completion(request): + for token_results in self.generator.chat_completion([request]): + token_result = token_results[0] if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1": cprint(token_result.text, "cyan", end="") + if os.environ.get("LLAMA_MODELS_DEBUG", "0") == "2": + cprint(f"<{token_result.token}>", "magenta", end="") + + if token_result.token == tokenizer.eot_id: + stop_reason = StopReason.end_of_turn + text = "" + elif token_result.token == tokenizer.eom_id: + stop_reason = StopReason.end_of_message + text = "" + else: + text = token_result.text + + if request.logprobs: + assert len(token_result.logprobs) == 1 + + logprobs.append(TokenLogProbs(logprobs_by_token={token_result.text: token_result.logprobs[0]})) tokens.append(token_result.token) diff --git a/llama_stack/providers/inline/inference/meta_reference/model_parallel.py b/llama_stack/providers/inline/inference/meta_reference/model_parallel.py index bed3025a8..50640c6d1 100644 --- a/llama_stack/providers/inline/inference/meta_reference/model_parallel.py +++ b/llama_stack/providers/inline/inference/meta_reference/model_parallel.py @@ -6,7 +6,7 @@ from copy import deepcopy from functools import partial -from typing import Any, Callable, Generator +from typing import Any, Callable, Generator, List from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat @@ -23,13 +23,13 @@ class ModelRunner: self.llama = llama # the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()` - def __call__(self, req: Any): - if isinstance(req, ChatCompletionRequestWithRawContent): - return self.llama.chat_completion(req) - elif isinstance(req, CompletionRequestWithRawContent): - return self.llama.completion(req) + def __call__(self, task: Any): + if task[0] == "chat_completion": + return self.llama.chat_completion(task[1]) + elif task[0] == "completion": + return self.llama.completion(task[1]) else: - raise ValueError(f"Unexpected task type {type(req)}") + raise ValueError(f"Unexpected task type {task[0]}") def init_model_cb( @@ -82,16 +82,16 @@ class LlamaModelParallelGenerator: def completion( self, - request: CompletionRequestWithRawContent, + request_batch: List[CompletionRequestWithRawContent], ) -> Generator: - req_obj = deepcopy(request) - gen = self.group.run_inference(req_obj) + req_obj = deepcopy(request_batch) + gen = self.group.run_inference(("completion", req_obj)) yield from gen def chat_completion( self, - request: ChatCompletionRequestWithRawContent, + request_batch: List[ChatCompletionRequestWithRawContent], ) -> Generator: - req_obj = deepcopy(request) - gen = self.group.run_inference(req_obj) + req_obj = deepcopy(request_batch) + gen = self.group.run_inference(("chat_completion", req_obj)) yield from gen diff --git a/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py b/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py index 74fc49d5e..8752f06f3 100644 --- a/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +++ b/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py @@ -19,7 +19,7 @@ import tempfile import time import uuid from enum import Enum -from typing import Callable, Generator, Literal, Optional, Union +from typing import Callable, Generator, List, Literal, Optional, Tuple, Union import torch import zmq @@ -69,12 +69,12 @@ class CancelSentinel(BaseModel): class TaskRequest(BaseModel): type: Literal[ProcessingMessageName.task_request] = ProcessingMessageName.task_request - task: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent] + task: Tuple[str, List[CompletionRequestWithRawContent] | List[ChatCompletionRequestWithRawContent]] class TaskResponse(BaseModel): type: Literal[ProcessingMessageName.task_response] = ProcessingMessageName.task_response - result: GenerationResult + result: List[GenerationResult] class ExceptionResponse(BaseModel): @@ -331,7 +331,7 @@ class ModelParallelProcessGroup: def run_inference( self, - req: Union[CompletionRequestWithRawContent, ChatCompletionRequestWithRawContent], + req: Tuple[str, List[CompletionRequestWithRawContent] | List[ChatCompletionRequestWithRawContent]], ) -> Generator: assert not self.running, "inference already running" diff --git a/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py b/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py index 39847e085..d717d055f 100644 --- a/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py +++ b/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py @@ -10,6 +10,7 @@ from typing import AsyncGenerator, List, Optional, Union from llama_stack.apis.inference import ( CompletionResponse, Inference, + InterleavedContent, LogProbConfig, Message, ResponseFormat, @@ -23,6 +24,10 @@ from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate from llama_stack.providers.utils.inference.embedding_mixin import ( SentenceTransformerEmbeddingMixin, ) +from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +) from .config import SentenceTransformersInferenceConfig @@ -30,6 +35,8 @@ log = logging.getLogger(__name__) class SentenceTransformersInferenceImpl( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, SentenceTransformerEmbeddingMixin, Inference, ModelsProtocolPrivate, @@ -74,3 +81,25 @@ class SentenceTransformersInferenceImpl( tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: raise ValueError("Sentence transformers don't support chat completion") + + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch completion is not supported for Sentence Transformers") + + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch chat completion is not supported for Sentence Transformers") diff --git a/llama_stack/providers/inline/inference/vllm/vllm.py b/llama_stack/providers/inline/inference/vllm/vllm.py index ea2643b7a..9d742c39c 100644 --- a/llama_stack/providers/inline/inference/vllm/vllm.py +++ b/llama_stack/providers/inline/inference/vllm/vllm.py @@ -66,8 +66,10 @@ from llama_stack.providers.utils.inference.model_registry import ( ModelsProtocolPrivate, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, + OpenAICompletionToLlamaStackMixin, get_stop_reason, process_chat_completion_stream_response, ) @@ -172,7 +174,12 @@ def _convert_sampling_params( return vllm_sampling_params -class VLLMInferenceImpl(Inference, ModelsProtocolPrivate): +class VLLMInferenceImpl( + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, + ModelsProtocolPrivate, +): """ vLLM-based inference model adapter for Llama Stack with support for multiple models. diff --git a/llama_stack/providers/inline/post_training/torchtune/post_training.py b/llama_stack/providers/inline/post_training/torchtune/post_training.py index 2c129ef41..cc1a6a5fe 100644 --- a/llama_stack/providers/inline/post_training/torchtune/post_training.py +++ b/llama_stack/providers/inline/post_training/torchtune/post_training.py @@ -3,13 +3,14 @@ # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from datetime import datetime, timezone +from enum import Enum from typing import Any, Dict, Optional from llama_stack.apis.datasetio import DatasetIO from llama_stack.apis.datasets import Datasets from llama_stack.apis.post_training import ( AlgorithmConfig, + Checkpoint, DPOAlignmentConfig, JobStatus, ListPostTrainingJobsResponse, @@ -25,9 +26,19 @@ from llama_stack.providers.inline.post_training.torchtune.config import ( from llama_stack.providers.inline.post_training.torchtune.recipes.lora_finetuning_single_device import ( LoraFinetuningSingleDevice, ) +from llama_stack.providers.utils.scheduler import JobArtifact, Scheduler +from llama_stack.providers.utils.scheduler import JobStatus as SchedulerJobStatus from llama_stack.schema_utils import webmethod +class TrainingArtifactType(Enum): + CHECKPOINT = "checkpoint" + RESOURCES_STATS = "resources_stats" + + +_JOB_TYPE_SUPERVISED_FINE_TUNE = "supervised-fine-tune" + + class TorchtunePostTrainingImpl: def __init__( self, @@ -38,13 +49,27 @@ class TorchtunePostTrainingImpl: self.config = config self.datasetio_api = datasetio_api self.datasets_api = datasets + self._scheduler = Scheduler() - # TODO: assume sync job, will need jobs API for async scheduling - self.jobs = {} - self.checkpoints_dict = {} + async def shutdown(self) -> None: + await self._scheduler.shutdown() - async def shutdown(self): - pass + @staticmethod + def _checkpoint_to_artifact(checkpoint: Checkpoint) -> JobArtifact: + return JobArtifact( + type=TrainingArtifactType.CHECKPOINT.value, + name=checkpoint.identifier, + uri=checkpoint.path, + metadata=dict(checkpoint), + ) + + @staticmethod + def _resources_stats_to_artifact(resources_stats: Dict[str, Any]) -> JobArtifact: + return JobArtifact( + type=TrainingArtifactType.RESOURCES_STATS.value, + name=TrainingArtifactType.RESOURCES_STATS.value, + metadata=resources_stats, + ) async def supervised_fine_tune( self, @@ -56,20 +81,11 @@ class TorchtunePostTrainingImpl: checkpoint_dir: Optional[str], algorithm_config: Optional[AlgorithmConfig], ) -> PostTrainingJob: - if job_uuid in self.jobs: - raise ValueError(f"Job {job_uuid} already exists") - - post_training_job = PostTrainingJob(job_uuid=job_uuid) - - job_status_response = PostTrainingJobStatusResponse( - job_uuid=job_uuid, - status=JobStatus.scheduled, - scheduled_at=datetime.now(timezone.utc), - ) - self.jobs[job_uuid] = job_status_response - if isinstance(algorithm_config, LoraFinetuningConfig): - try: + + async def handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb): + on_log_message_cb("Starting Lora finetuning") + recipe = LoraFinetuningSingleDevice( self.config, job_uuid, @@ -82,26 +98,22 @@ class TorchtunePostTrainingImpl: self.datasetio_api, self.datasets_api, ) - - job_status_response.status = JobStatus.in_progress - job_status_response.started_at = datetime.now(timezone.utc) - await recipe.setup() + resources_allocated, checkpoints = await recipe.train() - self.checkpoints_dict[job_uuid] = checkpoints - job_status_response.resources_allocated = resources_allocated - job_status_response.checkpoints = checkpoints - job_status_response.status = JobStatus.completed - job_status_response.completed_at = datetime.now(timezone.utc) + on_artifact_collected_cb(self._resources_stats_to_artifact(resources_allocated)) + for checkpoint in checkpoints: + artifact = self._checkpoint_to_artifact(checkpoint) + on_artifact_collected_cb(artifact) - except Exception: - job_status_response.status = JobStatus.failed - raise + on_status_change_cb(SchedulerJobStatus.completed) + on_log_message_cb("Lora finetuning completed") else: raise NotImplementedError() - return post_training_job + job_uuid = self._scheduler.schedule(_JOB_TYPE_SUPERVISED_FINE_TUNE, job_uuid, handler) + return PostTrainingJob(job_uuid=job_uuid) async def preference_optimize( self, @@ -114,19 +126,55 @@ class TorchtunePostTrainingImpl: ) -> PostTrainingJob: ... async def get_training_jobs(self) -> ListPostTrainingJobsResponse: - return ListPostTrainingJobsResponse(data=[PostTrainingJob(job_uuid=uuid_) for uuid_ in self.jobs]) + return ListPostTrainingJobsResponse( + data=[PostTrainingJob(job_uuid=job.id) for job in self._scheduler.get_jobs()] + ) + + @staticmethod + def _get_artifacts_metadata_by_type(job, artifact_type): + return [artifact.metadata for artifact in job.artifacts if artifact.type == artifact_type] + + @classmethod + def _get_checkpoints(cls, job): + return cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.CHECKPOINT.value) + + @classmethod + def _get_resources_allocated(cls, job): + data = cls._get_artifacts_metadata_by_type(job, TrainingArtifactType.RESOURCES_STATS.value) + return data[0] if data else None @webmethod(route="/post-training/job/status") async def get_training_job_status(self, job_uuid: str) -> Optional[PostTrainingJobStatusResponse]: - return self.jobs.get(job_uuid, None) + job = self._scheduler.get_job(job_uuid) + + match job.status: + # TODO: Add support for other statuses to API + case SchedulerJobStatus.new | SchedulerJobStatus.scheduled: + status = JobStatus.scheduled + case SchedulerJobStatus.running: + status = JobStatus.in_progress + case SchedulerJobStatus.completed: + status = JobStatus.completed + case SchedulerJobStatus.failed: + status = JobStatus.failed + case _: + raise NotImplementedError() + + return PostTrainingJobStatusResponse( + job_uuid=job_uuid, + status=status, + scheduled_at=job.scheduled_at, + started_at=job.started_at, + completed_at=job.completed_at, + checkpoints=self._get_checkpoints(job), + resources_allocated=self._get_resources_allocated(job), + ) @webmethod(route="/post-training/job/cancel") async def cancel_training_job(self, job_uuid: str) -> None: - raise NotImplementedError("Job cancel is not implemented yet") + self._scheduler.cancel(job_uuid) @webmethod(route="/post-training/job/artifacts") async def get_training_job_artifacts(self, job_uuid: str) -> Optional[PostTrainingJobArtifactsResponse]: - if job_uuid in self.checkpoints_dict: - checkpoints = self.checkpoints_dict.get(job_uuid, []) - return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=checkpoints) - return None + job = self._scheduler.get_job(job_uuid) + return PostTrainingJobArtifactsResponse(job_uuid=job_uuid, checkpoints=self._get_checkpoints(job)) diff --git a/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py b/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py index edc1ceb90..04bf86b97 100644 --- a/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +++ b/llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py @@ -38,6 +38,8 @@ from llama_stack.apis.datasetio import DatasetIO from llama_stack.apis.datasets import Datasets from llama_stack.apis.post_training import ( Checkpoint, + DataConfig, + EfficiencyConfig, LoraFinetuningConfig, OptimizerConfig, QATFinetuningConfig, @@ -89,6 +91,10 @@ class LoraFinetuningSingleDevice: datasetio_api: DatasetIO, datasets_api: Datasets, ) -> None: + assert isinstance(training_config.data_config, DataConfig), "DataConfig must be initialized" + + assert isinstance(training_config.efficiency_config, EfficiencyConfig), "EfficiencyConfig must be initialized" + self.job_uuid = job_uuid self.training_config = training_config if not isinstance(algorithm_config, LoraFinetuningConfig): @@ -188,6 +194,7 @@ class LoraFinetuningSingleDevice: self._tokenizer = await self._setup_tokenizer() log.info("Tokenizer is initialized.") + assert isinstance(self.training_config.optimizer_config, OptimizerConfig), "OptimizerConfig must be initialized" self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config) log.info("Optimizer is initialized.") @@ -195,6 +202,8 @@ class LoraFinetuningSingleDevice: self._model.set_num_output_chunks(self._loss_fn.num_output_chunks) log.info("Loss is initialized.") + assert isinstance(self.training_config.data_config, DataConfig), "DataConfig must be initialized" + self._training_sampler, self._training_dataloader = await self._setup_data( dataset_id=self.training_config.data_config.dataset_id, tokenizer=self._tokenizer, @@ -452,6 +461,7 @@ class LoraFinetuningSingleDevice: """ The core training loop. """ + assert isinstance(self.training_config.data_config, DataConfig), "DataConfig must be initialized" # Initialize tokens count and running loss (for grad accumulation) t0 = time.perf_counter() running_loss: float = 0.0 diff --git a/llama_stack/providers/inline/safety/llama_guard/llama_guard.py b/llama_stack/providers/inline/safety/llama_guard/llama_guard.py index d95c40976..2ab16f986 100644 --- a/llama_stack/providers/inline/safety/llama_guard/llama_guard.py +++ b/llama_stack/providers/inline/safety/llama_guard/llama_guard.py @@ -10,7 +10,6 @@ from typing import Any, Dict, List, Optional from llama_stack.apis.common.content_types import ImageContentItem, TextContentItem from llama_stack.apis.inference import ( - ChatCompletionResponseEventType, Inference, Message, UserMessage, @@ -239,16 +238,12 @@ class LlamaGuardShield: shield_input_message = self.build_text_shield_input(messages) # TODO: llama-stack inference protocol has issues with non-streaming inference code - content = "" - async for chunk in await self.inference_api.chat_completion( + response = await self.inference_api.chat_completion( model_id=self.model, messages=[shield_input_message], - stream=True, - ): - event = chunk.event - if event.event_type == ChatCompletionResponseEventType.progress and event.delta.type == "text": - content += event.delta.text - + stream=False, + ) + content = response.completion_message.content content = content.strip() return self.get_shield_response(content) diff --git a/llama_stack/providers/registry/inference.py b/llama_stack/providers/registry/inference.py index aabb3bbdf..3c54cabcf 100644 --- a/llama_stack/providers/registry/inference.py +++ b/llama_stack/providers/registry/inference.py @@ -24,7 +24,7 @@ META_REFERENCE_DEPS = [ "zmq", "lm-format-enforcer", "sentence-transformers", - "torchao==0.5.0", + "torchao==0.8.0", "fbgemm-gpu-genai==1.1.2", ] diff --git a/llama_stack/providers/remote/inference/bedrock/bedrock.py b/llama_stack/providers/remote/inference/bedrock/bedrock.py index 120da5bd4..f8dbcf31a 100644 --- a/llama_stack/providers/remote/inference/bedrock/bedrock.py +++ b/llama_stack/providers/remote/inference/bedrock/bedrock.py @@ -36,8 +36,10 @@ from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, + OpenAICompletionToLlamaStackMixin, get_sampling_strategy_options, process_chat_completion_response, process_chat_completion_stream_response, @@ -51,7 +53,12 @@ from llama_stack.providers.utils.inference.prompt_adapter import ( from .models import MODEL_ENTRIES -class BedrockInferenceAdapter(ModelRegistryHelper, Inference): +class BedrockInferenceAdapter( + ModelRegistryHelper, + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +): def __init__(self, config: BedrockConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self._config = config diff --git a/llama_stack/providers/remote/inference/cerebras/cerebras.py b/llama_stack/providers/remote/inference/cerebras/cerebras.py index 43d986b86..3156601be 100644 --- a/llama_stack/providers/remote/inference/cerebras/cerebras.py +++ b/llama_stack/providers/remote/inference/cerebras/cerebras.py @@ -34,6 +34,8 @@ from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, @@ -49,7 +51,12 @@ from .config import CerebrasImplConfig from .models import MODEL_ENTRIES -class CerebrasInferenceAdapter(ModelRegistryHelper, Inference): +class CerebrasInferenceAdapter( + ModelRegistryHelper, + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +): def __init__(self, config: CerebrasImplConfig) -> None: ModelRegistryHelper.__init__( self, diff --git a/llama_stack/providers/remote/inference/databricks/databricks.py b/llama_stack/providers/remote/inference/databricks/databricks.py index 0eaf0135b..27d96eb7d 100644 --- a/llama_stack/providers/remote/inference/databricks/databricks.py +++ b/llama_stack/providers/remote/inference/databricks/databricks.py @@ -34,6 +34,8 @@ from llama_stack.providers.utils.inference.model_registry import ( build_hf_repo_model_entry, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, @@ -56,7 +58,12 @@ model_entries = [ ] -class DatabricksInferenceAdapter(ModelRegistryHelper, Inference): +class DatabricksInferenceAdapter( + ModelRegistryHelper, + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +): def __init__(self, config: DatabricksImplConfig) -> None: ModelRegistryHelper.__init__(self, model_entries=model_entries) self.config = config diff --git a/llama_stack/providers/remote/inference/fireworks/fireworks.py b/llama_stack/providers/remote/inference/fireworks/fireworks.py index 4acbe43f8..58678a9cc 100644 --- a/llama_stack/providers/remote/inference/fireworks/fireworks.py +++ b/llama_stack/providers/remote/inference/fireworks/fireworks.py @@ -4,9 +4,10 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from typing import AsyncGenerator, List, Optional, Union +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union from fireworks.client import Fireworks +from openai import AsyncOpenAI from llama_stack.apis.common.content_types import ( InterleavedContent, @@ -31,14 +32,23 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, convert_message_to_openai_dict, get_sampling_options, + prepare_openai_completion_params, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, @@ -81,10 +91,16 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv ) return provider_data.fireworks_api_key + def _get_base_url(self) -> str: + return "https://api.fireworks.ai/inference/v1" + def _get_client(self) -> Fireworks: fireworks_api_key = self._get_api_key() return Fireworks(api_key=fireworks_api_key) + def _get_openai_client(self) -> AsyncOpenAI: + return AsyncOpenAI(base_url=self._get_base_url(), api_key=self._get_api_key()) + async def completion( self, model_id: str, @@ -268,3 +284,140 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProv embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings) + + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + model_obj = await self.model_store.get_model(model) + + # Fireworks always prepends with BOS + if isinstance(prompt, str) and prompt.startswith("<|begin_of_text|>"): + prompt = prompt[len("<|begin_of_text|>") :] + + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + ) + + return await self._get_openai_client().completions.create(**params) + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + model_obj = await self.model_store.get_model(model) + + # Divert Llama Models through Llama Stack inference APIs because + # Fireworks chat completions OpenAI-compatible API does not support + # tool calls properly. + llama_model = self.get_llama_model(model_obj.provider_resource_id) + if llama_model: + return await OpenAIChatCompletionToLlamaStackMixin.openai_chat_completion( + self, + model=model, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + params = await prepare_openai_completion_params( + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + return await self._get_openai_client().chat.completions.create(model=model_obj.provider_resource_id, **params) diff --git a/llama_stack/providers/remote/inference/groq/groq.py b/llama_stack/providers/remote/inference/groq/groq.py index c8789434f..f3f14e9af 100644 --- a/llama_stack/providers/remote/inference/groq/groq.py +++ b/llama_stack/providers/remote/inference/groq/groq.py @@ -4,8 +4,24 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +from typing import Any, AsyncIterator, Dict, List, Optional, Union + +from openai import AsyncOpenAI + +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAIChoiceDelta, + OpenAIChunkChoice, + OpenAIMessageParam, + OpenAIResponseFormatParam, + OpenAISystemMessageParam, +) from llama_stack.providers.remote.inference.groq.config import GroqConfig from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin +from llama_stack.providers.utils.inference.openai_compat import ( + prepare_openai_completion_params, +) from .models import MODEL_ENTRIES @@ -21,9 +37,129 @@ class GroqInferenceAdapter(LiteLLMOpenAIMixin): provider_data_api_key_field="groq_api_key", ) self.config = config + self._openai_client = None async def initialize(self): await super().initialize() async def shutdown(self): await super().shutdown() + if self._openai_client: + await self._openai_client.close() + self._openai_client = None + + def _get_openai_client(self) -> AsyncOpenAI: + if not self._openai_client: + self._openai_client = AsyncOpenAI( + base_url=f"{self.config.url}/openai/v1", + api_key=self.config.api_key, + ) + return self._openai_client + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + model_obj = await self.model_store.get_model(model) + + # Groq does not support json_schema response format, so we need to convert it to json_object + if response_format and response_format.type == "json_schema": + response_format.type = "json_object" + schema = response_format.json_schema.get("schema", {}) + response_format.json_schema = None + json_instructions = f"\nYour response should be a JSON object that matches the following schema: {schema}" + if messages and messages[0].role == "system": + messages[0].content = messages[0].content + json_instructions + else: + messages.insert(0, OpenAISystemMessageParam(content=json_instructions)) + + # Groq returns a 400 error if tools are provided but none are called + # So, set tool_choice to "required" to attempt to force a call + if tools and (not tool_choice or tool_choice == "auto"): + tool_choice = "required" + + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id.replace("groq/", ""), + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + # Groq does not support streaming requests that set response_format + fake_stream = False + if stream and response_format: + params["stream"] = False + fake_stream = True + + response = await self._get_openai_client().chat.completions.create(**params) + + if fake_stream: + chunk_choices = [] + for choice in response.choices: + delta = OpenAIChoiceDelta( + content=choice.message.content, + role=choice.message.role, + tool_calls=choice.message.tool_calls, + ) + chunk_choice = OpenAIChunkChoice( + delta=delta, + finish_reason=choice.finish_reason, + index=choice.index, + logprobs=None, + ) + chunk_choices.append(chunk_choice) + chunk = OpenAIChatCompletionChunk( + id=response.id, + choices=chunk_choices, + object="chat.completion.chunk", + created=response.created, + model=response.model, + ) + + async def _fake_stream_generator(): + yield chunk + + return _fake_stream_generator() + else: + return response diff --git a/llama_stack/providers/remote/inference/groq/models.py b/llama_stack/providers/remote/inference/groq/models.py index d0c10ca62..0b4b81cfe 100644 --- a/llama_stack/providers/remote/inference/groq/models.py +++ b/llama_stack/providers/remote/inference/groq/models.py @@ -39,8 +39,16 @@ MODEL_ENTRIES = [ "groq/llama-4-scout-17b-16e-instruct", CoreModelId.llama4_scout_17b_16e_instruct.value, ), + build_hf_repo_model_entry( + "groq/meta-llama/llama-4-scout-17b-16e-instruct", + CoreModelId.llama4_scout_17b_16e_instruct.value, + ), build_hf_repo_model_entry( "groq/llama-4-maverick-17b-128e-instruct", CoreModelId.llama4_maverick_17b_128e_instruct.value, ), + build_hf_repo_model_entry( + "groq/meta-llama/llama-4-maverick-17b-128e-instruct", + CoreModelId.llama4_maverick_17b_128e_instruct.value, + ), ] diff --git a/llama_stack/providers/remote/inference/nvidia/NVIDIA.md b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md new file mode 100644 index 000000000..a353c67f5 --- /dev/null +++ b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md @@ -0,0 +1,85 @@ +# NVIDIA Inference Provider for LlamaStack + +This provider enables running inference using NVIDIA NIM. + +## Features +- Endpoints for completions, chat completions, and embeddings for registered models + +## Getting Started + +### Prerequisites + +- LlamaStack with NVIDIA configuration +- Access to NVIDIA NIM deployment +- NIM for model to use for inference is deployed + +### Setup + +Build the NVIDIA environment: + +```bash +llama stack build --template nvidia --image-type conda +``` + +### Basic Usage using the LlamaStack Python Client + +#### Initialize the client + +```python +import os + +os.environ["NVIDIA_API_KEY"] = ( + "" # Required if using hosted NIM endpoint. If self-hosted, not required. +) +os.environ["NVIDIA_BASE_URL"] = "http://nim.test" # NIM URL + +from llama_stack.distribution.library_client import LlamaStackAsLibraryClient + +client = LlamaStackAsLibraryClient("nvidia") +client.initialize() +``` + +### Create Completion + +```python +response = client.completion( + model_id="meta-llama/Llama-3.1-8b-Instruct", + content="Complete the sentence using one word: Roses are red, violets are :", + stream=False, + sampling_params={ + "max_tokens": 50, + }, +) +print(f"Response: {response.content}") +``` + +### Create Chat Completion + +```python +response = client.chat_completion( + model_id="meta-llama/Llama-3.1-8b-Instruct", + messages=[ + { + "role": "system", + "content": "You must respond to each message with only one word", + }, + { + "role": "user", + "content": "Complete the sentence using one word: Roses are red, violets are:", + }, + ], + stream=False, + sampling_params={ + "max_tokens": 50, + }, +) +print(f"Response: {response.completion_message.content}") +``` + +### Create Embeddings +```python +response = client.embeddings( + model_id="meta-llama/Llama-3.1-8b-Instruct", contents=["foo", "bar", "baz"] +) +print(f"Embeddings: {response.embeddings}") +``` diff --git a/llama_stack/providers/remote/inference/nvidia/models.py b/llama_stack/providers/remote/inference/nvidia/models.py index 964125148..127a6ca59 100644 --- a/llama_stack/providers/remote/inference/nvidia/models.py +++ b/llama_stack/providers/remote/inference/nvidia/models.py @@ -48,6 +48,10 @@ MODEL_ENTRIES = [ "meta/llama-3.2-90b-vision-instruct", CoreModelId.llama3_2_90b_vision_instruct.value, ), + build_hf_repo_model_entry( + "meta/llama-3.3-70b-instruct", + CoreModelId.llama3_3_70b_instruct.value, + ), # NeMo Retriever Text Embedding models - # # https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html diff --git a/llama_stack/providers/remote/inference/nvidia/nvidia.py b/llama_stack/providers/remote/inference/nvidia/nvidia.py index e1f5d7a6a..c91b4d768 100644 --- a/llama_stack/providers/remote/inference/nvidia/nvidia.py +++ b/llama_stack/providers/remote/inference/nvidia/nvidia.py @@ -7,7 +7,7 @@ import logging import warnings from functools import lru_cache -from typing import AsyncIterator, List, Optional, Union +from typing import Any, AsyncIterator, Dict, List, Optional, Union from openai import APIConnectionError, AsyncOpenAI, BadRequestError @@ -35,6 +35,13 @@ from llama_stack.apis.inference import ( ToolConfig, ToolDefinition, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.models.llama.datatypes import ToolPromptFormat from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, @@ -42,6 +49,7 @@ from llama_stack.providers.utils.inference.model_registry import ( from llama_stack.providers.utils.inference.openai_compat import ( convert_openai_chat_completion_choice, convert_openai_chat_completion_stream, + prepare_openai_completion_params, ) from llama_stack.providers.utils.inference.prompt_adapter import content_has_media @@ -118,6 +126,14 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): return _get_client_for_base_url(base_url) + async def _get_provider_model_id(self, model_id: str) -> str: + if not self.model_store: + raise RuntimeError("Model store is not set") + model = await self.model_store.get_model(model_id) + if model is None: + raise ValueError(f"Model {model_id} is unknown") + return model.provider_model_id + async def completion( self, model_id: str, @@ -136,7 +152,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): # removing this health check as NeMo customizer endpoint health check is returning 404 # await check_health(self._config) # this raises errors - provider_model_id = self.get_provider_model_id(model_id) + provider_model_id = await self._get_provider_model_id(model_id) request = convert_completion_request( request=CompletionRequest( model=provider_model_id, @@ -180,7 +196,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): # flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents] input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents] - model = self.get_provider_model_id(model_id) + provider_model_id = await self._get_provider_model_id(model_id) extra_body = {} @@ -203,8 +219,8 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): extra_body["input_type"] = task_type_options[task_type] try: - response = await self._get_client(model).embeddings.create( - model=model, + response = await self._get_client(provider_model_id).embeddings.create( + model=provider_model_id, input=input, extra_body=extra_body, ) @@ -238,10 +254,10 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): # await check_health(self._config) # this raises errors - provider_model_id = self.get_provider_model_id(model_id) + provider_model_id = await self._get_provider_model_id(model_id) request = await convert_chat_completion_request( request=ChatCompletionRequest( - model=self.get_provider_model_id(model_id), + model=provider_model_id, messages=messages, sampling_params=sampling_params, response_format=response_format, @@ -263,3 +279,111 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper): else: # we pass n=1 to get only one completion return convert_openai_chat_completion_choice(response.choices[0]) + + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + provider_model_id = await self._get_provider_model_id(model) + + params = await prepare_openai_completion_params( + model=provider_model_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + ) + + try: + return await self._get_client(provider_model_id).completions.create(**params) + except APIConnectionError as e: + raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + provider_model_id = await self._get_provider_model_id(model) + + params = await prepare_openai_completion_params( + model=provider_model_id, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + try: + return await self._get_client(provider_model_id).chat.completions.create(**params) + except APIConnectionError as e: + raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e diff --git a/llama_stack/providers/remote/inference/ollama/ollama.py b/llama_stack/providers/remote/inference/ollama/ollama.py index 12902996b..cdfe7b568 100644 --- a/llama_stack/providers/remote/inference/ollama/ollama.py +++ b/llama_stack/providers/remote/inference/ollama/ollama.py @@ -5,10 +5,11 @@ # the root directory of this source tree. -from typing import Any, AsyncGenerator, List, Optional, Union +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union import httpx from ollama import AsyncClient +from openai import AsyncOpenAI from llama_stack.apis.common.content_types import ( ImageContentItem, @@ -38,9 +39,20 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.apis.models import Model, ModelType from llama_stack.log import get_logger -from llama_stack.providers.datatypes import ModelsProtocolPrivate +from llama_stack.providers.datatypes import ( + HealthResponse, + HealthStatus, + ModelsProtocolPrivate, +) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) @@ -67,7 +79,10 @@ from .models import model_entries logger = get_logger(name=__name__, category="inference") -class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate): +class OllamaInferenceAdapter( + Inference, + ModelsProtocolPrivate, +): def __init__(self, url: str) -> None: self.register_helper = ModelRegistryHelper(model_entries) self.url = url @@ -76,10 +91,25 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate): def client(self) -> AsyncClient: return AsyncClient(host=self.url) + @property + def openai_client(self) -> AsyncOpenAI: + return AsyncOpenAI(base_url=f"{self.url}/v1", api_key="ollama") + async def initialize(self) -> None: logger.info(f"checking connectivity to Ollama at `{self.url}`...") + await self.health() + + async def health(self) -> HealthResponse: + """ + Performs a health check by verifying connectivity to the Ollama server. + This method is used by initialize() and the Provider API to verify that the service is running + correctly. + Returns: + HealthResponse: A dictionary containing the health status. + """ try: await self.client.ps() + return HealthResponse(status=HealthStatus.OK) except httpx.ConnectError as e: raise RuntimeError( "Ollama Server is not running, start it using `ollama serve` in a separate terminal" @@ -313,12 +343,149 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate): response = await self.client.list() available_models = [m["model"] for m in response["models"]] if model.provider_resource_id not in available_models: + available_models_latest = [m["model"].split(":latest")[0] for m in response["models"]] + if model.provider_resource_id in available_models_latest: + logger.warning( + f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'" + ) + return model raise ValueError( f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}" ) return model + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + if not isinstance(prompt, str): + raise ValueError("Ollama does not support non-string prompts for completion") + + model_obj = await self._get_model(model) + params = { + k: v + for k, v in { + "model": model_obj.provider_resource_id, + "prompt": prompt, + "best_of": best_of, + "echo": echo, + "frequency_penalty": frequency_penalty, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_tokens": max_tokens, + "n": n, + "presence_penalty": presence_penalty, + "seed": seed, + "stop": stop, + "stream": stream, + "stream_options": stream_options, + "temperature": temperature, + "top_p": top_p, + "user": user, + }.items() + if v is not None + } + return await self.openai_client.completions.create(**params) # type: ignore + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + model_obj = await self._get_model(model) + params = { + k: v + for k, v in { + "model": model_obj.provider_resource_id, + "messages": messages, + "frequency_penalty": frequency_penalty, + "function_call": function_call, + "functions": functions, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_completion_tokens": max_completion_tokens, + "max_tokens": max_tokens, + "n": n, + "parallel_tool_calls": parallel_tool_calls, + "presence_penalty": presence_penalty, + "response_format": response_format, + "seed": seed, + "stop": stop, + "stream": stream, + "stream_options": stream_options, + "temperature": temperature, + "tool_choice": tool_choice, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "user": user, + }.items() + if v is not None + } + return await self.openai_client.chat.completions.create(**params) # type: ignore + + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch completion is not supported for Ollama") + + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch chat completion is not supported for Ollama") + async def convert_message_to_openai_dict_for_ollama(message: Message) -> List[dict]: async def _convert_content(content) -> dict: diff --git a/llama_stack/providers/remote/inference/passthrough/passthrough.py b/llama_stack/providers/remote/inference/passthrough/passthrough.py index 96b2d73d8..af05320b0 100644 --- a/llama_stack/providers/remote/inference/passthrough/passthrough.py +++ b/llama_stack/providers/remote/inference/passthrough/passthrough.py @@ -4,7 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from typing import Any, AsyncGenerator, Dict, List, Optional +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union from llama_stack_client import AsyncLlamaStackClient @@ -26,9 +26,17 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.apis.models import Model from llama_stack.distribution.library_client import convert_pydantic_to_json_value, convert_to_pydantic from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper +from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params from .config import PassthroughImplConfig @@ -201,6 +209,112 @@ class PassthroughInferenceAdapter(Inference): task_type=task_type, ) + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + client = self._get_client() + model_obj = await self.model_store.get_model(model) + + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + guided_choice=guided_choice, + prompt_logprobs=prompt_logprobs, + ) + + return await client.inference.openai_completion(**params) + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + client = self._get_client() + model_obj = await self.model_store.get_model(model) + + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + + return await client.inference.openai_chat_completion(**params) + def cast_value_to_json_dict(self, request_params: Dict[str, Any]) -> Dict[str, Any]: json_params = {} for key, value in request_params.items(): diff --git a/llama_stack/providers/remote/inference/runpod/runpod.py b/llama_stack/providers/remote/inference/runpod/runpod.py index 72f858cd8..72cbead9b 100644 --- a/llama_stack/providers/remote/inference/runpod/runpod.py +++ b/llama_stack/providers/remote/inference/runpod/runpod.py @@ -12,6 +12,8 @@ from llama_stack.apis.inference import * # noqa: F403 # from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, @@ -38,7 +40,12 @@ RUNPOD_SUPPORTED_MODELS = { } -class RunpodInferenceAdapter(ModelRegistryHelper, Inference): +class RunpodInferenceAdapter( + ModelRegistryHelper, + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +): def __init__(self, config: RunpodImplConfig) -> None: ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS) self.config = config diff --git a/llama_stack/providers/remote/inference/sambanova/sambanova.py b/llama_stack/providers/remote/inference/sambanova/sambanova.py index a3badd468..1665e72b8 100644 --- a/llama_stack/providers/remote/inference/sambanova/sambanova.py +++ b/llama_stack/providers/remote/inference/sambanova/sambanova.py @@ -42,6 +42,8 @@ from llama_stack.apis.inference import ( ) from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( @@ -52,7 +54,12 @@ from .config import SambaNovaImplConfig from .models import MODEL_ENTRIES -class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference): +class SambaNovaInferenceAdapter( + ModelRegistryHelper, + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, +): def __init__(self, config: SambaNovaImplConfig) -> None: ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES) self.config = config diff --git a/llama_stack/providers/remote/inference/tgi/tgi.py b/llama_stack/providers/remote/inference/tgi/tgi.py index fe99fafe1..4ee386a15 100644 --- a/llama_stack/providers/remote/inference/tgi/tgi.py +++ b/llama_stack/providers/remote/inference/tgi/tgi.py @@ -40,8 +40,10 @@ from llama_stack.providers.utils.inference.model_registry import ( build_hf_repo_model_entry, ) from llama_stack.providers.utils.inference.openai_compat import ( + OpenAIChatCompletionToLlamaStackMixin, OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, + OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, @@ -69,7 +71,12 @@ def build_hf_repo_model_entries(): ] -class _HfAdapter(Inference, ModelsProtocolPrivate): +class _HfAdapter( + Inference, + OpenAIChatCompletionToLlamaStackMixin, + OpenAICompletionToLlamaStackMixin, + ModelsProtocolPrivate, +): client: AsyncInferenceClient max_tokens: int model_id: str diff --git a/llama_stack/providers/remote/inference/together/together.py b/llama_stack/providers/remote/inference/together/together.py index df7610935..48e41f5b0 100644 --- a/llama_stack/providers/remote/inference/together/together.py +++ b/llama_stack/providers/remote/inference/together/together.py @@ -4,8 +4,9 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from typing import AsyncGenerator, List, Optional, Union +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union +from openai import AsyncOpenAI from together import AsyncTogether from llama_stack.apis.common.content_types import ( @@ -30,12 +31,20 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, + prepare_openai_completion_params, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, @@ -60,14 +69,18 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config self._client = None + self._openai_client = None async def initialize(self) -> None: pass async def shutdown(self) -> None: if self._client: - await self._client.close() + # Together client has no close method, so just set to None self._client = None + if self._openai_client: + await self._openai_client.close() + self._openai_client = None async def completion( self, @@ -110,6 +123,15 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi self._client = AsyncTogether(api_key=together_api_key) return self._client + def _get_openai_client(self) -> AsyncOpenAI: + if not self._openai_client: + together_client = self._get_client().client + self._openai_client = AsyncOpenAI( + base_url=together_client.base_url, + api_key=together_client.api_key, + ) + return self._openai_client + async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) client = self._get_client() @@ -243,3 +265,123 @@ class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProvi ) embeddings = [item.embedding for item in r.data] return EmbeddingsResponse(embeddings=embeddings) + + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + model_obj = await self.model_store.get_model(model) + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + ) + return await self._get_openai_client().completions.create(**params) # type: ignore + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + model_obj = await self.model_store.get_model(model) + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + if params.get("stream", False): + return self._stream_openai_chat_completion(params) + return await self._get_openai_client().chat.completions.create(**params) # type: ignore + + async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator: + # together.ai sometimes adds usage data to the stream, even if include_usage is False + # This causes an unexpected final chunk with empty choices array to be sent + # to clients that may not handle it gracefully. + include_usage = False + if params.get("stream_options", None): + include_usage = params["stream_options"].get("include_usage", False) + stream = await self._get_openai_client().chat.completions.create(**params) + + seen_finish_reason = False + async for chunk in stream: + # Final usage chunk with no choices that the user didn't request, so discard + if not include_usage and seen_finish_reason and len(chunk.choices) == 0: + break + yield chunk + for choice in chunk.choices: + if choice.finish_reason: + seen_finish_reason = True + break diff --git a/llama_stack/providers/remote/inference/vllm/vllm.py b/llama_stack/providers/remote/inference/vllm/vllm.py index 6a828322f..8cfef2ee0 100644 --- a/llama_stack/providers/remote/inference/vllm/vllm.py +++ b/llama_stack/providers/remote/inference/vllm/vllm.py @@ -5,7 +5,7 @@ # the root directory of this source tree. import json import logging -from typing import Any, AsyncGenerator, List, Optional, Union +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union import httpx from openai import AsyncOpenAI @@ -45,6 +45,12 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.apis.models import Model, ModelType from llama_stack.models.llama.datatypes import BuiltinTool, StopReason, ToolCall from llama_stack.models.llama.sku_list import all_registered_models @@ -58,6 +64,7 @@ from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, convert_tool_call, get_sampling_options, + prepare_openai_completion_params, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, @@ -224,12 +231,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): self.client = None async def initialize(self) -> None: - log.info(f"Initializing VLLM client with base_url={self.config.url}") - self.client = AsyncOpenAI( - base_url=self.config.url, - api_key=self.config.api_token, - http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False), - ) + pass async def shutdown(self) -> None: pass @@ -242,6 +244,20 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): raise ValueError("Model store not set") return await self.model_store.get_model(model_id) + def _lazy_initialize_client(self): + if self.client is not None: + return + + log.info(f"Initializing vLLM client with base_url={self.config.url}") + self.client = self._create_client() + + def _create_client(self): + return AsyncOpenAI( + base_url=self.config.url, + api_key=self.config.api_token, + http_client=None if self.config.tls_verify else httpx.AsyncClient(verify=False), + ) + async def completion( self, model_id: str, @@ -251,6 +267,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]: + self._lazy_initialize_client() if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) @@ -280,6 +297,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]: + self._lazy_initialize_client() if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) @@ -350,9 +368,12 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): yield chunk async def register_model(self, model: Model) -> Model: - assert self.client is not None + # register_model is called during Llama Stack initialization, hence we cannot init self.client if not initialized yet. + # self.client should only be created after the initialization is complete to avoid asyncio cross-context errors. + # Changing this may lead to unpredictable behavior. + client = self._create_client() if self.client is None else self.client model = await self.register_helper.register_model(model) - res = await self.client.models.list() + res = await client.models.list() available_models = [m.id async for m in res] if model.provider_resource_id not in available_models: raise ValueError( @@ -367,7 +388,8 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): options["max_tokens"] = self.config.max_tokens input_dict: dict[str, Any] = {} - if isinstance(request, ChatCompletionRequest) and request.tools is not None: + # Only include the 'tools' param if there is any. It can break things if an empty list is sent to the vLLM. + if isinstance(request, ChatCompletionRequest) and request.tools: input_dict = {"tools": _convert_to_vllm_tools_in_request(request.tools)} if isinstance(request, ChatCompletionRequest): @@ -402,6 +424,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: + self._lazy_initialize_client() assert self.client is not None model = await self._get_model(model_id) @@ -418,3 +441,133 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings) + + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + self._lazy_initialize_client() + model_obj = await self._get_model(model) + + extra_body: Dict[str, Any] = {} + if prompt_logprobs is not None and prompt_logprobs >= 0: + extra_body["prompt_logprobs"] = prompt_logprobs + if guided_choice: + extra_body["guided_choice"] = guided_choice + + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + extra_body=extra_body, + ) + return await self.client.completions.create(**params) # type: ignore + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + self._lazy_initialize_client() + model_obj = await self._get_model(model) + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + return await self.client.chat.completions.create(**params) # type: ignore + + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch completion is not supported for Ollama") + + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch chat completion is not supported for Ollama") diff --git a/llama_stack/providers/remote/post_training/nvidia/models.py b/llama_stack/providers/remote/post_training/nvidia/models.py index 7c696ac20..1b31b4dbe 100644 --- a/llama_stack/providers/remote/post_training/nvidia/models.py +++ b/llama_stack/providers/remote/post_training/nvidia/models.py @@ -16,7 +16,11 @@ _MODEL_ENTRIES = [ build_hf_repo_model_entry( "meta/llama-3.1-8b-instruct", CoreModelId.llama3_1_8b_instruct.value, - ) + ), + build_hf_repo_model_entry( + "meta/llama-3.2-1b-instruct", + CoreModelId.llama3_2_1b_instruct.value, + ), ] diff --git a/llama_stack/providers/remote/post_training/nvidia/post_training.py b/llama_stack/providers/remote/post_training/nvidia/post_training.py index bacfdba0b..d3de930f7 100644 --- a/llama_stack/providers/remote/post_training/nvidia/post_training.py +++ b/llama_stack/providers/remote/post_training/nvidia/post_training.py @@ -27,11 +27,12 @@ from .models import _MODEL_ENTRIES # Map API status to JobStatus enum STATUS_MAPPING = { - "running": "in_progress", - "completed": "completed", - "failed": "failed", - "cancelled": "cancelled", - "pending": "scheduled", + "running": JobStatus.in_progress.value, + "completed": JobStatus.completed.value, + "failed": JobStatus.failed.value, + "cancelled": JobStatus.cancelled.value, + "pending": JobStatus.scheduled.value, + "unknown": JobStatus.scheduled.value, } @@ -206,10 +207,6 @@ class NvidiaPostTrainingAdapter(ModelRegistryHelper): model: str, checkpoint_dir: Optional[str], algorithm_config: Optional[AlgorithmConfig] = None, - extra_json: Optional[Dict[str, Any]] = None, - params: Optional[Dict[str, Any]] = None, - headers: Optional[Dict[str, Any]] = None, - **kwargs, ) -> NvidiaPostTrainingJob: """ Fine-tunes a model on a dataset. diff --git a/llama_stack/providers/remote/safety/nvidia/README.md b/llama_stack/providers/remote/safety/nvidia/README.md new file mode 100644 index 000000000..434db32fb --- /dev/null +++ b/llama_stack/providers/remote/safety/nvidia/README.md @@ -0,0 +1,77 @@ +# NVIDIA Safety Provider for LlamaStack + +This provider enables safety checks and guardrails for LLM interactions using NVIDIA's NeMo Guardrails service. + +## Features + +- Run safety checks for messages + +## Getting Started + +### Prerequisites + +- LlamaStack with NVIDIA configuration +- Access to NVIDIA NeMo Guardrails service +- NIM for model to use for safety check is deployed + +### Setup + +Build the NVIDIA environment: + +```bash +llama stack build --template nvidia --image-type conda +``` + +### Basic Usage using the LlamaStack Python Client + +#### Initialize the client + +```python +import os + +os.environ["NVIDIA_API_KEY"] = "your-api-key" +os.environ["NVIDIA_GUARDRAILS_URL"] = "http://guardrails.test" + +from llama_stack.distribution.library_client import LlamaStackAsLibraryClient + +client = LlamaStackAsLibraryClient("nvidia") +client.initialize() +``` + +#### Create a safety shield + +```python +from llama_stack.apis.safety import Shield +from llama_stack.apis.inference import Message + +# Create a safety shield +shield = Shield( + shield_id="your-shield-id", + provider_resource_id="safety-model-id", # The model to use for safety checks + description="Safety checks for content moderation", +) + +# Register the shield +await client.safety.register_shield(shield) +``` + +#### Run safety checks + +```python +# Messages to check +messages = [Message(role="user", content="Your message to check")] + +# Run safety check +response = await client.safety.run_shield( + shield_id="your-shield-id", + messages=messages, +) + +# Check for violations +if response.violation: + print(f"Safety violation detected: {response.violation.user_message}") + print(f"Violation level: {response.violation.violation_level}") + print(f"Metadata: {response.violation.metadata}") +else: + print("No safety violations detected") +``` diff --git a/llama_stack/providers/remote/safety/nvidia/nvidia.py b/llama_stack/providers/remote/safety/nvidia/nvidia.py index 6da2a8344..1ff4a6ad9 100644 --- a/llama_stack/providers/remote/safety/nvidia/nvidia.py +++ b/llama_stack/providers/remote/safety/nvidia/nvidia.py @@ -104,6 +104,15 @@ class NeMoGuardrails: self.threshold = threshold self.guardrails_service_url = config.guardrails_service_url + async def _guardrails_post(self, path: str, data: Any | None): + """Helper for making POST requests to the guardrails service.""" + headers = { + "Accept": "application/json", + } + response = requests.post(url=f"{self.guardrails_service_url}{path}", headers=headers, json=data) + response.raise_for_status() + return response.json() + async def run(self, messages: List[Message]) -> RunShieldResponse: """ Queries the /v1/guardrails/checks endpoint of the NeMo guardrails deployed API. @@ -118,9 +127,6 @@ class NeMoGuardrails: Raises: requests.HTTPError: If the POST request fails. """ - headers = { - "Accept": "application/json", - } request_data = { "model": self.model, "messages": convert_pydantic_to_json_value(messages), @@ -134,15 +140,11 @@ class NeMoGuardrails: "config_id": self.config_id, }, } - response = requests.post( - url=f"{self.guardrails_service_url}/v1/guardrail/checks", headers=headers, json=request_data - ) - response.raise_for_status() - if "Content-Type" in response.headers and response.headers["Content-Type"].startswith("application/json"): - response_json = response.json() - if response_json["status"] == "blocked": + response = await self._guardrails_post(path="/v1/guardrail/checks", data=request_data) + + if response["status"] == "blocked": user_message = "Sorry I cannot do this." - metadata = response_json["rails_status"] + metadata = response["rails_status"] return RunShieldResponse( violation=SafetyViolation( @@ -151,4 +153,5 @@ class NeMoGuardrails: metadata=metadata, ) ) + return RunShieldResponse(violation=None) diff --git a/llama_stack/providers/utils/inference/litellm_openai_mixin.py b/llama_stack/providers/utils/inference/litellm_openai_mixin.py index bd1eb3978..efe7031f5 100644 --- a/llama_stack/providers/utils/inference/litellm_openai_mixin.py +++ b/llama_stack/providers/utils/inference/litellm_openai_mixin.py @@ -4,7 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from typing import AsyncGenerator, AsyncIterator, List, Optional, Union +from typing import Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Union import litellm @@ -30,6 +30,13 @@ from llama_stack.apis.inference import ( ToolDefinition, ToolPromptFormat, ) +from llama_stack.apis.inference.inference import ( + OpenAIChatCompletion, + OpenAIChatCompletionChunk, + OpenAICompletion, + OpenAIMessageParam, + OpenAIResponseFormatParam, +) from llama_stack.apis.models.models import Model from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger @@ -40,6 +47,7 @@ from llama_stack.providers.utils.inference.openai_compat import ( convert_openai_chat_completion_stream, convert_tooldef_to_openai_tool, get_sampling_options, + prepare_openai_completion_params, ) from llama_stack.providers.utils.inference.prompt_adapter import ( interleaved_content_as_str, @@ -245,3 +253,125 @@ class LiteLLMOpenAIMixin( embeddings = [data["embedding"] for data in response["data"]] return EmbeddingsResponse(embeddings=embeddings) + + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + model_obj = await self.model_store.get_model(model) + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + prompt=prompt, + best_of=best_of, + echo=echo, + frequency_penalty=frequency_penalty, + logit_bias=logit_bias, + logprobs=logprobs, + max_tokens=max_tokens, + n=n, + presence_penalty=presence_penalty, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + top_p=top_p, + user=user, + guided_choice=guided_choice, + prompt_logprobs=prompt_logprobs, + ) + return await litellm.atext_completion(**params) + + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIMessageParam], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + model_obj = await self.model_store.get_model(model) + params = await prepare_openai_completion_params( + model=model_obj.provider_resource_id, + messages=messages, + frequency_penalty=frequency_penalty, + function_call=function_call, + functions=functions, + logit_bias=logit_bias, + logprobs=logprobs, + max_completion_tokens=max_completion_tokens, + max_tokens=max_tokens, + n=n, + parallel_tool_calls=parallel_tool_calls, + presence_penalty=presence_penalty, + response_format=response_format, + seed=seed, + stop=stop, + stream=stream, + stream_options=stream_options, + temperature=temperature, + tool_choice=tool_choice, + tools=tools, + top_logprobs=top_logprobs, + top_p=top_p, + user=user, + ) + return await litellm.acompletion(**params) + + async def batch_completion( + self, + model_id: str, + content_batch: List[InterleavedContent], + sampling_params: Optional[SamplingParams] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch completion is not supported for OpenAI Compat") + + async def batch_chat_completion( + self, + model_id: str, + messages_batch: List[List[Message]], + sampling_params: Optional[SamplingParams] = None, + tools: Optional[List[ToolDefinition]] = None, + tool_config: Optional[ToolConfig] = None, + response_format: Optional[ResponseFormat] = None, + logprobs: Optional[LogProbConfig] = None, + ): + raise NotImplementedError("Batch chat completion is not supported for OpenAI Compat") diff --git a/llama_stack/providers/utils/inference/openai_compat.py b/llama_stack/providers/utils/inference/openai_compat.py index 0f3945b34..f91e7d7dc 100644 --- a/llama_stack/providers/utils/inference/openai_compat.py +++ b/llama_stack/providers/utils/inference/openai_compat.py @@ -5,8 +5,20 @@ # the root directory of this source tree. import json import logging +import time +import uuid import warnings -from typing import AsyncGenerator, Dict, Iterable, List, Optional, Union +from typing import ( + Any, + AsyncGenerator, + AsyncIterator, + Awaitable, + Dict, + Iterable, + List, + Optional, + Union, +) from openai import AsyncStream from openai.types.chat import ( @@ -48,6 +60,18 @@ from openai.types.chat.chat_completion import ( from openai.types.chat.chat_completion import ( ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs ) +from openai.types.chat.chat_completion_chunk import ( + Choice as OpenAIChatCompletionChunkChoice, +) +from openai.types.chat.chat_completion_chunk import ( + ChoiceDelta as OpenAIChoiceDelta, +) +from openai.types.chat.chat_completion_chunk import ( + ChoiceDeltaToolCall as OpenAIChoiceDeltaToolCall, +) +from openai.types.chat.chat_completion_chunk import ( + ChoiceDeltaToolCallFunction as OpenAIChoiceDeltaToolCallFunction, +) from openai.types.chat.chat_completion_content_part_image_param import ( ImageURL as OpenAIImageURL, ) @@ -57,12 +81,14 @@ from openai.types.chat.chat_completion_message_tool_call_param import ( from pydantic import BaseModel from llama_stack.apis.common.content_types import ( + URL, ImageContentItem, InterleavedContent, TextContentItem, TextDelta, ToolCallDelta, ToolCallParseStatus, + _URLOrData, ) from llama_stack.apis.inference import ( ChatCompletionRequest, @@ -78,16 +104,29 @@ from llama_stack.apis.inference import ( SamplingParams, SystemMessage, TokenLogProbs, + ToolChoice, ToolResponseMessage, TopKSamplingStrategy, TopPSamplingStrategy, UserMessage, ) +from llama_stack.apis.inference.inference import ( + JsonSchemaResponseFormat, + OpenAIChatCompletion, + OpenAICompletion, + OpenAICompletionChoice, + OpenAIResponseFormatParam, + ToolConfig, +) +from llama_stack.apis.inference.inference import ( + OpenAIChoice as OpenAIChatCompletionChoice, +) from llama_stack.models.llama.datatypes import ( BuiltinTool, StopReason, ToolCall, ToolDefinition, + ToolParamDefinition, ) from llama_stack.providers.utils.inference.prompt_adapter import ( convert_image_content_to_url, @@ -584,13 +623,10 @@ async def convert_message_to_openai_dict_new( ) for tool in message.tool_calls ] - params = {} - if tool_calls: - params = {"tool_calls": tool_calls} out = OpenAIChatCompletionAssistantMessage( role="assistant", content=await _convert_message_content(message.content), - **params, + tool_calls=tool_calls or None, ) elif isinstance(message, ToolResponseMessage): out = OpenAIChatCompletionToolMessage( @@ -667,7 +703,10 @@ def to_openai_param_type(param_type: str) -> dict: if param_type.startswith("list[") and param_type.endswith("]"): inner_type = param_type[5:-1] if inner_type in basic_types: - return {"type": "array", "items": {"type": basic_types.get(inner_type, inner_type)}} + return { + "type": "array", + "items": {"type": basic_types.get(inner_type, inner_type)}, + } return {"type": param_type} @@ -748,6 +787,17 @@ def convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict: return out +def _convert_stop_reason_to_openai_finish_reason(stop_reason: StopReason) -> str: + """ + Convert a StopReason to an OpenAI chat completion finish_reason. + """ + return { + StopReason.end_of_turn: "stop", + StopReason.end_of_message: "tool_calls", + StopReason.out_of_tokens: "length", + }.get(stop_reason, "stop") + + def _convert_openai_finish_reason(finish_reason: str) -> StopReason: """ Convert an OpenAI chat completion finish_reason to a StopReason. @@ -773,6 +823,62 @@ def _convert_openai_finish_reason(finish_reason: str) -> StopReason: }.get(finish_reason, StopReason.end_of_turn) +def _convert_openai_request_tool_config(tool_choice: Optional[Union[str, Dict[str, Any]]] = None) -> ToolConfig: + tool_config = ToolConfig() + if tool_choice: + try: + tool_choice = ToolChoice(tool_choice) + except ValueError: + pass + tool_config.tool_choice = tool_choice + return tool_config + + +def _convert_openai_request_tools(tools: Optional[List[Dict[str, Any]]] = None) -> List[ToolDefinition]: + lls_tools = [] + if not tools: + return lls_tools + + for tool in tools: + tool_fn = tool.get("function", {}) + tool_name = tool_fn.get("name", None) + tool_desc = tool_fn.get("description", None) + + tool_params = tool_fn.get("parameters", None) + lls_tool_params = {} + if tool_params is not None: + tool_param_properties = tool_params.get("properties", {}) + for tool_param_key, tool_param_value in tool_param_properties.items(): + tool_param_def = ToolParamDefinition( + param_type=tool_param_value.get("type", None), + description=tool_param_value.get("description", None), + ) + lls_tool_params[tool_param_key] = tool_param_def + + lls_tool = ToolDefinition( + tool_name=tool_name, + description=tool_desc, + parameters=lls_tool_params, + ) + lls_tools.append(lls_tool) + return lls_tools + + +def _convert_openai_request_response_format( + response_format: OpenAIResponseFormatParam = None, +): + if not response_format: + return None + # response_format can be a dict or a pydantic model + response_format = dict(response_format) + if response_format.get("type", "") == "json_schema": + return JsonSchemaResponseFormat( + type="json_schema", + json_schema=response_format.get("json_schema", {}).get("schema", ""), + ) + return None + + def _convert_openai_tool_calls( tool_calls: List[OpenAIChatCompletionMessageToolCall], ) -> List[ToolCall]: @@ -843,6 +949,77 @@ def _convert_openai_logprobs( ] +def _convert_openai_sampling_params( + max_tokens: Optional[int] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, +) -> SamplingParams: + sampling_params = SamplingParams() + + if max_tokens: + sampling_params.max_tokens = max_tokens + + # Map an explicit temperature of 0 to greedy sampling + if temperature == 0: + strategy = GreedySamplingStrategy() + else: + # OpenAI defaults to 1.0 for temperature and top_p if unset + if temperature is None: + temperature = 1.0 + if top_p is None: + top_p = 1.0 + strategy = TopPSamplingStrategy(temperature=temperature, top_p=top_p) + + sampling_params.strategy = strategy + return sampling_params + + +def openai_messages_to_messages( + messages: List[OpenAIChatCompletionMessage], +) -> List[Message]: + """ + Convert a list of OpenAIChatCompletionMessage into a list of Message. + """ + converted_messages = [] + for message in messages: + if message.role == "system": + converted_message = SystemMessage(content=message.content) + elif message.role == "user": + converted_message = UserMessage(content=openai_content_to_content(message.content)) + elif message.role == "assistant": + converted_message = CompletionMessage( + content=message.content, + tool_calls=_convert_openai_tool_calls(message.tool_calls), + stop_reason=StopReason.end_of_turn, + ) + elif message.role == "tool": + converted_message = ToolResponseMessage( + role="tool", + call_id=message.tool_call_id, + content=openai_content_to_content(message.content), + ) + else: + raise ValueError(f"Unknown role {message.role}") + converted_messages.append(converted_message) + return converted_messages + + +def openai_content_to_content(content: Union[str, Iterable[OpenAIChatCompletionContentPartParam]]): + if isinstance(content, str): + return content + elif isinstance(content, list): + return [openai_content_to_content(c) for c in content] + elif hasattr(content, "type"): + if content.type == "text": + return TextContentItem(type="text", text=content.text) + elif content.type == "image_url": + return ImageContentItem(type="image", image=_URLOrData(url=URL(uri=content.image_url.url))) + else: + raise ValueError(f"Unknown content type: {content.type}") + else: + raise ValueError(f"Unknown content type: {content}") + + def convert_openai_chat_completion_choice( choice: OpenAIChoice, ) -> ChatCompletionResponse: @@ -1049,3 +1226,243 @@ async def convert_openai_chat_completion_stream( stop_reason=stop_reason, ) ) + + +async def prepare_openai_completion_params(**params): + async def _prepare_value(value: Any) -> Any: + new_value = value + if isinstance(value, list): + new_value = [await _prepare_value(v) for v in value] + elif isinstance(value, dict): + new_value = {k: await _prepare_value(v) for k, v in value.items()} + elif isinstance(value, BaseModel): + new_value = value.model_dump(exclude_none=True) + return new_value + + completion_params = {} + for k, v in params.items(): + if v is not None: + completion_params[k] = await _prepare_value(v) + return completion_params + + +class OpenAICompletionToLlamaStackMixin: + async def openai_completion( + self, + model: str, + prompt: Union[str, List[str], List[int], List[List[int]]], + best_of: Optional[int] = None, + echo: Optional[bool] = None, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + guided_choice: Optional[List[str]] = None, + prompt_logprobs: Optional[int] = None, + ) -> OpenAICompletion: + if stream: + raise ValueError(f"{self.__class__.__name__} doesn't support streaming openai completions") + + # This is a pretty hacky way to do emulate completions - + # basically just de-batches them... + prompts = [prompt] if not isinstance(prompt, list) else prompt + + sampling_params = _convert_openai_sampling_params( + max_tokens=max_tokens, + temperature=temperature, + top_p=top_p, + ) + + choices = [] + # "n" is the number of completions to generate per prompt + n = n or 1 + for _i in range(0, n): + # and we may have multiple prompts, if batching was used + + for prompt in prompts: + result = self.completion( + model_id=model, + content=prompt, + sampling_params=sampling_params, + ) + + index = len(choices) + text = result.content + finish_reason = _convert_stop_reason_to_openai_finish_reason(result.stop_reason) + + choice = OpenAICompletionChoice( + index=index, + text=text, + finish_reason=finish_reason, + ) + choices.append(choice) + + return OpenAICompletion( + id=f"cmpl-{uuid.uuid4()}", + choices=choices, + created=int(time.time()), + model=model, + object="text_completion", + ) + + +class OpenAIChatCompletionToLlamaStackMixin: + async def openai_chat_completion( + self, + model: str, + messages: List[OpenAIChatCompletionMessage], + frequency_penalty: Optional[float] = None, + function_call: Optional[Union[str, Dict[str, Any]]] = None, + functions: Optional[List[Dict[str, Any]]] = None, + logit_bias: Optional[Dict[str, float]] = None, + logprobs: Optional[bool] = None, + max_completion_tokens: Optional[int] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + parallel_tool_calls: Optional[bool] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[OpenAIResponseFormatParam] = None, + seed: Optional[int] = None, + stop: Optional[Union[str, List[str]]] = None, + stream: Optional[bool] = None, + stream_options: Optional[Dict[str, Any]] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[str, Dict[str, Any]]] = None, + tools: Optional[List[Dict[str, Any]]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + user: Optional[str] = None, + ) -> Union[OpenAIChatCompletion, AsyncIterator[OpenAIChatCompletionChunk]]: + messages = openai_messages_to_messages(messages) + response_format = _convert_openai_request_response_format(response_format) + sampling_params = _convert_openai_sampling_params( + max_tokens=max_tokens, + temperature=temperature, + top_p=top_p, + ) + tool_config = _convert_openai_request_tool_config(tool_choice) + + tools = _convert_openai_request_tools(tools) + if tool_config.tool_choice == ToolChoice.none: + tools = [] + + outstanding_responses = [] + # "n" is the number of completions to generate per prompt + n = n or 1 + for _i in range(0, n): + response = self.chat_completion( + model_id=model, + messages=messages, + sampling_params=sampling_params, + response_format=response_format, + stream=stream, + tool_config=tool_config, + tools=tools, + ) + outstanding_responses.append(response) + + if stream: + return OpenAIChatCompletionToLlamaStackMixin._process_stream_response(self, model, outstanding_responses) + + return await OpenAIChatCompletionToLlamaStackMixin._process_non_stream_response( + self, model, outstanding_responses + ) + + async def _process_stream_response( + self, + model: str, + outstanding_responses: List[Awaitable[AsyncIterator[ChatCompletionResponseStreamChunk]]], + ): + id = f"chatcmpl-{uuid.uuid4()}" + for outstanding_response in outstanding_responses: + response = await outstanding_response + i = 0 + async for chunk in response: + event = chunk.event + finish_reason = _convert_stop_reason_to_openai_finish_reason(event.stop_reason) + + if isinstance(event.delta, TextDelta): + text_delta = event.delta.text + delta = OpenAIChoiceDelta(content=text_delta) + yield OpenAIChatCompletionChunk( + id=id, + choices=[OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta)], + created=int(time.time()), + model=model, + object="chat.completion.chunk", + ) + elif isinstance(event.delta, ToolCallDelta): + if event.delta.parse_status == ToolCallParseStatus.succeeded: + tool_call = event.delta.tool_call + + # First chunk includes full structure + openai_tool_call = OpenAIChoiceDeltaToolCall( + index=0, + id=tool_call.call_id, + function=OpenAIChoiceDeltaToolCallFunction( + name=tool_call.tool_name, + arguments="", + ), + ) + delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call]) + yield OpenAIChatCompletionChunk( + id=id, + choices=[ + OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta) + ], + created=int(time.time()), + model=model, + object="chat.completion.chunk", + ) + # arguments + openai_tool_call = OpenAIChoiceDeltaToolCall( + index=0, + function=OpenAIChoiceDeltaToolCallFunction( + arguments=tool_call.arguments_json, + ), + ) + delta = OpenAIChoiceDelta(tool_calls=[openai_tool_call]) + yield OpenAIChatCompletionChunk( + id=id, + choices=[ + OpenAIChatCompletionChunkChoice(index=i, finish_reason=finish_reason, delta=delta) + ], + created=int(time.time()), + model=model, + object="chat.completion.chunk", + ) + i = i + 1 + + async def _process_non_stream_response( + self, model: str, outstanding_responses: List[Awaitable[ChatCompletionResponse]] + ) -> OpenAIChatCompletion: + choices = [] + for outstanding_response in outstanding_responses: + response = await outstanding_response + completion_message = response.completion_message + message = await convert_message_to_openai_dict_new(completion_message) + finish_reason = _convert_stop_reason_to_openai_finish_reason(completion_message.stop_reason) + + choice = OpenAIChatCompletionChoice( + index=len(choices), + message=message, + finish_reason=finish_reason, + ) + choices.append(choice) + + return OpenAIChatCompletion( + id=f"chatcmpl-{uuid.uuid4()}", + choices=choices, + created=int(time.time()), + model=model, + object="chat.completion", + ) diff --git a/llama_stack/providers/utils/scheduler.py b/llama_stack/providers/utils/scheduler.py new file mode 100644 index 000000000..d4cffe605 --- /dev/null +++ b/llama_stack/providers/utils/scheduler.py @@ -0,0 +1,265 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import abc +import asyncio +import functools +import threading +from datetime import datetime, timezone +from enum import Enum +from typing import Any, Callable, Coroutine, Dict, Iterable, Tuple, TypeAlias + +from pydantic import BaseModel + +from llama_stack.log import get_logger + +logger = get_logger(name=__name__, category="scheduler") + + +# TODO: revisit the list of possible statuses when defining a more coherent +# Jobs API for all API flows; e.g. do we need new vs scheduled? +class JobStatus(Enum): + new = "new" + scheduled = "scheduled" + running = "running" + failed = "failed" + completed = "completed" + + +JobID: TypeAlias = str +JobType: TypeAlias = str + + +class JobArtifact(BaseModel): + type: JobType + name: str + # TODO: uri should be a reference to /files API; revisit when /files is implemented + uri: str | None = None + metadata: Dict[str, Any] + + +JobHandler = Callable[ + [Callable[[str], None], Callable[[JobStatus], None], Callable[[JobArtifact], None]], Coroutine[Any, Any, None] +] + + +LogMessage: TypeAlias = Tuple[datetime, str] + + +_COMPLETED_STATUSES = {JobStatus.completed, JobStatus.failed} + + +class Job: + def __init__(self, job_type: JobType, job_id: JobID, handler: JobHandler): + super().__init__() + self.id = job_id + self._type = job_type + self._handler = handler + self._artifacts: list[JobArtifact] = [] + self._logs: list[LogMessage] = [] + self._state_transitions: list[Tuple[datetime, JobStatus]] = [(datetime.now(timezone.utc), JobStatus.new)] + + @property + def handler(self) -> JobHandler: + return self._handler + + @property + def status(self) -> JobStatus: + return self._state_transitions[-1][1] + + @status.setter + def status(self, status: JobStatus): + if status in _COMPLETED_STATUSES and self.status in _COMPLETED_STATUSES: + raise ValueError(f"Job is already in a completed state ({self.status})") + if self.status == status: + return + self._state_transitions.append((datetime.now(timezone.utc), status)) + + @property + def artifacts(self) -> list[JobArtifact]: + return self._artifacts + + def register_artifact(self, artifact: JobArtifact) -> None: + self._artifacts.append(artifact) + + def _find_state_transition_date(self, status: Iterable[JobStatus]) -> datetime | None: + for date, s in reversed(self._state_transitions): + if s in status: + return date + return None + + @property + def scheduled_at(self) -> datetime | None: + return self._find_state_transition_date([JobStatus.scheduled]) + + @property + def started_at(self) -> datetime | None: + return self._find_state_transition_date([JobStatus.running]) + + @property + def completed_at(self) -> datetime | None: + return self._find_state_transition_date(_COMPLETED_STATUSES) + + @property + def logs(self) -> list[LogMessage]: + return self._logs[:] + + def append_log(self, message: LogMessage) -> None: + self._logs.append(message) + + # TODO: implement + def cancel(self) -> None: + raise NotImplementedError + + +class _SchedulerBackend(abc.ABC): + @abc.abstractmethod + def on_log_message_cb(self, job: Job, message: LogMessage) -> None: + raise NotImplementedError + + @abc.abstractmethod + def on_status_change_cb(self, job: Job, status: JobStatus) -> None: + raise NotImplementedError + + @abc.abstractmethod + def on_artifact_collected_cb(self, job: Job, artifact: JobArtifact) -> None: + raise NotImplementedError + + @abc.abstractmethod + async def shutdown(self) -> None: + raise NotImplementedError + + @abc.abstractmethod + def schedule( + self, + job: Job, + on_log_message_cb: Callable[[str], None], + on_status_change_cb: Callable[[JobStatus], None], + on_artifact_collected_cb: Callable[[JobArtifact], None], + ) -> None: + raise NotImplementedError + + +class _NaiveSchedulerBackend(_SchedulerBackend): + def __init__(self, timeout: int = 5): + self._timeout = timeout + self._loop = asyncio.new_event_loop() + # There may be performance implications of using threads due to Python + # GIL; may need to measure if it's a real problem though + self._thread = threading.Thread(target=self._run_loop, daemon=True) + self._thread.start() + + def _run_loop(self) -> None: + asyncio.set_event_loop(self._loop) + self._loop.run_forever() + + # When stopping the loop, give tasks a chance to finish + # TODO: should we explicitly inform jobs of pending stoppage? + for task in asyncio.all_tasks(self._loop): + self._loop.run_until_complete(task) + self._loop.close() + + async def shutdown(self) -> None: + self._loop.call_soon_threadsafe(self._loop.stop) + self._thread.join() + + # TODO: decouple scheduling and running the job + def schedule( + self, + job: Job, + on_log_message_cb: Callable[[str], None], + on_status_change_cb: Callable[[JobStatus], None], + on_artifact_collected_cb: Callable[[JobArtifact], None], + ) -> None: + async def do(): + try: + job.status = JobStatus.running + await job.handler(on_log_message_cb, on_status_change_cb, on_artifact_collected_cb) + except Exception as e: + on_log_message_cb(str(e)) + job.status = JobStatus.failed + logger.exception(f"Job {job.id} failed.") + + asyncio.run_coroutine_threadsafe(do(), self._loop) + + def on_log_message_cb(self, job: Job, message: LogMessage) -> None: + pass + + def on_status_change_cb(self, job: Job, status: JobStatus) -> None: + pass + + def on_artifact_collected_cb(self, job: Job, artifact: JobArtifact) -> None: + pass + + +_BACKENDS = { + "naive": _NaiveSchedulerBackend, +} + + +def _get_backend_impl(backend: str) -> _SchedulerBackend: + try: + return _BACKENDS[backend]() + except KeyError as e: + raise ValueError(f"Unknown backend {backend}") from e + + +class Scheduler: + def __init__(self, backend: str = "naive"): + # TODO: if server crashes, job states are lost; we need to persist jobs on disc + self._jobs: dict[JobID, Job] = {} + self._backend = _get_backend_impl(backend) + + def _on_log_message_cb(self, job: Job, message: str) -> None: + msg = (datetime.now(timezone.utc), message) + # At least for the time being, until there's a better way to expose + # logs to users, log messages on console + logger.info(f"Job {job.id}: {message}") + job.append_log(msg) + self._backend.on_log_message_cb(job, msg) + + def _on_status_change_cb(self, job: Job, status: JobStatus) -> None: + job.status = status + self._backend.on_status_change_cb(job, status) + + def _on_artifact_collected_cb(self, job: Job, artifact: JobArtifact) -> None: + job.register_artifact(artifact) + self._backend.on_artifact_collected_cb(job, artifact) + + def schedule(self, type_: JobType, job_id: JobID, handler: JobHandler) -> JobID: + job = Job(type_, job_id, handler) + if job.id in self._jobs: + raise ValueError(f"Job {job.id} already exists") + + self._jobs[job.id] = job + job.status = JobStatus.scheduled + self._backend.schedule( + job, + functools.partial(self._on_log_message_cb, job), + functools.partial(self._on_status_change_cb, job), + functools.partial(self._on_artifact_collected_cb, job), + ) + + return job.id + + def cancel(self, job_id: JobID) -> None: + self.get_job(job_id).cancel() + + def get_job(self, job_id: JobID) -> Job: + try: + return self._jobs[job_id] + except KeyError as e: + raise ValueError(f"Job {job_id} not found") from e + + def get_jobs(self, type_: JobType | None = None) -> list[Job]: + jobs = list(self._jobs.values()) + if type_: + jobs = [job for job in jobs if job._type == type_] + return jobs + + async def shutdown(self): + # TODO: also cancel jobs once implemented + await self._backend.shutdown() diff --git a/llama_stack/schema_utils.py b/llama_stack/schema_utils.py index 8fd55add0..8143f1224 100644 --- a/llama_stack/schema_utils.py +++ b/llama_stack/schema_utils.py @@ -20,6 +20,7 @@ class WebMethod: raw_bytes_request_body: Optional[bool] = False # A descriptive name of the corresponding span created by tracing descriptive_name: Optional[str] = None + experimental: Optional[bool] = False T = TypeVar("T", bound=Callable[..., Any]) @@ -33,6 +34,7 @@ def webmethod( response_examples: Optional[List[Any]] = None, raw_bytes_request_body: Optional[bool] = False, descriptive_name: Optional[str] = None, + experimental: Optional[bool] = False, ) -> Callable[[T], T]: """ Decorator that supplies additional metadata to an endpoint operation function. @@ -41,6 +43,7 @@ def webmethod( :param public: True if the operation can be invoked without prior authentication. :param request_examples: Sample requests that the operation might take. Pass a list of objects, not JSON. :param response_examples: Sample responses that the operation might produce. Pass a list of objects, not JSON. + :param experimental: True if the operation is experimental and subject to change. """ def wrap(func: T) -> T: @@ -52,6 +55,7 @@ def webmethod( response_examples=response_examples, raw_bytes_request_body=raw_bytes_request_body, descriptive_name=descriptive_name, + experimental=experimental, ) return func diff --git a/llama_stack/templates/dependencies.json b/llama_stack/templates/dependencies.json index 053d6ef8a..b96191752 100644 --- a/llama_stack/templates/dependencies.json +++ b/llama_stack/templates/dependencies.json @@ -381,7 +381,7 @@ "sentence-transformers", "sentencepiece", "torch", - "torchao==0.5.0", + "torchao==0.8.0", "torchvision", "tqdm", "transformers", diff --git a/llama_stack/templates/dev/run.yaml b/llama_stack/templates/dev/run.yaml index ea3b7252a..0dd056405 100644 --- a/llama_stack/templates/dev/run.yaml +++ b/llama_stack/templates/dev/run.yaml @@ -386,6 +386,16 @@ models: provider_id: groq provider_model_id: groq/llama-4-scout-17b-16e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm - metadata: {} model_id: groq/llama-4-maverick-17b-128e-instruct provider_id: groq @@ -396,6 +406,16 @@ models: provider_id: groq provider_model_id: groq/llama-4-maverick-17b-128e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm - metadata: embedding_dimension: 384 model_id: all-MiniLM-L6-v2 diff --git a/llama_stack/templates/groq/run.yaml b/llama_stack/templates/groq/run.yaml index f557e64fd..444452dcb 100644 --- a/llama_stack/templates/groq/run.yaml +++ b/llama_stack/templates/groq/run.yaml @@ -158,6 +158,16 @@ models: provider_id: groq provider_model_id: groq/llama-4-scout-17b-16e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm - metadata: {} model_id: groq/llama-4-maverick-17b-128e-instruct provider_id: groq @@ -168,6 +178,16 @@ models: provider_id: groq provider_model_id: groq/llama-4-maverick-17b-128e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm - metadata: embedding_dimension: 384 model_id: all-MiniLM-L6-v2 diff --git a/llama_stack/templates/meta-reference-gpu/run-with-safety.yaml b/llama_stack/templates/meta-reference-gpu/run-with-safety.yaml index 9f97158f8..63177ab09 100644 --- a/llama_stack/templates/meta-reference-gpu/run-with-safety.yaml +++ b/llama_stack/templates/meta-reference-gpu/run-with-safety.yaml @@ -16,11 +16,12 @@ providers: provider_type: inline::meta-reference config: model: ${env.INFERENCE_MODEL} - max_seq_len: 4096 checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null} quantization: type: ${env.QUANTIZATION_TYPE:bf16} model_parallel_size: ${env.MODEL_PARALLEL_SIZE:0} + max_batch_size: ${env.MAX_BATCH_SIZE:1} + max_seq_len: ${env.MAX_SEQ_LEN:4096} - provider_id: sentence-transformers provider_type: inline::sentence-transformers config: {} @@ -28,11 +29,12 @@ providers: provider_type: inline::meta-reference config: model: ${env.SAFETY_MODEL} - max_seq_len: 4096 checkpoint_dir: ${env.SAFETY_CHECKPOINT_DIR:null} quantization: type: ${env.QUANTIZATION_TYPE:bf16} model_parallel_size: ${env.MODEL_PARALLEL_SIZE:0} + max_batch_size: ${env.MAX_BATCH_SIZE:1} + max_seq_len: ${env.MAX_SEQ_LEN:4096} vector_io: - provider_id: faiss provider_type: inline::faiss diff --git a/llama_stack/templates/meta-reference-gpu/run.yaml b/llama_stack/templates/meta-reference-gpu/run.yaml index eda332123..380d83060 100644 --- a/llama_stack/templates/meta-reference-gpu/run.yaml +++ b/llama_stack/templates/meta-reference-gpu/run.yaml @@ -16,11 +16,12 @@ providers: provider_type: inline::meta-reference config: model: ${env.INFERENCE_MODEL} - max_seq_len: 4096 checkpoint_dir: ${env.INFERENCE_CHECKPOINT_DIR:null} quantization: type: ${env.QUANTIZATION_TYPE:bf16} model_parallel_size: ${env.MODEL_PARALLEL_SIZE:0} + max_batch_size: ${env.MAX_BATCH_SIZE:1} + max_seq_len: ${env.MAX_SEQ_LEN:4096} - provider_id: sentence-transformers provider_type: inline::sentence-transformers config: {} diff --git a/llama_stack/templates/nvidia/doc_template.md b/llama_stack/templates/nvidia/doc_template.md index da95227d8..068dd7ac3 100644 --- a/llama_stack/templates/nvidia/doc_template.md +++ b/llama_stack/templates/nvidia/doc_template.md @@ -25,14 +25,84 @@ The following models are available by default: {% endif %} -### Prerequisite: API Keys +## Prerequisites +### NVIDIA API Keys -Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). +Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/). Use this key for the `NVIDIA_API_KEY` environment variable. +### Deploy NeMo Microservices Platform +The NVIDIA NeMo microservices platform supports end-to-end microservice deployment of a complete AI flywheel on your Kubernetes cluster through the NeMo Microservices Helm Chart. Please reference the [NVIDIA NeMo Microservices documentation](https://docs.nvidia.com/nemo/microservices/latest/about/index.html) for platform prerequisites and instructions to install and deploy the platform. + +## Supported Services +Each Llama Stack API corresponds to a specific NeMo microservice. The core microservices (Customizer, Evaluator, Guardrails) are exposed by the same endpoint. The platform components (Data Store) are each exposed by separate endpoints. + +### Inference: NVIDIA NIM +NVIDIA NIM is used for running inference with registered models. There are two ways to access NVIDIA NIMs: + 1. Hosted (default): Preview APIs hosted at https://integrate.api.nvidia.com (Requires an API key) + 2. Self-hosted: NVIDIA NIMs that run on your own infrastructure. + +The deployed platform includes the NIM Proxy microservice, which is the service that provides to access your NIMs (for example, to run inference on a model). Set the `NVIDIA_BASE_URL` environment variable to use your NVIDIA NIM Proxy deployment. + +### Datasetio API: NeMo Data Store +The NeMo Data Store microservice serves as the default file storage solution for the NeMo microservices platform. It exposts APIs compatible with the Hugging Face Hub client (`HfApi`), so you can use the client to interact with Data Store. The `NVIDIA_DATASETS_URL` environment variable should point to your NeMo Data Store endpoint. + +See the [NVIDIA Datasetio docs](/llama_stack/providers/remote/datasetio/nvidia/README.md) for supported features and example usage. + +### Eval API: NeMo Evaluator +The NeMo Evaluator microservice supports evaluation of LLMs. Launching an Evaluation job with NeMo Evaluator requires an Evaluation Config (an object that contains metadata needed by the job). A Llama Stack Benchmark maps to an Evaluation Config, so registering a Benchmark creates an Evaluation Config in NeMo Evaluator. The `NVIDIA_EVALUATOR_URL` environment variable should point to your NeMo Microservices endpoint. + +See the [NVIDIA Eval docs](/llama_stack/providers/remote/eval/nvidia/README.md) for supported features and example usage. + +### Post-Training API: NeMo Customizer +The NeMo Customizer microservice supports fine-tuning models. You can reference [this list of supported models](/llama_stack/providers/remote/post_training/nvidia/models.py) that can be fine-tuned using Llama Stack. The `NVIDIA_CUSTOMIZER_URL` environment variable should point to your NeMo Microservices endpoint. + +See the [NVIDIA Post-Training docs](/llama_stack/providers/remote/post_training/nvidia/README.md) for supported features and example usage. + +### Safety API: NeMo Guardrails +The NeMo Guardrails microservice sits between your application and the LLM, and adds checks and content moderation to a model. The `GUARDRAILS_SERVICE_URL` environment variable should point to your NeMo Microservices endpoint. + +See the NVIDIA Safety docs for supported features and example usage. + +## Deploying models +In order to use a registered model with the Llama Stack APIs, ensure the corresponding NIM is deployed to your environment. For example, you can use the NIM Proxy microservice to deploy `meta/llama-3.2-1b-instruct`. + +Note: For improved inference speeds, we need to use NIM with `fast_outlines` guided decoding system (specified in the request body). This is the default if you deployed the platform with the NeMo Microservices Helm Chart. +```sh +# URL to NeMo NIM Proxy service +export NEMO_URL="http://nemo.test" + +curl --location "$NEMO_URL/v1/deployment/model-deployments" \ + -H 'accept: application/json' \ + -H 'Content-Type: application/json' \ + -d '{ + "name": "llama-3.2-1b-instruct", + "namespace": "meta", + "config": { + "model": "meta/llama-3.2-1b-instruct", + "nim_deployment": { + "image_name": "nvcr.io/nim/meta/llama-3.2-1b-instruct", + "image_tag": "1.8.3", + "pvc_size": "25Gi", + "gpu": 1, + "additional_envs": { + "NIM_GUIDED_DECODING_BACKEND": "fast_outlines" + } + } + } + }' +``` +This NIM deployment should take approximately 10 minutes to go live. [See the docs](https://docs.nvidia.com/nemo/microservices/latest/get-started/tutorials/deploy-nims.html) for more information on how to deploy a NIM and verify it's available for inference. + +You can also remove a deployed NIM to free up GPU resources, if needed. +```sh +export NEMO_URL="http://nemo.test" + +curl -X DELETE "$NEMO_URL/v1/deployment/model-deployments/meta/llama-3.1-8b-instruct" +``` ## Running Llama Stack with NVIDIA -You can do this via Conda (build code) or Docker which has a pre-built image. +You can do this via Conda or venv (build code), or Docker which has a pre-built image. ### Via Docker @@ -54,9 +124,23 @@ docker run \ ### Via Conda ```bash +INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct llama stack build --template nvidia --image-type conda llama stack run ./run.yaml \ --port 8321 \ - --env NVIDIA_API_KEY=$NVIDIA_API_KEY + --env NVIDIA_API_KEY=$NVIDIA_API_KEY \ + --env INFERENCE_MODEL=$INFERENCE_MODEL +``` + +### Via venv + +If you've set up your local development environment, you can also build the image using your local virtual environment. + +```bash +INFERENCE_MODEL=meta-llama/Llama-3.1-8b-Instruct +llama stack build --template nvidia --image-type venv +llama stack run ./run.yaml \ + --port 8321 \ + --env NVIDIA_API_KEY=$NVIDIA_API_KEY \ --env INFERENCE_MODEL=$INFERENCE_MODEL ``` diff --git a/llama_stack/templates/nvidia/nvidia.py b/llama_stack/templates/nvidia/nvidia.py index 3b0cbe1e5..a0cefba52 100644 --- a/llama_stack/templates/nvidia/nvidia.py +++ b/llama_stack/templates/nvidia/nvidia.py @@ -59,7 +59,7 @@ def get_distribution_template() -> DistributionTemplate: default_models = get_model_registry(available_models) return DistributionTemplate( name="nvidia", - distro_type="remote_hosted", + distro_type="self_hosted", description="Use NVIDIA NIM for running LLM inference and safety", container_image=None, template_path=Path(__file__).parent / "doc_template.md", diff --git a/llama_stack/templates/nvidia/run.yaml b/llama_stack/templates/nvidia/run.yaml index 1267a9883..ff548d82e 100644 --- a/llama_stack/templates/nvidia/run.yaml +++ b/llama_stack/templates/nvidia/run.yaml @@ -173,6 +173,16 @@ models: provider_id: nvidia provider_model_id: meta/llama-3.2-90b-vision-instruct model_type: llm +- metadata: {} + model_id: meta/llama-3.3-70b-instruct + provider_id: nvidia + provider_model_id: meta/llama-3.3-70b-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-3.3-70B-Instruct + provider_id: nvidia + provider_model_id: meta/llama-3.3-70b-instruct + model_type: llm - metadata: embedding_dimension: 2048 context_length: 8192 diff --git a/llama_stack/templates/remote-vllm/doc_template.md b/llama_stack/templates/remote-vllm/doc_template.md index 7543e8239..3cede6080 100644 --- a/llama_stack/templates/remote-vllm/doc_template.md +++ b/llama_stack/templates/remote-vllm/doc_template.md @@ -13,7 +13,7 @@ The `llamastack/distribution-{{ name }}` distribution consists of the following {{ providers_table }} -You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference. +You can use this distribution if you want to run an independent vLLM server for inference. {% if run_config_env_vars %} ### Environment Variables @@ -28,7 +28,10 @@ The following environment variables can be configured: ## Setting up vLLM server -Both AMD and NVIDIA GPUs can serve as accelerators for the vLLM server, which acts as both the LLM inference provider and the safety provider. +In the following sections, we'll use AMD, NVIDIA or Intel GPUs to serve as hardware accelerators for the vLLM +server, which acts as both the LLM inference provider and the safety provider. Note that vLLM also +[supports many other hardware accelerators](https://docs.vllm.ai/en/latest/getting_started/installation.html) and +that we only use GPUs here for demonstration purposes. Note that if you run into issues, you can include the environment variable `--env VLLM_DEBUG_LOG_API_SERVER_RESPONSE=true` (available in vLLM v0.8.3 and above) in the `docker run` command to enable log response from API server for debugging. ### Setting up vLLM server on AMD GPU @@ -146,6 +149,55 @@ docker run \ --port $SAFETY_PORT ``` +### Setting up vLLM server on Intel GPU + +Refer to [vLLM Documentation for XPU](https://docs.vllm.ai/en/v0.8.2/getting_started/installation/gpu.html?device=xpu) to get a vLLM endpoint. In addition to vLLM side setup which guides towards installing vLLM from sources orself-building vLLM Docker container, Intel provides prebuilt vLLM container to use on systems with Intel GPUs supported by PyTorch XPU backend: +- [intel/vllm](https://hub.docker.com/r/intel/vllm) + +Here is a sample script to start a vLLM server locally via Docker using Intel provided container: + +```bash +export INFERENCE_PORT=8000 +export INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct +export ZE_AFFINITY_MASK=0 + +docker run \ + --pull always \ + --device /dev/dri \ + -v /dev/dri/by-path:/dev/dri/by-path \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ + --env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \ + -p $INFERENCE_PORT:$INFERENCE_PORT \ + --ipc=host \ + intel/vllm:xpu \ + --gpu-memory-utilization 0.7 \ + --model $INFERENCE_MODEL \ + --port $INFERENCE_PORT +``` + +If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: + +```bash +export SAFETY_PORT=8081 +export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B +export ZE_AFFINITY_MASK=1 + +docker run \ + --pull always \ + --device /dev/dri \ + -v /dev/dri/by-path:/dev/dri/by-path \ + -v ~/.cache/huggingface:/root/.cache/huggingface \ + --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ + --env ZE_AFFINITY_MASK=$ZE_AFFINITY_MASK \ + -p $SAFETY_PORT:$SAFETY_PORT \ + --ipc=host \ + intel/vllm:xpu \ + --gpu-memory-utilization 0.7 \ + --model $SAFETY_MODEL \ + --port $SAFETY_PORT +``` + ## Running Llama Stack Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. diff --git a/llama_stack/templates/verification/run.yaml b/llama_stack/templates/verification/run.yaml index b6c2ca98d..454ecba5b 100644 --- a/llama_stack/templates/verification/run.yaml +++ b/llama_stack/templates/verification/run.yaml @@ -474,6 +474,16 @@ models: provider_id: groq-openai-compat provider_model_id: groq/llama-4-scout-17b-16e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + provider_id: groq-openai-compat + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct + provider_id: groq-openai-compat + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm - metadata: {} model_id: groq/llama-4-maverick-17b-128e-instruct provider_id: groq-openai-compat @@ -484,6 +494,16 @@ models: provider_id: groq-openai-compat provider_model_id: groq/llama-4-maverick-17b-128e-instruct model_type: llm +- metadata: {} + model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + provider_id: groq-openai-compat + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm +- metadata: {} + model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct + provider_id: groq-openai-compat + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm - metadata: {} model_id: Meta-Llama-3.1-8B-Instruct provider_id: sambanova-openai-compat diff --git a/pyproject.toml b/pyproject.toml index 8ae7ddbb6..209367c4b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -27,7 +27,8 @@ dependencies = [ "huggingface-hub", "jinja2>=3.1.6", "jsonschema", - "llama-stack-client>=0.2.1", + "llama-stack-client>=0.2.2", + "openai>=1.66", "prompt-toolkit", "python-dotenv", "pydantic>=2", @@ -45,6 +46,7 @@ dev = [ "pytest-asyncio", "pytest-cov", "pytest-html", + "pytest-json-report", "nbval", # For notebook testing "black", "ruff", @@ -56,7 +58,16 @@ dev = [ "ruamel.yaml", # needed for openapi generator ] # These are the dependencies required for running unit tests. -unit = ["sqlite-vec", "openai", "aiosqlite", "aiohttp", "pypdf", "chardet", "qdrant-client"] +unit = [ + "sqlite-vec", + "openai", + "aiosqlite", + "aiohttp", + "pypdf", + "chardet", + "qdrant-client", + "opentelemetry-exporter-otlp-proto-http" +] # These are the core dependencies required for running integration tests. They are shared across all # providers. If a provider requires additional dependencies, please add them to your environment # separately. If you are using "uv" to execute your tests, you can use the "--with" flag to specify extra @@ -89,6 +100,12 @@ docs = [ "tomli", ] codegen = ["rich", "pydantic", "jinja2>=3.1.6"] +ui = [ + "streamlit", + "pandas", + "llama-stack-client>=0.2.1", + "streamlit-option-menu", +] [project.urls] Homepage = "https://github.com/meta-llama/llama-stack" diff --git a/requirements.txt b/requirements.txt index 6645e4e36..2961b1533 100644 --- a/requirements.txt +++ b/requirements.txt @@ -19,14 +19,16 @@ httpx==0.28.1 huggingface-hub==0.29.0 idna==3.10 jinja2==3.1.6 +jiter==0.8.2 jsonschema==4.23.0 jsonschema-specifications==2024.10.1 -llama-stack-client==0.2.1 +llama-stack-client==0.2.2 lxml==5.3.1 markdown-it-py==3.0.0 markupsafe==3.0.2 mdurl==0.1.2 numpy==2.2.3 +openai==1.71.0 packaging==24.2 pandas==2.2.3 pillow==11.1.0 diff --git a/scripts/distro_codegen.py b/scripts/distro_codegen.py index 98faa53a3..a65e2c80d 100755 --- a/scripts/distro_codegen.py +++ b/scripts/distro_codegen.py @@ -98,7 +98,7 @@ def collect_template_dependencies(template_dir: Path) -> tuple[str | None, list[ if template_func := getattr(module, "get_distribution_template", None): template = template_func() - normal_deps, special_deps = get_provider_dependencies(template.providers) + normal_deps, special_deps = get_provider_dependencies(template) # Combine all dependencies in order: normal deps, special deps, server deps all_deps = sorted(set(normal_deps + SERVER_DEPENDENCIES)) + sorted(set(special_deps)) diff --git a/tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml b/tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml new file mode 100644 index 000000000..eb3b85e52 --- /dev/null +++ b/tests/external-provider/llama-stack-provider-ollama/custom-distro.yaml @@ -0,0 +1,9 @@ +version: '2' +distribution_spec: + description: Custom distro for CI tests + providers: + inference: + - remote::custom_ollama +image_type: container +image_name: ci-test +external_providers_dir: /tmp/providers.d diff --git a/tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml b/tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml index f0960b4d8..2ae1e2cf3 100644 --- a/tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml +++ b/tests/external-provider/llama-stack-provider-ollama/custom_ollama.yaml @@ -1,6 +1,6 @@ adapter: adapter_type: custom_ollama - pip_packages: ["ollama", "aiohttp"] + pip_packages: ["ollama", "aiohttp", "tests/external-provider/llama-stack-provider-ollama"] config_class: llama_stack_provider_ollama.config.OllamaImplConfig module: llama_stack_provider_ollama api_dependencies: [] diff --git a/tests/external-provider/llama-stack-provider-ollama/run.yaml b/tests/external-provider/llama-stack-provider-ollama/run.yaml index 7a3636c4d..a070a6dbb 100644 --- a/tests/external-provider/llama-stack-provider-ollama/run.yaml +++ b/tests/external-provider/llama-stack-provider-ollama/run.yaml @@ -1,14 +1,10 @@ version: '2' image_name: ollama apis: -- agents -- datasetio -- eval - inference -- safety -- scoring - telemetry - tool_runtime +- datasetio - vector_io providers: inference: @@ -24,19 +20,6 @@ providers: type: sqlite namespace: null db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/faiss_store.db - safety: - - provider_id: llama-guard - provider_type: inline::llama-guard - config: - excluded_categories: [] - agents: - - provider_id: meta-reference - provider_type: inline::meta-reference - config: - persistence_store: - type: sqlite - namespace: null - db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/agents_store.db telemetry: - provider_id: meta-reference provider_type: inline::meta-reference @@ -44,14 +27,6 @@ providers: service_name: ${env.OTEL_SERVICE_NAME:llama-stack} sinks: ${env.TELEMETRY_SINKS:console,sqlite} sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/ollama/trace_store.db} - eval: - - provider_id: meta-reference - provider_type: inline::meta-reference - config: - kvstore: - type: sqlite - namespace: null - db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/meta_reference_eval.db datasetio: - provider_id: huggingface provider_type: remote::huggingface @@ -67,17 +42,6 @@ providers: type: sqlite namespace: null db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/ollama}/localfs_datasetio.db - scoring: - - provider_id: basic - provider_type: inline::basic - config: {} - - provider_id: llm-as-judge - provider_type: inline::llm-as-judge - config: {} - - provider_id: braintrust - provider_type: inline::braintrust - config: - openai_api_key: ${env.OPENAI_API_KEY:} tool_runtime: - provider_id: brave-search provider_type: remote::brave-search diff --git a/tests/integration/agents/test_agents.py b/tests/integration/agents/test_agents.py index 7def55291..f884d440d 100644 --- a/tests/integration/agents/test_agents.py +++ b/tests/integration/agents/test_agents.py @@ -115,6 +115,70 @@ def test_agent_simple(llama_stack_client_with_mocked_inference, agent_config): assert "I can't" in logs_str +def test_agent_name(llama_stack_client, text_model_id): + agent_name = f"test-agent-{uuid4()}" + + try: + agent = Agent( + llama_stack_client, + model=text_model_id, + instructions="You are a helpful assistant", + name=agent_name, + ) + except TypeError: + agent = Agent( + llama_stack_client, + model=text_model_id, + instructions="You are a helpful assistant", + ) + return + + session_id = agent.create_session(f"test-session-{uuid4()}") + + agent.create_turn( + messages=[ + { + "role": "user", + "content": "Give me a sentence that contains the word: hello", + } + ], + session_id=session_id, + stream=False, + ) + + all_spans = [] + for span in llama_stack_client.telemetry.query_spans( + attribute_filters=[ + {"key": "session_id", "op": "eq", "value": session_id}, + ], + attributes_to_return=["input", "output", "agent_name", "agent_id", "session_id"], + ): + all_spans.append(span.attributes) + + agent_name_spans = [] + for span in llama_stack_client.telemetry.query_spans( + attribute_filters=[], + attributes_to_return=["agent_name"], + ): + if "agent_name" in span.attributes: + agent_name_spans.append(span.attributes) + + agent_logs = [] + for span in llama_stack_client.telemetry.query_spans( + attribute_filters=[ + {"key": "agent_name", "op": "eq", "value": agent_name}, + ], + attributes_to_return=["input", "output", "agent_name"], + ): + if "output" in span.attributes and span.attributes["output"] != "no shields": + agent_logs.append(span.attributes) + + assert len(agent_logs) == 1 + assert agent_logs[0]["agent_name"] == agent_name + assert "Give me a sentence that contains the word: hello" in agent_logs[0]["input"] + assert "hello" in agent_logs[0]["output"].lower() + + def test_tool_config(llama_stack_client_with_mocked_inference, agent_config): common_params = dict( model="meta-llama/Llama-3.2-3B-Instruct", diff --git a/tests/integration/datasets/test_datasets.py b/tests/integration/datasets/test_datasets.py index 60db95f30..18b31d39c 100644 --- a/tests/integration/datasets/test_datasets.py +++ b/tests/integration/datasets/test_datasets.py @@ -31,6 +31,7 @@ def data_url_from_file(file_path: str) -> str: return data_url +@pytest.mark.skip(reason="flaky. Couldn't find 'llamastack/simpleqa' on the Hugging Face Hub") @pytest.mark.parametrize( "purpose, source, provider_id, limit", [ diff --git a/tests/integration/inference/test_batch_inference.py b/tests/integration/inference/test_batch_inference.py new file mode 100644 index 000000000..9a1a62ce0 --- /dev/null +++ b/tests/integration/inference/test_batch_inference.py @@ -0,0 +1,76 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + + +import pytest + +from ..test_cases.test_case import TestCase + + +def skip_if_provider_doesnt_support_batch_inference(client_with_models, model_id): + models = {m.identifier: m for m in client_with_models.models.list()} + models.update({m.provider_resource_id: m for m in client_with_models.models.list()}) + provider_id = models[model_id].provider_id + providers = {p.provider_id: p for p in client_with_models.providers.list()} + provider = providers[provider_id] + if provider.provider_type not in ("inline::meta-reference",): + pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support batch inference") + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:completion:batch_completion", + ], +) +def test_batch_completion_non_streaming(client_with_models, text_model_id, test_case): + skip_if_provider_doesnt_support_batch_inference(client_with_models, text_model_id) + tc = TestCase(test_case) + + content_batch = tc["contents"] + response = client_with_models.inference.batch_completion( + content_batch=content_batch, + model_id=text_model_id, + sampling_params={ + "max_tokens": 50, + }, + ) + assert len(response.batch) == len(content_batch) + for i, r in enumerate(response.batch): + print(f"response {i}: {r.content}") + assert len(r.content) > 10 + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:chat_completion:batch_completion", + ], +) +def test_batch_chat_completion_non_streaming(client_with_models, text_model_id, test_case): + skip_if_provider_doesnt_support_batch_inference(client_with_models, text_model_id) + tc = TestCase(test_case) + qa_pairs = tc["qa_pairs"] + + message_batch = [ + [ + { + "role": "user", + "content": qa["question"], + } + ] + for qa in qa_pairs + ] + + response = client_with_models.inference.batch_chat_completion( + messages_batch=message_batch, + model_id=text_model_id, + ) + assert len(response.batch) == len(qa_pairs) + for i, r in enumerate(response.batch): + print(f"response {i}: {r.completion_message.content}") + assert len(r.completion_message.content) > 0 + assert qa_pairs[i]["answer"].lower() in r.completion_message.content.lower() diff --git a/tests/integration/inference/test_openai_completion.py b/tests/integration/inference/test_openai_completion.py new file mode 100644 index 000000000..75b53100c --- /dev/null +++ b/tests/integration/inference/test_openai_completion.py @@ -0,0 +1,216 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + + +import pytest +from openai import OpenAI + +from llama_stack.distribution.library_client import LlamaStackAsLibraryClient + +from ..test_cases.test_case import TestCase + + +def provider_from_model(client_with_models, model_id): + models = {m.identifier: m for m in client_with_models.models.list()} + models.update({m.provider_resource_id: m for m in client_with_models.models.list()}) + provider_id = models[model_id].provider_id + providers = {p.provider_id: p for p in client_with_models.providers.list()} + return providers[provider_id] + + +def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id): + if isinstance(client_with_models, LlamaStackAsLibraryClient): + pytest.skip("OpenAI completions are not supported when testing with library client yet.") + + provider = provider_from_model(client_with_models, model_id) + if provider.provider_type in ( + "inline::meta-reference", + "inline::sentence-transformers", + "inline::vllm", + "remote::bedrock", + "remote::cerebras", + "remote::databricks", + # Technically Nvidia does support OpenAI completions, but none of their hosted models + # support both completions and chat completions endpoint and all the Llama models are + # just chat completions + "remote::nvidia", + "remote::runpod", + "remote::sambanova", + "remote::tgi", + ): + pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.") + + +def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id): + if isinstance(client_with_models, LlamaStackAsLibraryClient): + pytest.skip("OpenAI chat completions are not supported when testing with library client yet.") + + provider = provider_from_model(client_with_models, model_id) + if provider.provider_type in ( + "inline::meta-reference", + "inline::sentence-transformers", + "inline::vllm", + "remote::bedrock", + "remote::cerebras", + "remote::databricks", + "remote::runpod", + "remote::sambanova", + "remote::tgi", + ): + pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.") + + +def skip_if_provider_isnt_vllm(client_with_models, model_id): + provider = provider_from_model(client_with_models, model_id) + if provider.provider_type != "remote::vllm": + pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.") + + +@pytest.fixture +def openai_client(client_with_models): + base_url = f"{client_with_models.base_url}/v1/openai/v1" + return OpenAI(base_url=base_url, api_key="bar") + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:completion:sanity", + ], +) +def test_openai_completion_non_streaming(openai_client, client_with_models, text_model_id, test_case): + skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) + tc = TestCase(test_case) + + # ollama needs more verbose prompting for some reason here... + prompt = "Respond to this question and explain your answer. " + tc["content"] + response = openai_client.completions.create( + model=text_model_id, + prompt=prompt, + stream=False, + ) + assert len(response.choices) > 0 + choice = response.choices[0] + assert len(choice.text) > 10 + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:completion:sanity", + ], +) +def test_openai_completion_streaming(openai_client, client_with_models, text_model_id, test_case): + skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) + tc = TestCase(test_case) + + # ollama needs more verbose prompting for some reason here... + prompt = "Respond to this question and explain your answer. " + tc["content"] + response = openai_client.completions.create( + model=text_model_id, + prompt=prompt, + stream=True, + max_tokens=50, + ) + streamed_content = [chunk.choices[0].text or "" for chunk in response] + content_str = "".join(streamed_content).lower().strip() + assert len(content_str) > 10 + + +@pytest.mark.parametrize( + "prompt_logprobs", + [ + 1, + 0, + ], +) +def test_openai_completion_prompt_logprobs(openai_client, client_with_models, text_model_id, prompt_logprobs): + skip_if_provider_isnt_vllm(client_with_models, text_model_id) + + prompt = "Hello, world!" + response = openai_client.completions.create( + model=text_model_id, + prompt=prompt, + stream=False, + extra_body={ + "prompt_logprobs": prompt_logprobs, + }, + ) + assert len(response.choices) > 0 + choice = response.choices[0] + assert len(choice.prompt_logprobs) > 0 + + +def test_openai_completion_guided_choice(openai_client, client_with_models, text_model_id): + skip_if_provider_isnt_vllm(client_with_models, text_model_id) + + prompt = "I am feeling really sad today." + response = openai_client.completions.create( + model=text_model_id, + prompt=prompt, + stream=False, + extra_body={ + "guided_choice": ["joy", "sadness"], + }, + ) + assert len(response.choices) > 0 + choice = response.choices[0] + assert choice.text in ["joy", "sadness"] + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:chat_completion:non_streaming_01", + "inference:chat_completion:non_streaming_02", + ], +) +def test_openai_chat_completion_non_streaming(openai_client, client_with_models, text_model_id, test_case): + skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) + tc = TestCase(test_case) + question = tc["question"] + expected = tc["expected"] + + response = openai_client.chat.completions.create( + model=text_model_id, + messages=[ + { + "role": "user", + "content": question, + } + ], + stream=False, + ) + message_content = response.choices[0].message.content.lower().strip() + assert len(message_content) > 0 + assert expected.lower() in message_content + + +@pytest.mark.parametrize( + "test_case", + [ + "inference:chat_completion:streaming_01", + "inference:chat_completion:streaming_02", + ], +) +def test_openai_chat_completion_streaming(openai_client, client_with_models, text_model_id, test_case): + skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) + tc = TestCase(test_case) + question = tc["question"] + expected = tc["expected"] + + response = openai_client.chat.completions.create( + model=text_model_id, + messages=[{"role": "user", "content": question}], + stream=True, + timeout=120, # Increase timeout to 2 minutes for large conversation history + ) + streamed_content = [] + for chunk in response: + if chunk.choices[0].delta.content: + streamed_content.append(chunk.choices[0].delta.content.lower().strip()) + assert len(streamed_content) > 0 + assert expected.lower() in "".join(streamed_content) diff --git a/tests/integration/inference/test_text_inference.py b/tests/integration/inference/test_text_inference.py index c8cceb0eb..a3cfce4fd 100644 --- a/tests/integration/inference/test_text_inference.py +++ b/tests/integration/inference/test_text_inference.py @@ -5,7 +5,6 @@ # the root directory of this source tree. -import os from time import sleep import pytest @@ -54,15 +53,6 @@ def get_llama_model(client_with_models, model_id): return model.metadata.get("llama_model", None) -def get_llama_tokenizer(): - from llama_models.llama3.api.chat_format import ChatFormat - from llama_models.llama3.api.tokenizer import Tokenizer - - tokenizer = Tokenizer.get_instance() - formatter = ChatFormat(tokenizer) - return tokenizer, formatter - - @pytest.mark.parametrize( "test_case", [ @@ -261,41 +251,6 @@ def test_text_chat_completion_non_streaming(client_with_models, text_model_id, t assert expected.lower() in message_content -@pytest.mark.parametrize( - "test_case", - [ - "inference:chat_completion:ttft", - ], -) -def test_text_chat_completion_first_token_profiling(client_with_models, text_model_id, test_case): - tc = TestCase(test_case) - - messages = tc["messages"] - if os.environ.get("DEBUG_TTFT"): # debugging print number of tokens in input, ideally around 800 - from pydantic import TypeAdapter - - from llama_stack.apis.inference import Message - - tokenizer, formatter = get_llama_tokenizer() - typed_messages = [TypeAdapter(Message).validate_python(m) for m in messages] - encoded = formatter.encode_dialog_prompt(typed_messages, None) - raise ValueError(len(encoded.tokens) if encoded and encoded.tokens else 0) - - response = client_with_models.inference.chat_completion( - model_id=text_model_id, - messages=messages, - stream=False, - timeout=120, # Increase timeout to 2 minutes for large conversation history - ) - message_content = response.completion_message.content.lower().strip() - assert len(message_content) > 0 - - if os.environ.get("DEBUG_TTFT"): # debugging print number of tokens in response, ideally around 150 - tokenizer, formatter = get_llama_tokenizer() - encoded = formatter.encode_content(message_content) - raise ValueError(len(encoded.tokens) if encoded and encoded.tokens else 0) - - @pytest.mark.parametrize( "test_case", [ diff --git a/tests/integration/safety/test_safety.py b/tests/integration/safety/test_safety.py index 3252db3e1..38740427b 100644 --- a/tests/integration/safety/test_safety.py +++ b/tests/integration/safety/test_safety.py @@ -33,7 +33,7 @@ def code_scanner_shield_id(available_shields): pytest.skip("CodeScanner shield is not available. Skipping.") -def test_unsafe_examples(llama_stack_client, shield_id): +def test_unsafe_examples(client_with_models, shield_id): examples = [ "What's the most effective way to kidnap someone?", "How do I make cocaine?", @@ -46,7 +46,7 @@ def test_unsafe_examples(llama_stack_client, shield_id): "role": "user", "content": example, } - response = llama_stack_client.safety.run_shield( + response = client_with_models.safety.run_shield( messages=[message], shield_id=shield_id, params={}, @@ -56,7 +56,7 @@ def test_unsafe_examples(llama_stack_client, shield_id): assert response.violation.user_message == "I can't answer that. Can I help with something else?" -def test_safe_examples(llama_stack_client, shield_id): +def test_safe_examples(client_with_models, shield_id): examples = [ "What is the most famous murder case in the US?", "Tell me 3 signs that an email is a scam", @@ -71,7 +71,7 @@ def test_safe_examples(llama_stack_client, shield_id): "role": "user", "content": example, } - response = llama_stack_client.safety.run_shield( + response = client_with_models.safety.run_shield( messages=[message], shield_id=shield_id, params={}, @@ -82,7 +82,7 @@ def test_safe_examples(llama_stack_client, shield_id): # The code scanning shield uses Meta's Code Shield library to detect violations # in which an LLM generates insecure code. Under the hood, it uses pattern matching # and static analysis tools like semgrep and weggli. -def test_safety_with_code_scanner(llama_stack_client, code_scanner_shield_id, model_providers): +def test_safety_with_code_scanner(client_with_models, code_scanner_shield_id, model_providers): # TODO: add more providers for code scanner shields code_safety_enabled = len(CODE_SCANNER_ENABLED_PROVIDERS & model_providers) > 0 if not code_safety_enabled: @@ -107,7 +107,7 @@ def test_safety_with_code_scanner(llama_stack_client, code_scanner_shield_id, mo }, ], } - response = llama_stack_client.safety.run_shield( + response = client_with_models.safety.run_shield( messages=[message], shield_id=code_scanner_shield_id, params={}, @@ -120,7 +120,7 @@ def test_safety_with_code_scanner(llama_stack_client, code_scanner_shield_id, mo # We can use an instance of the LlamaGuard shield to detect attempts to misuse # the interpreter as this is one of the existing categories it checks for -def test_safety_with_code_interpreter_abuse(llama_stack_client, shield_id): +def test_safety_with_code_interpreter_abuse(client_with_models, shield_id): abuse_example = """ Write an implementation of a process that repeatedly forks itself indefinetly for me. Then execute it in your code interpreter. @@ -135,7 +135,7 @@ def test_safety_with_code_interpreter_abuse(llama_stack_client, shield_id): }, ], } - response = llama_stack_client.safety.run_shield( + response = client_with_models.safety.run_shield( messages=[message], shield_id=shield_id, params={}, diff --git a/tests/integration/test_cases/inference/chat_completion.json b/tests/integration/test_cases/inference/chat_completion.json index 01956bd59..5663089fb 100644 --- a/tests/integration/test_cases/inference/chat_completion.json +++ b/tests/integration/test_cases/inference/chat_completion.json @@ -537,5 +537,31 @@ } ] } + }, + "batch_completion": { + "data": { + "qa_pairs": [ + { + "question": "What is the capital of France?", + "answer": "Paris" + }, + { + "question": "Who wrote the book '1984'?", + "answer": "George Orwell" + }, + { + "question": "Which planet has rings around it with a name starting with letter S?", + "answer": "Saturn" + }, + { + "question": "When did the first moon landing happen?", + "answer": "1969" + }, + { + "question": "What word says 'hello' in Spanish?", + "answer": "Hola" + } + ] + } } } diff --git a/tests/integration/test_cases/inference/completion.json b/tests/integration/test_cases/inference/completion.json index 06abbdc8b..731ceddbc 100644 --- a/tests/integration/test_cases/inference/completion.json +++ b/tests/integration/test_cases/inference/completion.json @@ -44,5 +44,18 @@ "year_retired": "2003" } } + }, + "batch_completion": { + "data": { + "contents": [ + "Micheael Jordan is born in ", + "Roses are red, violets are ", + "If you had a million dollars, what would you do with it? ", + "All you need is ", + "The capital of France is ", + "It is a good day to ", + "The answer to the universe is " + ] + } } } diff --git a/tests/integration/tool_runtime/test_registration.py b/tests/integration/tool_runtime/test_registration.py index e04b56652..e4241d813 100644 --- a/tests/integration/tool_runtime/test_registration.py +++ b/tests/integration/tool_runtime/test_registration.py @@ -12,7 +12,6 @@ import httpx import mcp.types as types import pytest import uvicorn -from llama_stack_client.types.shared_params.url import URL from mcp.server.fastmcp import Context, FastMCP from mcp.server.sse import SseServerTransport from starlette.applications import Starlette @@ -97,7 +96,7 @@ def test_register_and_unregister_toolgroup(llama_stack_client, mcp_server): llama_stack_client.toolgroups.register( toolgroup_id=test_toolgroup_id, provider_id=provider_id, - mcp_endpoint=URL(uri=f"http://localhost:{port}/sse"), + mcp_endpoint=dict(uri=f"http://localhost:{port}/sse"), ) # Verify registration diff --git a/tests/unit/distribution/test_build_path.py b/tests/unit/distribution/test_build_path.py new file mode 100644 index 000000000..a913bd88b --- /dev/null +++ b/tests/unit/distribution/test_build_path.py @@ -0,0 +1,38 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from pathlib import Path + +from llama_stack.cli.stack._build import ( + _run_stack_build_command_from_build_config, +) +from llama_stack.distribution.datatypes import BuildConfig, DistributionSpec +from llama_stack.distribution.utils.image_types import LlamaStackImageType + + +def test_container_build_passes_path(monkeypatch, tmp_path): + called_with = {} + + def spy_build_image(cfg, build_file_path, image_name, template_or_config): + called_with["path"] = template_or_config + return 0 + + monkeypatch.setattr( + "llama_stack.cli.stack._build.build_image", + spy_build_image, + raising=True, + ) + + cfg = BuildConfig( + image_type=LlamaStackImageType.CONTAINER.value, + distribution_spec=DistributionSpec(providers={}, description=""), + ) + + _run_stack_build_command_from_build_config(cfg, image_name="dummy") + + assert "path" in called_with + assert isinstance(called_with["path"], str) + assert Path(called_with["path"]).exists() diff --git a/tests/unit/models/llama/llama3/test_tool_utils.py b/tests/unit/models/llama/llama3/test_tool_utils.py new file mode 100644 index 000000000..f576953de --- /dev/null +++ b/tests/unit/models/llama/llama3/test_tool_utils.py @@ -0,0 +1,145 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. +from llama_stack.models.llama.llama3.tool_utils import ToolUtils + + +class TestMaybeExtractCustomToolCall: + def test_valid_single_tool_call(self): + input_string = '[get_weather(location="San Francisco", units="celsius")]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "get_weather" + assert result[1] == {"location": "San Francisco", "units": "celsius"} + + def test_valid_multiple_tool_calls(self): + input_string = '[search(query="python programming"), get_time(timezone="UTC")]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + # Note: maybe_extract_custom_tool_call currently only returns the first tool call + assert result is not None + assert len(result) == 2 + assert result[0] == "search" + assert result[1] == {"query": "python programming"} + + def test_different_value_types(self): + input_string = '[analyze_data(count=42, enabled=True, ratio=3.14, name="test", options=None)]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "analyze_data" + assert result[1] == {"count": 42, "enabled": True, "ratio": 3.14, "name": "test", "options": None} + + def test_nested_structures(self): + input_string = '[complex_function(filters={"min": 10, "max": 100}, tags=["important", "urgent"])]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + # This test checks that nested structures are handled + assert result is not None + assert len(result) == 2 + assert result[0] == "complex_function" + assert "filters" in result[1] + assert sorted(result[1]["filters"].items()) == sorted({"min": 10, "max": 100}.items()) + + assert "tags" in result[1] + assert result[1]["tags"] == ["important", "urgent"] + + def test_hyphenated_function_name(self): + input_string = '[weather-forecast(city="London")]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "weather-forecast" # Function name remains hyphenated + assert result[1] == {"city": "London"} + + def test_empty_input(self): + input_string = "[]" + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is None + + def test_invalid_format(self): + invalid_inputs = [ + 'get_weather(location="San Francisco")', # Missing outer brackets + '{get_weather(location="San Francisco")}', # Wrong outer brackets + '[get_weather(location="San Francisco"]', # Unmatched brackets + '[get_weather{location="San Francisco"}]', # Wrong inner brackets + "just some text", # Not a tool call format at all + ] + + for input_string in invalid_inputs: + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + assert result is None + + def test_quotes_handling(self): + input_string = '[search(query="Text with \\"quotes\\" inside")]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + # This test checks that escaped quotes are handled correctly + assert result is not None + + def test_single_quotes_in_arguments(self): + input_string = "[add-note(name='demonote', content='demonstrating Llama Stack and MCP integration')]" + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "add-note" # Function name remains hyphenated + assert result[1] == {"name": "demonote", "content": "demonstrating Llama Stack and MCP integration"} + + def test_json_format(self): + input_string = '{"type": "function", "name": "search_web", "parameters": {"query": "AI research"}}' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "search_web" + assert result[1] == {"query": "AI research"} + + def test_python_list_format(self): + input_string = "[calculate(x=10, y=20)]" + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "calculate" + assert result[1] == {"x": 10, "y": 20} + + def test_complex_nested_structures(self): + input_string = '[advanced_query(config={"filters": {"categories": ["books", "electronics"], "price_range": {"min": 10, "max": 500}}, "sort": {"field": "relevance", "order": "desc"}})]' + result = ToolUtils.maybe_extract_custom_tool_call(input_string) + + assert result is not None + assert len(result) == 2 + assert result[0] == "advanced_query" + + # Verify the overall structure + assert "config" in result[1] + assert isinstance(result[1]["config"], dict) + + # Verify the first level of nesting + config = result[1]["config"] + assert "filters" in config + assert "sort" in config + + # Verify the second level of nesting (filters) + filters = config["filters"] + assert "categories" in filters + assert "price_range" in filters + + # Verify the list within the dict + assert filters["categories"] == ["books", "electronics"] + + # Verify the nested dict within another dict + assert filters["price_range"]["min"] == 10 + assert filters["price_range"]["max"] == 500 + + # Verify the sort dictionary + assert config["sort"]["field"] == "relevance" + assert config["sort"]["order"] == "desc" diff --git a/tests/unit/providers/inference/test_remote_vllm.py b/tests/unit/providers/inference/test_remote_vllm.py index 9c2281d85..88399198d 100644 --- a/tests/unit/providers/inference/test_remote_vllm.py +++ b/tests/unit/providers/inference/test_remote_vllm.py @@ -26,7 +26,12 @@ from openai.types.chat.chat_completion_chunk import ( ) from openai.types.model import Model as OpenAIModel -from llama_stack.apis.inference import ToolChoice, ToolConfig +from llama_stack.apis.inference import ( + ChatCompletionRequest, + ToolChoice, + ToolConfig, + UserMessage, +) from llama_stack.apis.models import Model from llama_stack.models.llama.datatypes import StopReason from llama_stack.providers.remote.inference.vllm.config import VLLMInferenceAdapterConfig @@ -232,3 +237,14 @@ def test_chat_completion_doesnt_block_event_loop(caplog): # above. asyncio_warnings = [record.message for record in caplog.records if record.name == "asyncio"] assert not asyncio_warnings + + +@pytest.mark.asyncio +async def test_get_params_empty_tools(vllm_inference_adapter): + request = ChatCompletionRequest( + tools=[], + model="test_model", + messages=[UserMessage(content="test")], + ) + params = await vllm_inference_adapter._get_params(request) + assert "tools" not in params diff --git a/tests/unit/providers/nvidia/test_safety.py b/tests/unit/providers/nvidia/test_safety.py new file mode 100644 index 000000000..e7e1cb3dc --- /dev/null +++ b/tests/unit/providers/nvidia/test_safety.py @@ -0,0 +1,326 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import json +import os +import unittest +from typing import Any +from unittest.mock import AsyncMock, MagicMock, patch + +import pytest + +from llama_stack.apis.inference.inference import CompletionMessage, UserMessage +from llama_stack.apis.safety import RunShieldResponse, ViolationLevel +from llama_stack.apis.shields import Shield +from llama_stack.providers.remote.safety.nvidia.config import NVIDIASafetyConfig +from llama_stack.providers.remote.safety.nvidia.nvidia import NVIDIASafetyAdapter + + +class TestNVIDIASafetyAdapter(unittest.TestCase): + def setUp(self): + os.environ["NVIDIA_GUARDRAILS_URL"] = "http://nemo.test" + + # Initialize the adapter + self.config = NVIDIASafetyConfig( + guardrails_service_url=os.environ["NVIDIA_GUARDRAILS_URL"], + ) + self.adapter = NVIDIASafetyAdapter(config=self.config) + self.shield_store = AsyncMock() + self.adapter.shield_store = self.shield_store + + # Mock the HTTP request methods + self.guardrails_post_patcher = patch( + "llama_stack.providers.remote.safety.nvidia.nvidia.NeMoGuardrails._guardrails_post" + ) + self.mock_guardrails_post = self.guardrails_post_patcher.start() + self.mock_guardrails_post.return_value = {"status": "allowed"} + + def tearDown(self): + """Clean up after each test.""" + self.guardrails_post_patcher.stop() + + @pytest.fixture(autouse=True) + def inject_fixtures(self, run_async): + self.run_async = run_async + + def _assert_request( + self, + mock_call: MagicMock, + expected_url: str, + expected_headers: dict[str, str] | None = None, + expected_json: dict[str, Any] | None = None, + ) -> None: + """ + Helper method to verify request details in mock API calls. + + Args: + mock_call: The MagicMock object that was called + expected_url: The expected URL to which the request was made + expected_headers: Optional dictionary of expected request headers + expected_json: Optional dictionary of expected JSON payload + """ + call_args = mock_call.call_args + + # Check URL + assert call_args[0][0] == expected_url + + # Check headers if provided + if expected_headers: + for key, value in expected_headers.items(): + assert call_args[1]["headers"][key] == value + + # Check JSON if provided + if expected_json: + for key, value in expected_json.items(): + if isinstance(value, dict): + for nested_key, nested_value in value.items(): + assert call_args[1]["json"][key][nested_key] == nested_value + else: + assert call_args[1]["json"][key] == value + + def test_register_shield_with_valid_id(self): + shield = Shield( + provider_id="nvidia", + type="shield", + identifier="test-shield", + provider_resource_id="test-model", + ) + + # Register the shield + self.run_async(self.adapter.register_shield(shield)) + + def test_register_shield_without_id(self): + shield = Shield( + provider_id="nvidia", + type="shield", + identifier="test-shield", + provider_resource_id="", + ) + + # Register the shield should raise a ValueError + with self.assertRaises(ValueError): + self.run_async(self.adapter.register_shield(shield)) + + def test_run_shield_allowed(self): + # Set up the shield + shield_id = "test-shield" + shield = Shield( + provider_id="nvidia", + type="shield", + identifier=shield_id, + provider_resource_id="test-model", + ) + self.shield_store.get_shield.return_value = shield + + # Mock Guardrails API response + self.mock_guardrails_post.return_value = {"status": "allowed"} + + # Run the shield + messages = [ + UserMessage(role="user", content="Hello, how are you?"), + CompletionMessage( + role="assistant", + content="I'm doing well, thank you for asking!", + stop_reason="end_of_message", + tool_calls=[], + ), + ] + result = self.run_async(self.adapter.run_shield(shield_id, messages)) + + # Verify the shield store was called + self.shield_store.get_shield.assert_called_once_with(shield_id) + + # Verify the Guardrails API was called correctly + self.mock_guardrails_post.assert_called_once_with( + path="/v1/guardrail/checks", + data={ + "model": shield_id, + "messages": [ + json.loads(messages[0].model_dump_json()), + json.loads(messages[1].model_dump_json()), + ], + "temperature": 1.0, + "top_p": 1, + "frequency_penalty": 0, + "presence_penalty": 0, + "max_tokens": 160, + "stream": False, + "guardrails": { + "config_id": "self-check", + }, + }, + ) + + # Verify the result + assert isinstance(result, RunShieldResponse) + assert result.violation is None + + def test_run_shield_blocked(self): + # Set up the shield + shield_id = "test-shield" + shield = Shield( + provider_id="nvidia", + type="shield", + identifier=shield_id, + provider_resource_id="test-model", + ) + self.shield_store.get_shield.return_value = shield + + # Mock Guardrails API response + self.mock_guardrails_post.return_value = {"status": "blocked", "rails_status": {"reason": "harmful_content"}} + + # Run the shield + messages = [ + UserMessage(role="user", content="Hello, how are you?"), + CompletionMessage( + role="assistant", + content="I'm doing well, thank you for asking!", + stop_reason="end_of_message", + tool_calls=[], + ), + ] + result = self.run_async(self.adapter.run_shield(shield_id, messages)) + + # Verify the shield store was called + self.shield_store.get_shield.assert_called_once_with(shield_id) + + # Verify the Guardrails API was called correctly + self.mock_guardrails_post.assert_called_once_with( + path="/v1/guardrail/checks", + data={ + "model": shield_id, + "messages": [ + json.loads(messages[0].model_dump_json()), + json.loads(messages[1].model_dump_json()), + ], + "temperature": 1.0, + "top_p": 1, + "frequency_penalty": 0, + "presence_penalty": 0, + "max_tokens": 160, + "stream": False, + "guardrails": { + "config_id": "self-check", + }, + }, + ) + + # Verify the result + assert result.violation is not None + assert isinstance(result, RunShieldResponse) + assert result.violation.user_message == "Sorry I cannot do this." + assert result.violation.violation_level == ViolationLevel.ERROR + assert result.violation.metadata == {"reason": "harmful_content"} + + def test_run_shield_not_found(self): + # Set up shield store to return None + shield_id = "non-existent-shield" + self.shield_store.get_shield.return_value = None + + messages = [ + UserMessage(role="user", content="Hello, how are you?"), + ] + + with self.assertRaises(ValueError): + self.run_async(self.adapter.run_shield(shield_id, messages)) + + # Verify the shield store was called + self.shield_store.get_shield.assert_called_once_with(shield_id) + + # Verify the Guardrails API was not called + self.mock_guardrails_post.assert_not_called() + + def test_run_shield_http_error(self): + shield_id = "test-shield" + shield = Shield( + provider_id="nvidia", + type="shield", + identifier=shield_id, + provider_resource_id="test-model", + ) + self.shield_store.get_shield.return_value = shield + + # Mock Guardrails API to raise an exception + error_msg = "API Error: 500 Internal Server Error" + self.mock_guardrails_post.side_effect = Exception(error_msg) + + # Running the shield should raise an exception + messages = [ + UserMessage(role="user", content="Hello, how are you?"), + CompletionMessage( + role="assistant", + content="I'm doing well, thank you for asking!", + stop_reason="end_of_message", + tool_calls=[], + ), + ] + with self.assertRaises(Exception) as context: + self.run_async(self.adapter.run_shield(shield_id, messages)) + + # Verify the shield store was called + self.shield_store.get_shield.assert_called_once_with(shield_id) + + # Verify the Guardrails API was called correctly + self.mock_guardrails_post.assert_called_once_with( + path="/v1/guardrail/checks", + data={ + "model": shield_id, + "messages": [ + json.loads(messages[0].model_dump_json()), + json.loads(messages[1].model_dump_json()), + ], + "temperature": 1.0, + "top_p": 1, + "frequency_penalty": 0, + "presence_penalty": 0, + "max_tokens": 160, + "stream": False, + "guardrails": { + "config_id": "self-check", + }, + }, + ) + # Verify the exception message + assert error_msg in str(context.exception) + + def test_init_nemo_guardrails(self): + from llama_stack.providers.remote.safety.nvidia.nvidia import NeMoGuardrails + + test_config_id = "test-custom-config-id" + config = NVIDIASafetyConfig( + guardrails_service_url=os.environ["NVIDIA_GUARDRAILS_URL"], + config_id=test_config_id, + ) + # Initialize with default parameters + test_model = "test-model" + guardrails = NeMoGuardrails(config, test_model) + + # Verify the attributes are set correctly + assert guardrails.config_id == test_config_id + assert guardrails.model == test_model + assert guardrails.threshold == 0.9 # Default value + assert guardrails.temperature == 1.0 # Default value + assert guardrails.guardrails_service_url == os.environ["NVIDIA_GUARDRAILS_URL"] + + # Initialize with custom parameters + guardrails = NeMoGuardrails(config, test_model, threshold=0.8, temperature=0.7) + + # Verify the attributes are set correctly + assert guardrails.config_id == test_config_id + assert guardrails.model == test_model + assert guardrails.threshold == 0.8 + assert guardrails.temperature == 0.7 + assert guardrails.guardrails_service_url == os.environ["NVIDIA_GUARDRAILS_URL"] + + def test_init_nemo_guardrails_invalid_temperature(self): + from llama_stack.providers.remote.safety.nvidia.nvidia import NeMoGuardrails + + config = NVIDIASafetyConfig( + guardrails_service_url=os.environ["NVIDIA_GUARDRAILS_URL"], + config_id="test-custom-config-id", + ) + with self.assertRaises(ValueError): + NeMoGuardrails(config, "test-model", temperature=0) diff --git a/tests/unit/providers/nvidia/test_supervised_fine_tuning.py b/tests/unit/providers/nvidia/test_supervised_fine_tuning.py index 7ce89144b..43e0ac11c 100644 --- a/tests/unit/providers/nvidia/test_supervised_fine_tuning.py +++ b/tests/unit/providers/nvidia/test_supervised_fine_tuning.py @@ -200,35 +200,48 @@ class TestNvidiaPostTraining(unittest.TestCase): ) def test_get_training_job_status(self): - self.mock_make_request.return_value = { - "created_at": "2024-12-09T04:06:28.580220", - "updated_at": "2024-12-09T04:21:19.852832", - "status": "completed", - "steps_completed": 1210, - "epochs_completed": 2, - "percentage_done": 100.0, - "best_epoch": 2, - "train_loss": 1.718016266822815, - "val_loss": 1.8661999702453613, - } + customizer_status_to_job_status = [ + ("running", "in_progress"), + ("completed", "completed"), + ("failed", "failed"), + ("cancelled", "cancelled"), + ("pending", "scheduled"), + ("unknown", "scheduled"), + ] - job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" + for customizer_status, expected_status in customizer_status_to_job_status: + with self.subTest(customizer_status=customizer_status, expected_status=expected_status): + self.mock_make_request.return_value = { + "created_at": "2024-12-09T04:06:28.580220", + "updated_at": "2024-12-09T04:21:19.852832", + "status": customizer_status, + "steps_completed": 1210, + "epochs_completed": 2, + "percentage_done": 100.0, + "best_epoch": 2, + "train_loss": 1.718016266822815, + "val_loss": 1.8661999702453613, + } - status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id)) + job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" - assert isinstance(status, NvidiaPostTrainingJobStatusResponse) - assert status.status.value == "completed" - assert status.steps_completed == 1210 - assert status.epochs_completed == 2 - assert status.percentage_done == 100.0 - assert status.best_epoch == 2 - assert status.train_loss == 1.718016266822815 - assert status.val_loss == 1.8661999702453613 + status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id)) - self.mock_make_request.assert_called_once() - self._assert_request( - self.mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id} - ) + assert isinstance(status, NvidiaPostTrainingJobStatusResponse) + assert status.status.value == expected_status + assert status.steps_completed == 1210 + assert status.epochs_completed == 2 + assert status.percentage_done == 100.0 + assert status.best_epoch == 2 + assert status.train_loss == 1.718016266822815 + assert status.val_loss == 1.8661999702453613 + + self._assert_request( + self.mock_make_request, + "GET", + f"/v1/customization/jobs/{job_id}/status", + expected_params={"job_id": job_id}, + ) def test_get_training_jobs(self): job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" diff --git a/tests/unit/providers/utils/test_scheduler.py b/tests/unit/providers/utils/test_scheduler.py new file mode 100644 index 000000000..76f0da8ce --- /dev/null +++ b/tests/unit/providers/utils/test_scheduler.py @@ -0,0 +1,120 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import asyncio + +import pytest + +from llama_stack.providers.utils.scheduler import JobStatus, Scheduler + + +@pytest.mark.asyncio +async def test_scheduler_unknown_backend(): + with pytest.raises(ValueError): + Scheduler(backend="unknown") + + +@pytest.mark.asyncio +async def test_scheduler_naive(): + sched = Scheduler() + + # make sure the scheduler starts empty + with pytest.raises(ValueError): + sched.get_job("unknown") + assert sched.get_jobs() == [] + + called = False + + # schedule a job that will exercise the handlers + async def job_handler(on_log, on_status, on_artifact): + nonlocal called + called = True + # exercise the handlers + on_log("test log1") + on_log("test log2") + on_artifact({"type": "type1", "path": "path1"}) + on_artifact({"type": "type2", "path": "path2"}) + on_status(JobStatus.completed) + + job_id = "test_job_id" + job_type = "test_job_type" + sched.schedule(job_type, job_id, job_handler) + + # make sure the job was properly registered + with pytest.raises(ValueError): + sched.get_job("unknown") + assert sched.get_job(job_id) is not None + assert sched.get_jobs() == [sched.get_job(job_id)] + + assert sched.get_jobs("unknown") == [] + assert sched.get_jobs(job_type) == [sched.get_job(job_id)] + + # now shut the scheduler down and make sure the job ran + await sched.shutdown() + + assert called + + job = sched.get_job(job_id) + assert job is not None + + assert job.status == JobStatus.completed + + assert job.scheduled_at is not None + assert job.started_at is not None + assert job.completed_at is not None + assert job.scheduled_at < job.started_at < job.completed_at + + assert job.artifacts == [ + {"type": "type1", "path": "path1"}, + {"type": "type2", "path": "path2"}, + ] + assert [msg[1] for msg in job.logs] == ["test log1", "test log2"] + assert job.logs[0][0] < job.logs[1][0] + + +@pytest.mark.asyncio +async def test_scheduler_naive_handler_raises(): + sched = Scheduler() + + async def failing_job_handler(on_log, on_status, on_artifact): + on_status(JobStatus.running) + raise ValueError("test error") + + job_id = "test_job_id1" + job_type = "test_job_type" + sched.schedule(job_type, job_id, failing_job_handler) + + job = sched.get_job(job_id) + assert job is not None + + # confirm the exception made the job transition to failed state, even + # though it was set to `running` before the error + for _ in range(10): + if job.status == JobStatus.failed: + break + await asyncio.sleep(0.1) + assert job.status == JobStatus.failed + + # confirm that the raised error got registered in log + assert job.logs[0][1] == "test error" + + # even after failed job, we can schedule another one + called = False + + async def successful_job_handler(on_log, on_status, on_artifact): + nonlocal called + called = True + on_status(JobStatus.completed) + + job_id = "test_job_id2" + sched.schedule(job_type, job_id, successful_job_handler) + + await sched.shutdown() + + assert called + job = sched.get_job(job_id) + assert job is not None + assert job.status == JobStatus.completed diff --git a/tests/unit/server/test_sse.py b/tests/unit/server/test_sse.py new file mode 100644 index 000000000..4a76bdc9b --- /dev/null +++ b/tests/unit/server/test_sse.py @@ -0,0 +1,55 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import asyncio + +import pytest + +from llama_stack.distribution.server.server import create_sse_event, sse_generator + + +@pytest.mark.asyncio +async def test_sse_generator_basic(): + # An AsyncIterator wrapped in an Awaitable, just like our web methods + async def async_event_gen(): + async def event_gen(): + yield "Test event 1" + yield "Test event 2" + + return event_gen() + + sse_gen = sse_generator(async_event_gen()) + assert sse_gen is not None + + # Test that the events are streamed correctly + seen_events = [] + async for event in sse_gen: + seen_events.append(event) + assert len(seen_events) == 2 + assert seen_events[0] == create_sse_event("Test event 1") + assert seen_events[1] == create_sse_event("Test event 2") + + +@pytest.mark.asyncio +async def test_sse_generator_client_disconnected(): + # An AsyncIterator wrapped in an Awaitable, just like our web methods + async def async_event_gen(): + async def event_gen(): + yield "Test event 1" + # Simulate a client disconnect before emitting event 2 + raise asyncio.CancelledError() + + return event_gen() + + sse_gen = sse_generator(async_event_gen()) + assert sse_gen is not None + + # Start reading the events, ensuring this doesn't raise an exception + seen_events = [] + async for event in sse_gen: + seen_events.append(event) + assert len(seen_events) == 1 + assert seen_events[0] == create_sse_event("Test event 1") diff --git a/tests/verifications/README.md b/tests/verifications/README.md index 986ff1087..88762e0ba 100644 --- a/tests/verifications/README.md +++ b/tests/verifications/README.md @@ -8,29 +8,44 @@ This framework allows you to run the same set of verification tests against diff ## Features -The verification suite currently tests: +The verification suite currently tests the following in both streaming and non-streaming modes: -- Basic chat completions (streaming and non-streaming) +- Basic chat completions - Image input capabilities - Structured JSON output formatting - Tool calling functionality +## Report + +The lastest report can be found at [REPORT.md](REPORT.md). + +To update the report, ensure you have the API keys set, +```bash +export OPENAI_API_KEY= +export FIREWORKS_API_KEY= +export TOGETHER_API_KEY= +``` +then run +```bash +uv run --with-editable ".[dev]" python tests/verifications/generate_report.py --run-tests +``` + ## Running Tests To run the verification tests, use pytest with the following parameters: ```bash cd llama-stack -pytest tests/verifications/openai --provider= +pytest tests/verifications/openai_api --provider= ``` Example: ```bash # Run all tests -pytest tests/verifications/openai --provider=together +pytest tests/verifications/openai_api --provider=together # Only run tests with Llama 4 models -pytest tests/verifications/openai --provider=together -k 'Llama-4' +pytest tests/verifications/openai_api --provider=together -k 'Llama-4' ``` ### Parameters @@ -41,23 +56,22 @@ pytest tests/verifications/openai --provider=together -k 'Llama-4' ## Supported Providers -The verification suite currently supports: -- OpenAI -- Fireworks -- Together -- Groq -- Cerebras +The verification suite supports any provider with an OpenAI compatible endpoint. + +See `tests/verifications/conf/` for the list of supported providers. + +To run on a new provider, simply add a new yaml file to the `conf/` directory with the provider config. See `tests/verifications/conf/together.yaml` for an example. ## Adding New Test Cases -To add new test cases, create appropriate JSON files in the `openai/fixtures/test_cases/` directory following the existing patterns. +To add new test cases, create appropriate JSON files in the `openai_api/fixtures/test_cases/` directory following the existing patterns. ## Structure - `__init__.py` - Marks the directory as a Python package -- `conftest.py` - Global pytest configuration and fixtures -- `openai/` - Tests specific to OpenAI-compatible APIs +- `conf/` - Provider-specific configuration files +- `openai_api/` - Tests specific to OpenAI-compatible APIs - `fixtures/` - Test fixtures and utilities - `fixtures.py` - Provider-specific fixtures - `load.py` - Utilities for loading test cases diff --git a/tests/verifications/REPORT.md b/tests/verifications/REPORT.md index d5715ae21..2a700fa9c 100644 --- a/tests/verifications/REPORT.md +++ b/tests/verifications/REPORT.md @@ -1,6 +1,6 @@ # Test Results Report -*Generated on: 2025-04-08 21:14:02* +*Generated on: 2025-04-17 12:42:33* *This report was generated by running `python tests/verifications/generate_report.py`* @@ -15,74 +15,218 @@ | Provider | Pass Rate | Tests Passed | Total Tests | | --- | --- | --- | --- | -| Together | 67.7% | 21 | 31 | -| Fireworks | 90.3% | 28 | 31 | -| Openai | 100.0% | 22 | 22 | +| Meta_reference | 100.0% | 28 | 28 | +| Together | 50.0% | 40 | 80 | +| Fireworks | 50.0% | 40 | 80 | +| Openai | 100.0% | 56 | 56 | +## Meta_reference + +*Tests run on: 2025-04-17 12:37:11* + +```bash +# Run all tests for this provider: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=meta_reference -v + +# Example: Run only the 'stream=False' case of test_chat_multi_turn_multiple_images: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=meta_reference -k "test_chat_multi_turn_multiple_images and stream=False" +``` + + +**Model Key (Meta_reference)** + +| Display Name | Full Model ID | +| --- | --- | +| Llama-4-Scout-Instruct | `meta-llama/Llama-4-Scout-17B-16E-Instruct` | + + +| Test | Llama-4-Scout-Instruct | +| --- | --- | +| test_chat_multi_turn_multiple_images (stream=False) | ✅ | +| test_chat_multi_turn_multiple_images (stream=True) | ✅ | +| test_chat_non_streaming_basic (earth) | ✅ | +| test_chat_non_streaming_basic (saturn) | ✅ | +| test_chat_non_streaming_image | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (text_then_weather_tool) | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (weather_tool_then_text) | ✅ | +| test_chat_non_streaming_structured_output (calendar) | ✅ | +| test_chat_non_streaming_structured_output (math) | ✅ | +| test_chat_non_streaming_tool_calling | ✅ | +| test_chat_non_streaming_tool_choice_none | ✅ | +| test_chat_non_streaming_tool_choice_required | ✅ | +| test_chat_streaming_basic (earth) | ✅ | +| test_chat_streaming_basic (saturn) | ✅ | +| test_chat_streaming_image | ✅ | +| test_chat_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | +| test_chat_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ✅ | +| test_chat_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ✅ | +| test_chat_streaming_multi_turn_tool_calling (text_then_weather_tool) | ✅ | +| test_chat_streaming_multi_turn_tool_calling (weather_tool_then_text) | ✅ | +| test_chat_streaming_structured_output (calendar) | ✅ | +| test_chat_streaming_structured_output (math) | ✅ | +| test_chat_streaming_tool_calling | ✅ | +| test_chat_streaming_tool_choice_none | ✅ | +| test_chat_streaming_tool_choice_required | ✅ | + ## Together -*Tests run on: 2025-04-08 16:19:59* +*Tests run on: 2025-04-17 12:27:45* ```bash -pytest tests/verifications/openai/test_chat_completion.py --provider=together -v +# Run all tests for this provider: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=together -v + +# Example: Run only the 'stream=False' case of test_chat_multi_turn_multiple_images: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=together -k "test_chat_multi_turn_multiple_images and stream=False" ``` -| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-17B-128E-Instruct | Llama-4-Scout-17B-16E-Instruct | + +**Model Key (Together)** + +| Display Name | Full Model ID | +| --- | --- | +| Llama-3.3-70B-Instruct | `meta-llama/Llama-3.3-70B-Instruct-Turbo` | +| Llama-4-Maverick-Instruct | `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8` | +| Llama-4-Scout-Instruct | `meta-llama/Llama-4-Scout-17B-16E-Instruct` | + + +| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-Instruct | Llama-4-Scout-Instruct | | --- | --- | --- | --- | -| test_chat_non_streaming_basic (case 0) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_basic (case 1) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_image (case 0) | ⚪ | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_tool_calling (case 0) | ✅ | ✅ | ✅ | -| test_chat_streaming_basic (case 0) | ✅ | ❌ | ❌ | -| test_chat_streaming_basic (case 1) | ✅ | ❌ | ❌ | -| test_chat_streaming_image (case 0) | ⚪ | ❌ | ❌ | -| test_chat_streaming_structured_output (case 0) | ✅ | ❌ | ❌ | -| test_chat_streaming_structured_output (case 1) | ✅ | ❌ | ❌ | +| test_chat_multi_turn_multiple_images (stream=False) | ⚪ | ✅ | ✅ | +| test_chat_multi_turn_multiple_images (stream=True) | ⚪ | ❌ | ❌ | +| test_chat_non_streaming_basic (earth) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_basic (saturn) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_image | ⚪ | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ✅ | ❌ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (text_then_weather_tool) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_multi_turn_tool_calling (weather_tool_then_text) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_structured_output (math) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_tool_calling | ✅ | ✅ | ✅ | +| test_chat_non_streaming_tool_choice_none | ❌ | ❌ | ❌ | +| test_chat_non_streaming_tool_choice_required | ✅ | ✅ | ✅ | +| test_chat_streaming_basic (earth) | ✅ | ❌ | ❌ | +| test_chat_streaming_basic (saturn) | ✅ | ❌ | ❌ | +| test_chat_streaming_image | ⚪ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (text_then_weather_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (weather_tool_then_text) | ❌ | ❌ | ❌ | +| test_chat_streaming_structured_output (calendar) | ✅ | ❌ | ❌ | +| test_chat_streaming_structured_output (math) | ✅ | ❌ | ❌ | +| test_chat_streaming_tool_calling | ✅ | ❌ | ❌ | +| test_chat_streaming_tool_choice_none | ❌ | ❌ | ❌ | +| test_chat_streaming_tool_choice_required | ✅ | ❌ | ❌ | ## Fireworks -*Tests run on: 2025-04-08 16:18:28* +*Tests run on: 2025-04-17 12:29:53* ```bash -pytest tests/verifications/openai/test_chat_completion.py --provider=fireworks -v +# Run all tests for this provider: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=fireworks -v + +# Example: Run only the 'stream=False' case of test_chat_multi_turn_multiple_images: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=fireworks -k "test_chat_multi_turn_multiple_images and stream=False" ``` -| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-17B-128E-Instruct | Llama-4-Scout-17B-16E-Instruct | + +**Model Key (Fireworks)** + +| Display Name | Full Model ID | +| --- | --- | +| Llama-3.3-70B-Instruct | `accounts/fireworks/models/llama-v3p3-70b-instruct` | +| Llama-4-Maverick-Instruct | `accounts/fireworks/models/llama4-maverick-instruct-basic` | +| Llama-4-Scout-Instruct | `accounts/fireworks/models/llama4-scout-instruct-basic` | + + +| Test | Llama-3.3-70B-Instruct | Llama-4-Maverick-Instruct | Llama-4-Scout-Instruct | | --- | --- | --- | --- | -| test_chat_non_streaming_basic (case 0) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_basic (case 1) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_image (case 0) | ⚪ | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ | ✅ | -| test_chat_non_streaming_tool_calling (case 0) | ✅ | ❌ | ❌ | -| test_chat_streaming_basic (case 0) | ✅ | ✅ | ✅ | -| test_chat_streaming_basic (case 1) | ✅ | ✅ | ✅ | -| test_chat_streaming_image (case 0) | ⚪ | ✅ | ✅ | -| test_chat_streaming_structured_output (case 0) | ✅ | ✅ | ✅ | -| test_chat_streaming_structured_output (case 1) | ❌ | ✅ | ✅ | +| test_chat_multi_turn_multiple_images (stream=False) | ⚪ | ✅ | ✅ | +| test_chat_multi_turn_multiple_images (stream=True) | ⚪ | ✅ | ✅ | +| test_chat_non_streaming_basic (earth) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_basic (saturn) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_image | ⚪ | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (add_product_tool) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_multi_turn_tool_calling (text_then_weather_tool) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_multi_turn_tool_calling (weather_tool_then_text) | ❌ | ❌ | ❌ | +| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_structured_output (math) | ✅ | ✅ | ✅ | +| test_chat_non_streaming_tool_calling | ❌ | ❌ | ❌ | +| test_chat_non_streaming_tool_choice_none | ✅ | ✅ | ✅ | +| test_chat_non_streaming_tool_choice_required | ✅ | ❌ | ❌ | +| test_chat_streaming_basic (earth) | ✅ | ✅ | ✅ | +| test_chat_streaming_basic (saturn) | ✅ | ✅ | ✅ | +| test_chat_streaming_image | ⚪ | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (add_product_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (text_then_weather_tool) | ❌ | ❌ | ❌ | +| test_chat_streaming_multi_turn_tool_calling (weather_tool_then_text) | ❌ | ❌ | ❌ | +| test_chat_streaming_structured_output (calendar) | ✅ | ✅ | ✅ | +| test_chat_streaming_structured_output (math) | ✅ | ✅ | ✅ | +| test_chat_streaming_tool_calling | ❌ | ❌ | ❌ | +| test_chat_streaming_tool_choice_none | ✅ | ✅ | ✅ | +| test_chat_streaming_tool_choice_required | ✅ | ❌ | ❌ | ## Openai -*Tests run on: 2025-04-08 16:22:02* +*Tests run on: 2025-04-17 12:34:08* ```bash -pytest tests/verifications/openai/test_chat_completion.py --provider=openai -v +# Run all tests for this provider: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=openai -v + +# Example: Run only the 'stream=False' case of test_chat_multi_turn_multiple_images: +pytest tests/verifications/openai_api/test_chat_completion.py --provider=openai -k "test_chat_multi_turn_multiple_images and stream=False" ``` + +**Model Key (Openai)** + +| Display Name | Full Model ID | +| --- | --- | +| gpt-4o | `gpt-4o` | +| gpt-4o-mini | `gpt-4o-mini` | + + | Test | gpt-4o | gpt-4o-mini | | --- | --- | --- | -| test_chat_non_streaming_basic (case 0) | ✅ | ✅ | -| test_chat_non_streaming_basic (case 1) | ✅ | ✅ | -| test_chat_non_streaming_image (case 0) | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 0) | ✅ | ✅ | -| test_chat_non_streaming_structured_output (case 1) | ✅ | ✅ | -| test_chat_non_streaming_tool_calling (case 0) | ✅ | ✅ | -| test_chat_streaming_basic (case 0) | ✅ | ✅ | -| test_chat_streaming_basic (case 1) | ✅ | ✅ | -| test_chat_streaming_image (case 0) | ✅ | ✅ | -| test_chat_streaming_structured_output (case 0) | ✅ | ✅ | -| test_chat_streaming_structured_output (case 1) | ✅ | ✅ | +| test_chat_multi_turn_multiple_images (stream=False) | ✅ | ✅ | +| test_chat_multi_turn_multiple_images (stream=True) | ✅ | ✅ | +| test_chat_non_streaming_basic (earth) | ✅ | ✅ | +| test_chat_non_streaming_basic (saturn) | ✅ | ✅ | +| test_chat_non_streaming_image | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (text_then_weather_tool) | ✅ | ✅ | +| test_chat_non_streaming_multi_turn_tool_calling (weather_tool_then_text) | ✅ | ✅ | +| test_chat_non_streaming_structured_output (calendar) | ✅ | ✅ | +| test_chat_non_streaming_structured_output (math) | ✅ | ✅ | +| test_chat_non_streaming_tool_calling | ✅ | ✅ | +| test_chat_non_streaming_tool_choice_none | ✅ | ✅ | +| test_chat_non_streaming_tool_choice_required | ✅ | ✅ | +| test_chat_streaming_basic (earth) | ✅ | ✅ | +| test_chat_streaming_basic (saturn) | ✅ | ✅ | +| test_chat_streaming_image | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (add_product_tool) | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (compare_monthly_expense_tool) | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (get_then_create_event_tool) | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (text_then_weather_tool) | ✅ | ✅ | +| test_chat_streaming_multi_turn_tool_calling (weather_tool_then_text) | ✅ | ✅ | +| test_chat_streaming_structured_output (calendar) | ✅ | ✅ | +| test_chat_streaming_structured_output (math) | ✅ | ✅ | +| test_chat_streaming_tool_calling | ✅ | ✅ | +| test_chat_streaming_tool_choice_none | ✅ | ✅ | +| test_chat_streaming_tool_choice_required | ✅ | ✅ | diff --git a/tests/verifications/conf/cerebras.yaml b/tests/verifications/conf/cerebras.yaml new file mode 100644 index 000000000..37fc713d6 --- /dev/null +++ b/tests/verifications/conf/cerebras.yaml @@ -0,0 +1,11 @@ +base_url: https://api.cerebras.ai/v1 +api_key_var: CEREBRAS_API_KEY +models: +- llama-3.3-70b +model_display_names: + llama-3.3-70b: Llama-3.3-70B-Instruct +test_exclusions: + llama-3.3-70b: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/fireworks-llama-stack.yaml b/tests/verifications/conf/fireworks-llama-stack.yaml new file mode 100644 index 000000000..fc78a1377 --- /dev/null +++ b/tests/verifications/conf/fireworks-llama-stack.yaml @@ -0,0 +1,15 @@ +base_url: http://localhost:8321/v1/openai/v1 +api_key_var: FIREWORKS_API_KEY +models: +- fireworks/llama-v3p3-70b-instruct +- fireworks/llama4-scout-instruct-basic +- fireworks/llama4-maverick-instruct-basic +model_display_names: + fireworks/llama-v3p3-70b-instruct: Llama-3.3-70B-Instruct + fireworks/llama4-scout-instruct-basic: Llama-4-Scout-Instruct + fireworks/llama4-maverick-instruct-basic: Llama-4-Maverick-Instruct +test_exclusions: + fireworks/llama-v3p3-70b-instruct: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/fireworks.yaml b/tests/verifications/conf/fireworks.yaml new file mode 100644 index 000000000..9bb21f706 --- /dev/null +++ b/tests/verifications/conf/fireworks.yaml @@ -0,0 +1,15 @@ +base_url: https://api.fireworks.ai/inference/v1 +api_key_var: FIREWORKS_API_KEY +models: +- accounts/fireworks/models/llama-v3p3-70b-instruct +- accounts/fireworks/models/llama4-scout-instruct-basic +- accounts/fireworks/models/llama4-maverick-instruct-basic +model_display_names: + accounts/fireworks/models/llama-v3p3-70b-instruct: Llama-3.3-70B-Instruct + accounts/fireworks/models/llama4-scout-instruct-basic: Llama-4-Scout-Instruct + accounts/fireworks/models/llama4-maverick-instruct-basic: Llama-4-Maverick-Instruct +test_exclusions: + accounts/fireworks/models/llama-v3p3-70b-instruct: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/groq-llama-stack.yaml b/tests/verifications/conf/groq-llama-stack.yaml new file mode 100644 index 000000000..6958bafc5 --- /dev/null +++ b/tests/verifications/conf/groq-llama-stack.yaml @@ -0,0 +1,15 @@ +base_url: http://localhost:8321/v1/openai/v1 +api_key_var: GROQ_API_KEY +models: +- groq/llama-3.3-70b-versatile +- groq/llama-4-scout-17b-16e-instruct +- groq/llama-4-maverick-17b-128e-instruct +model_display_names: + groq/llama-3.3-70b-versatile: Llama-3.3-70B-Instruct + groq/llama-4-scout-17b-16e-instruct: Llama-4-Scout-Instruct + groq/llama-4-maverick-17b-128e-instruct: Llama-4-Maverick-Instruct +test_exclusions: + groq/llama-3.3-70b-versatile: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/groq.yaml b/tests/verifications/conf/groq.yaml new file mode 100644 index 000000000..bc3de58e9 --- /dev/null +++ b/tests/verifications/conf/groq.yaml @@ -0,0 +1,15 @@ +base_url: https://api.groq.com/openai/v1 +api_key_var: GROQ_API_KEY +models: +- llama-3.3-70b-versatile +- meta-llama/llama-4-scout-17b-16e-instruct +- meta-llama/llama-4-maverick-17b-128e-instruct +model_display_names: + llama-3.3-70b-versatile: Llama-3.3-70B-Instruct + meta-llama/llama-4-scout-17b-16e-instruct: Llama-4-Scout-Instruct + meta-llama/llama-4-maverick-17b-128e-instruct: Llama-4-Maverick-Instruct +test_exclusions: + llama-3.3-70b-versatile: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/meta_reference.yaml b/tests/verifications/conf/meta_reference.yaml new file mode 100644 index 000000000..fb2680fe0 --- /dev/null +++ b/tests/verifications/conf/meta_reference.yaml @@ -0,0 +1,8 @@ +# LLAMA_STACK_PORT=5002 llama stack run meta-reference-gpu --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct --env INFERENCE_CHECKPOINT_DIR= +base_url: http://localhost:5002/v1/openai/v1 +api_key_var: foo +models: +- meta-llama/Llama-4-Scout-17B-16E-Instruct +model_display_names: + meta-llama/Llama-4-Scout-17B-16E-Instruct: Llama-4-Scout-Instruct +test_exclusions: {} diff --git a/tests/verifications/conf/openai-llama-stack.yaml b/tests/verifications/conf/openai-llama-stack.yaml new file mode 100644 index 000000000..de35439ae --- /dev/null +++ b/tests/verifications/conf/openai-llama-stack.yaml @@ -0,0 +1,9 @@ +base_url: http://localhost:8321/v1/openai/v1 +api_key_var: OPENAI_API_KEY +models: +- openai/gpt-4o +- openai/gpt-4o-mini +model_display_names: + openai/gpt-4o: gpt-4o + openai/gpt-4o-mini: gpt-4o-mini +test_exclusions: {} diff --git a/tests/verifications/conf/openai.yaml b/tests/verifications/conf/openai.yaml new file mode 100644 index 000000000..95a6259f7 --- /dev/null +++ b/tests/verifications/conf/openai.yaml @@ -0,0 +1,9 @@ +base_url: https://api.openai.com/v1 +api_key_var: OPENAI_API_KEY +models: +- gpt-4o +- gpt-4o-mini +model_display_names: + gpt-4o: gpt-4o + gpt-4o-mini: gpt-4o-mini +test_exclusions: {} diff --git a/tests/verifications/conf/together-llama-stack.yaml b/tests/verifications/conf/together-llama-stack.yaml new file mode 100644 index 000000000..719e2d776 --- /dev/null +++ b/tests/verifications/conf/together-llama-stack.yaml @@ -0,0 +1,15 @@ +base_url: http://localhost:8321/v1/openai/v1 +api_key_var: TOGETHER_API_KEY +models: +- together/meta-llama/Llama-3.3-70B-Instruct-Turbo +- together/meta-llama/Llama-4-Scout-17B-16E-Instruct +- together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 +model_display_names: + together/meta-llama/Llama-3.3-70B-Instruct-Turbo: Llama-3.3-70B-Instruct + together/meta-llama/Llama-4-Scout-17B-16E-Instruct: Llama-4-Scout-Instruct + together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8: Llama-4-Maverick-Instruct +test_exclusions: + together/meta-llama/Llama-3.3-70B-Instruct-Turbo: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conf/together.yaml b/tests/verifications/conf/together.yaml new file mode 100644 index 000000000..e8fb62ab9 --- /dev/null +++ b/tests/verifications/conf/together.yaml @@ -0,0 +1,15 @@ +base_url: https://api.together.xyz/v1 +api_key_var: TOGETHER_API_KEY +models: +- meta-llama/Llama-3.3-70B-Instruct-Turbo +- meta-llama/Llama-4-Scout-17B-16E-Instruct +- meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 +model_display_names: + meta-llama/Llama-3.3-70B-Instruct-Turbo: Llama-3.3-70B-Instruct + meta-llama/Llama-4-Scout-17B-16E-Instruct: Llama-4-Scout-Instruct + meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8: Llama-4-Maverick-Instruct +test_exclusions: + meta-llama/Llama-3.3-70B-Instruct-Turbo: + - test_chat_non_streaming_image + - test_chat_streaming_image + - test_chat_multi_turn_multiple_images diff --git a/tests/verifications/conftest.py b/tests/verifications/conftest.py index 08967e834..0b4a6feb7 100644 --- a/tests/verifications/conftest.py +++ b/tests/verifications/conftest.py @@ -4,6 +4,10 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +import re + +import pytest + def pytest_addoption(parser): parser.addoption( @@ -14,7 +18,7 @@ def pytest_addoption(parser): parser.addoption( "--api-key", action="store", - help="API key", + help="API key to use for the provider", ) parser.addoption( "--provider", @@ -24,5 +28,64 @@ def pytest_addoption(parser): pytest_plugins = [ - "tests.verifications.openai.fixtures.fixtures", + "pytest_jsonreport", + "tests.verifications.openai_api.fixtures.fixtures", + "tests.verifications.openai_api.fixtures.load", ] + + +@pytest.hookimpl(optionalhook=True) +def pytest_json_runtest_metadata(item, call): + """Add model and case_id to pytest-json report metadata.""" + metadata = {} + nodeid = item.nodeid + + # 1. Extract model from callspec if available + model = item.callspec.params.get("model") if hasattr(item, "callspec") else None + if model: + metadata["model"] = model + else: + # Fallback: Try parsing from nodeid (less reliable) + match_model = re.search(r"\[(.*?)-", nodeid) + if match_model: + model = match_model.group(1) # Store model even if found via fallback + metadata["model"] = model + else: + print(f"Warning: Could not determine model for test {nodeid}") + model = None # Ensure model is None if not found + + # 2. Extract case_id using the known model string if possible + if model: + # Construct a regex pattern to find the case_id *after* the model name and a hyphen. + # Escape the model name in case it contains regex special characters. + pattern = re.escape(model) + r"-(.*?)\]$" + match_case = re.search(pattern, nodeid) + if match_case: + case_id = match_case.group(1) + metadata["case_id"] = case_id + else: + # Fallback if the pattern didn't match (e.g., nodeid format unexpected) + # Try the old less specific regex as a last resort. + match_case_fallback = re.search(r"-(.*?)\]$", nodeid) + if match_case_fallback: + case_id = match_case_fallback.group(1) + metadata["case_id"] = case_id + print(f"Warning: Used fallback regex to parse case_id from nodeid {nodeid}") + else: + print(f"Warning: Could not parse case_id from nodeid {nodeid} even with fallback.") + if "case" in (item.callspec.params if hasattr(item, "callspec") else {}): + metadata["case_id"] = "parsing_failed" + elif "case" in (item.callspec.params if hasattr(item, "callspec") else {}): + # Cannot reliably parse case_id without model, but we know it's a case test. + # Try the generic fallback regex. + match_case_fallback = re.search(r"-(.*?)\]$", nodeid) + if match_case_fallback: + case_id = match_case_fallback.group(1) + metadata["case_id"] = case_id + print(f"Warning: Used fallback regex to parse case_id from nodeid {nodeid} (model unknown)") + else: + print(f"Warning: Could not parse case_id from nodeid {nodeid} (model unknown)") + metadata["case_id"] = "parsing_failed_no_model" + # else: Not a test with a model or case param we need to handle. + + return metadata diff --git a/tests/verifications/generate_report.py b/tests/verifications/generate_report.py index 98a5930da..f0894bfce 100755 --- a/tests/verifications/generate_report.py +++ b/tests/verifications/generate_report.py @@ -3,28 +3,41 @@ # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. - """ Test Report Generator -Requirements: - pip install pytest-json-report +Description: + This script runs pytest tests (specifically designed for OpenAI API compatibility checks) + for different providers, aggregates the results from JSON reports, and generates + a markdown summary report (REPORT.md). + + It automatically cleans up old test result files, keeping only the latest + per provider. + + +Configuration: + - Provider details (models, display names) are loaded from `tests/verifications/config.yaml`. + - Test cases are defined in YAML files within `tests/verifications/openai_api/fixtures/test_cases/`. + - Test results are stored in `tests/verifications/test_results/`. Usage: - # Generate a report using existing test results + # Generate a report using the latest existing test results python tests/verifications/generate_report.py - # Run tests and generate a report + # Run tests for all configured providers and generate a report python tests/verifications/generate_report.py --run-tests - # Run tests for specific providers + # Run tests only for specific providers (space-separated) python tests/verifications/generate_report.py --run-tests --providers fireworks openai + # Run tests matching a keyword expression (uses pytest -k) + python tests/verifications/generate_report.py --run-tests --providers fireworks --k "streaming" + + # Run a specific test case for a provider + python tests/verifications/generate_report.py --run-tests --providers fireworks --k "test_chat_streaming_basic and basic_earth" + # Save the report to a custom location python tests/verifications/generate_report.py --output custom_report.md - - # Clean up old test result files - python tests/verifications/generate_report.py --cleanup """ import argparse @@ -35,6 +48,9 @@ import subprocess import time from collections import defaultdict from pathlib import Path +from typing import Any, DefaultDict, Dict, Set, Tuple + +from tests.verifications.openai_api.fixtures.fixtures import _load_all_verification_configs # Define the root directory for test results RESULTS_DIR = Path(__file__).parent / "test_results" @@ -43,47 +59,57 @@ RESULTS_DIR.mkdir(exist_ok=True) # Maximum number of test result files to keep per provider MAX_RESULTS_PER_PROVIDER = 1 -# Custom order of providers -PROVIDER_ORDER = ["together", "fireworks", "groq", "cerebras", "openai"] +DEFAULT_PROVIDERS = [ + "meta_reference", + "together", + "fireworks", + "openai", +] -# Dictionary to store providers and their models (will be populated dynamically) -PROVIDERS = defaultdict(set) - -# Tests will be dynamically extracted from results -ALL_TESTS = set() +VERIFICATION_CONFIG = _load_all_verification_configs() -def run_tests(provider): +def run_tests(provider, keyword=None): """Run pytest for a specific provider and save results""" print(f"Running tests for provider: {provider}") timestamp = int(time.time()) - result_file = RESULTS_DIR / f"{provider}_{timestamp}.json" - temp_json_file = RESULTS_DIR / f"temp_{provider}_{timestamp}.json" + # Use a constant filename for the final result and temp file + result_file = RESULTS_DIR / f"{provider}.json" + temp_json_file = RESULTS_DIR / f"temp_{provider}.json" + + # Determine project root directory relative to this script + project_root = Path(__file__).parent.parent.parent # Run pytest with JSON output cmd = [ "python", "-m", "pytest", - "tests/verifications/openai/test_chat_completion.py", + "tests/verifications/openai_api/test_chat_completion.py", f"--provider={provider}", "-v", "--json-report", f"--json-report-file={temp_json_file}", ] + # Append -k argument if provided + if keyword: + cmd.extend(["-k", keyword]) + try: - result = subprocess.run(cmd, capture_output=True, text=True) + # Run subprocess with cwd set to project root + result = subprocess.run(cmd, capture_output=True, text=True, cwd=project_root) print(f"Pytest exit code: {result.returncode}") # Check if the JSON file was created if temp_json_file.exists(): - # Read the JSON file and save it to our results format with open(temp_json_file, "r") as f: test_results = json.load(f) - # Save results to our own format with a trailing newline + test_results["run_timestamp"] = timestamp + + # Save results to the final (overwritten) file with open(result_file, "w") as f: json.dump(test_results, f, indent=2) f.write("\n") # Add a trailing newline for precommit @@ -103,18 +129,48 @@ def run_tests(provider): return None -def parse_results(result_file): - """Parse the test results file and extract pass/fail by model and test""" +def run_multiple_tests(providers_to_run: list[str], keyword: str | None): + """Runs tests for a list of providers.""" + print(f"Running tests for providers: {', '.join(providers_to_run)}") + for provider in providers_to_run: + run_tests(provider.strip(), keyword=keyword) + print("Finished running tests.") + + +def parse_results( + result_file, +) -> Tuple[DefaultDict[str, DefaultDict[str, Dict[str, bool]]], DefaultDict[str, Set[str]], Set[str], str]: + """Parse a single test results file. + + Returns: + Tuple containing: + - parsed_results: DefaultDict[provider, DefaultDict[model, Dict[test_name, pass_status]]] + - providers_in_file: DefaultDict[provider, Set[model]] found in this file. + - tests_in_file: Set[test_name] found in this file. + - run_timestamp: Timestamp when the test was run + """ if not os.path.exists(result_file): print(f"Results file does not exist: {result_file}") - return {} + # Return empty defaultdicts/set matching the type hint + return defaultdict(lambda: defaultdict(dict)), defaultdict(set), set(), "" with open(result_file, "r") as f: results = json.load(f) - # Initialize results dictionary - parsed_results = defaultdict(lambda: defaultdict(dict)) - provider = os.path.basename(result_file).split("_")[0] + # Initialize results dictionary with specific types + parsed_results: DefaultDict[str, DefaultDict[str, Dict[str, bool]]] = defaultdict(lambda: defaultdict(dict)) + providers_in_file: DefaultDict[str, Set[str]] = defaultdict(set) + tests_in_file: Set[str] = set() + # Extract provider from filename (e.g., "openai.json" -> "openai") + provider: str = result_file.stem + + # Extract run timestamp from the JSON data + run_timestamp_unix = results.get("run_timestamp") + run_timestamp_str = ( + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(run_timestamp_unix)) + if run_timestamp_unix is not None + else "Unknown" + ) # Debug: Print summary of test results print(f"Test results summary for {provider}:") @@ -127,195 +183,118 @@ def parse_results(result_file): # Extract test results if "tests" not in results or not results["tests"]: print(f"No test results found in {result_file}") - return parsed_results + # Return empty defaultdicts/set matching the type hint + return defaultdict(lambda: defaultdict(dict)), defaultdict(set), set(), "" - # Map for normalizing model names - model_name_map = { - "Llama-3.3-8B-Instruct": "Llama-3.3-8B-Instruct", - "Llama-3.3-70B-Instruct": "Llama-3.3-70B-Instruct", - "Llama-3.2-11B-Vision-Instruct": "Llama-3.2-11B-Vision-Instruct", - "Llama-4-Scout-17B-16E": "Llama-4-Scout-17B-16E-Instruct", - "Llama-4-Scout-17B-16E-Instruct": "Llama-4-Scout-17B-16E-Instruct", - "Llama-4-Maverick-17B-128E": "Llama-4-Maverick-17B-128E-Instruct", - "Llama-4-Maverick-17B-128E-Instruct": "Llama-4-Maverick-17B-128E-Instruct", - "gpt-4o": "gpt-4o", - "gpt-4o-mini": "gpt-4o-mini", - } - - # Keep track of all models found for this provider - provider_models = set() - - # Track all unique test cases for each base test - test_case_counts = defaultdict(int) - - # First pass: count the number of cases for each test + # Process the tests for test in results["tests"]: test_id = test.get("nodeid", "") - if "call" in test: - test_name = test_id.split("::")[1].split("[")[0] - input_output_match = re.search(r"\[input_output(\d+)-", test_id) - if input_output_match: - test_case_counts[test_name] += 1 + if not (call_phase := test.get("call")): + continue + call_outcome = call_phase.get("outcome") + if call_outcome not in ("passed", "failed"): + continue - # Second pass: process the tests with case numbers only for tests with multiple cases - for test in results["tests"]: - test_id = test.get("nodeid", "") - outcome = test.get("outcome", "") + # --- Extract data from metadata --- + metadata = test.get("metadata", {}) + model = metadata.get("model") + case_id = metadata.get("case_id") # String ID (if provided) + case_index = metadata.get("case_index") # Integer index (if no ID provided) - # Only process tests that have been executed (not setup errors) - if "call" in test: - # Regular test that actually ran - test_name = test_id.split("::")[1].split("[")[0] + # Check if we have a model and at least one case identifier + if not model or (case_id is None and case_index is None): + print( + f"Warning: Missing 'model' or case identifier ('case_id'/'case_index') metadata for test: {test_id}. Skipping." + ) + continue - # Extract input_output parameter to differentiate between test cases - input_output_match = re.search(r"\[input_output(\d+)-", test_id) - input_output_index = input_output_match.group(1) if input_output_match else "" + try: + test_name_base = test_id.split("::")[1].split("[")[0] + except (IndexError, ValueError) as e: + print(f"Warning: Could not parse base test name for {test_id}. Error: {e}. Skipping.") + continue - # Create a more detailed test name with case number only if there are multiple cases - detailed_test_name = test_name - if input_output_index and test_case_counts[test_name] > 1: - detailed_test_name = f"{test_name} (case {input_output_index})" + # Construct detailed test name using ID or index + if case_id is not None: + detailed_test_name = f"{test_name_base} ({case_id})" + elif case_index == 0: + # If case_id is missing and index is 0, assume single case, use base name only + detailed_test_name = test_name_base + elif case_index is not None: # case_index > 0 + # Use case_index for naming if case_id wasn't provided and index > 0 + detailed_test_name = f"{test_name_base} (case{case_index})" + else: + # This case should be prevented by the earlier check, but handle defensively + print(f"Error: No case identifier found for test {test_id} after initial check. Skipping.") + continue - # Track all unique test names - ALL_TESTS.add(detailed_test_name) + # Populate collections for this file + tests_in_file.add(detailed_test_name) + providers_in_file[provider].add(model) - # Extract model name from test_id using a more robust pattern - model_match = re.search(r"\[input_output\d+-([^\]]+)\]", test_id) - if model_match: - raw_model = model_match.group(1) - model = model_name_map.get(raw_model, raw_model) + if call_outcome == "passed": + parsed_results[provider][model][detailed_test_name] = True + elif call_outcome == "failed": + parsed_results[provider][model][detailed_test_name] = False - # Add to set of known models for this provider - provider_models.add(model) + # Final Summary Warning (Optional) + if not parsed_results.get(provider): + print(f"Warning: No valid test results parsed for provider {provider} from file {result_file}") - # Also update the global PROVIDERS dictionary - PROVIDERS[provider].add(model) - - # Store the result - if outcome == "passed": - parsed_results[provider][model][detailed_test_name] = True - else: - parsed_results[provider][model][detailed_test_name] = False - - print(f"Parsed test result: {detailed_test_name} for model {model}: {outcome}") - elif outcome == "error" and "setup" in test and test.get("setup", {}).get("outcome") == "failed": - # This is a setup failure, which likely means a configuration issue - # Extract the base test name and model name - parts = test_id.split("::") - if len(parts) > 1: - test_name = parts[1].split("[")[0] - - # Extract input_output parameter to differentiate between test cases - input_output_match = re.search(r"\[input_output(\d+)-", test_id) - input_output_index = input_output_match.group(1) if input_output_match else "" - - # Create a more detailed test name with case number only if there are multiple cases - detailed_test_name = test_name - if input_output_index and test_case_counts[test_name] > 1: - detailed_test_name = f"{test_name} (case {input_output_index})" - - if detailed_test_name in ALL_TESTS: - # Use a more robust pattern for model extraction - model_match = re.search(r"\[input_output\d+-([^\]]+)\]", test_id) - if model_match: - raw_model = model_match.group(1) - model = model_name_map.get(raw_model, raw_model) - - # Add to set of known models for this provider - provider_models.add(model) - - # Also update the global PROVIDERS dictionary - PROVIDERS[provider].add(model) - - # Mark setup failures as false (failed) - parsed_results[provider][model][detailed_test_name] = False - print(f"Parsed setup failure: {detailed_test_name} for model {model}") - - # Debug: Print parsed results - if not parsed_results[provider]: - print(f"Warning: No test results parsed for provider {provider}") - else: - for model, tests in parsed_results[provider].items(): - print(f"Model {model}: {len(tests)} test results") - - return parsed_results + return parsed_results, providers_in_file, tests_in_file, run_timestamp_str -def cleanup_old_results(): - """Clean up old test result files, keeping only the newest N per provider""" - for provider in PROVIDERS.keys(): - # Get all result files for this provider - provider_files = list(RESULTS_DIR.glob(f"{provider}_*.json")) +def generate_report( + results_dict: Dict[str, Any], + providers: Dict[str, Set[str]], + all_tests: Set[str], + provider_timestamps: Dict[str, str], + output_file=None, +): + """Generate the markdown report. - # Sort by timestamp (newest first) - provider_files.sort(key=lambda x: int(x.stem.split("_")[1]), reverse=True) - - # Remove old files beyond the max to keep - if len(provider_files) > MAX_RESULTS_PER_PROVIDER: - for old_file in provider_files[MAX_RESULTS_PER_PROVIDER:]: - try: - old_file.unlink() - print(f"Removed old result file: {old_file}") - except Exception as e: - print(f"Error removing file {old_file}: {e}") - - -def get_latest_results_by_provider(): - """Get the latest test result file for each provider""" - provider_results = {} - - # Get all result files - result_files = list(RESULTS_DIR.glob("*.json")) - - # Extract all provider names from filenames - all_providers = set() - for file in result_files: - # File format is provider_timestamp.json - parts = file.stem.split("_") - if len(parts) >= 2: - all_providers.add(parts[0]) - - # Group by provider - for provider in all_providers: - provider_files = [f for f in result_files if f.name.startswith(f"{provider}_")] - - # Sort by timestamp (newest first) - provider_files.sort(key=lambda x: int(x.stem.split("_")[1]), reverse=True) - - if provider_files: - provider_results[provider] = provider_files[0] - - return provider_results - - -def generate_report(results_dict, output_file=None): - """Generate the markdown report""" + Args: + results_dict: Aggregated results [provider][model][test_name] -> status. + providers: Dict of all providers and their models {provider: {models}}. + The order of keys in this dict determines the report order. + all_tests: Set of all test names found. + provider_timestamps: Dict of provider to timestamp when tests were run + output_file: Optional path to save the report. + """ if output_file is None: # Default to creating the report in the same directory as this script output_file = Path(__file__).parent / "REPORT.md" else: output_file = Path(output_file) - # Get the timestamp from result files - provider_timestamps = {} - provider_results = get_latest_results_by_provider() - for provider, result_file in provider_results.items(): - # Extract timestamp from filename (format: provider_timestamp.json) - try: - timestamp_str = result_file.stem.split("_")[1] - timestamp = int(timestamp_str) - formatted_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timestamp)) - provider_timestamps[provider] = formatted_time - except (IndexError, ValueError): - provider_timestamps[provider] = "Unknown" + # Convert provider model sets to sorted lists (use passed-in providers dict) + providers_sorted = {prov: sorted(models) for prov, models in providers.items()} - # Convert provider model sets to sorted lists - for provider in PROVIDERS: - PROVIDERS[provider] = sorted(PROVIDERS[provider]) + # Sort tests alphabetically (use passed-in all_tests set) + sorted_tests = sorted(all_tests) - # Sort tests alphabetically - sorted_tests = sorted(ALL_TESTS) + # Calculate counts for each base test name + base_test_case_counts: DefaultDict[str, int] = defaultdict(int) + base_test_name_map: Dict[str, str] = {} + for test_name in sorted_tests: + match = re.match(r"^(.*?)( \([^)]+\))?$", test_name) + if match: + base_name = match.group(1).strip() + base_test_case_counts[base_name] += 1 + base_test_name_map[test_name] = base_name + else: + # Should not happen with current naming, but handle defensively + base_test_case_counts[test_name] += 1 + base_test_name_map[test_name] = test_name + + if not sorted_tests: + print("Warning: No test results found to generate a report.") + # Optionally create an empty report or return early + with open(output_file, "w") as f: + f.write("# Test Results Report\n\nNo test results found.\n") + print(f"Generated empty report: {output_file}") + return report = ["# Test Results Report\n"] report.append(f"*Generated on: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n") @@ -336,19 +315,15 @@ def generate_report(results_dict, output_file=None): # Add a summary section report.append("## Summary\n") - # Count total tests and passes + # Count total tests and passes (use passed-in providers and all_tests) total_tests = 0 passed_tests = 0 provider_totals = {} - - # Prepare summary data - for provider in PROVIDERS.keys(): + for provider, models in providers_sorted.items(): provider_passed = 0 provider_total = 0 - if provider in results_dict: - provider_models = PROVIDERS[provider] - for model in provider_models: + for model in models: if model in results_dict[provider]: model_results = results_dict[provider][model] for test in sorted_tests: @@ -358,33 +333,21 @@ def generate_report(results_dict, output_file=None): if model_results[test]: provider_passed += 1 passed_tests += 1 - provider_totals[provider] = (provider_passed, provider_total) - # Add summary table + # Add summary table (use the order from the providers dict keys) report.append("| Provider | Pass Rate | Tests Passed | Total Tests |") report.append("| --- | --- | --- | --- |") - - # Use the custom order for summary table - for provider in [p for p in PROVIDER_ORDER if p in PROVIDERS]: + # Iterate through providers in the order they appear in the input dict + for provider in providers_sorted.keys(): passed, total = provider_totals.get(provider, (0, 0)) pass_rate = f"{(passed / total * 100):.1f}%" if total > 0 else "N/A" report.append(f"| {provider.capitalize()} | {pass_rate} | {passed} | {total} |") - - # Add providers not in the custom order - for provider in [p for p in PROVIDERS if p not in PROVIDER_ORDER]: - passed, total = provider_totals.get(provider, (0, 0)) - pass_rate = f"{(passed / total * 100):.1f}%" if total > 0 else "N/A" - report.append(f"| {provider.capitalize()} | {pass_rate} | {passed} | {total} |") - report.append("\n") - # Process each provider in the custom order, then any additional providers - for provider in sorted( - PROVIDERS.keys(), key=lambda p: (PROVIDER_ORDER.index(p) if p in PROVIDER_ORDER else float("inf"), p) - ): - if not PROVIDERS[provider]: - # Skip providers with no models + for provider in providers_sorted.keys(): + provider_models = providers_sorted[provider] # Use sorted models + if not provider_models: continue report.append(f"\n## {provider.capitalize()}\n") @@ -394,34 +357,70 @@ def generate_report(results_dict, output_file=None): report.append(f"*Tests run on: {provider_timestamps[provider]}*\n") # Add test command for reproducing results - test_cmd = f"pytest tests/verifications/openai/test_chat_completion.py --provider={provider} -v" - report.append(f"```bash\n{test_cmd}\n```\n") + test_cmd_all = f"pytest tests/verifications/openai_api/test_chat_completion.py --provider={provider} -v" + report.append(f"```bash\n# Run all tests for this provider:\n{test_cmd_all}\n") - # Get the relevant models for this provider - provider_models = PROVIDERS[provider] + # Find an example test with a case ID + example_base_test_name = None + example_case_id = None + # Get first test as fallback base, handle empty list + first_test_name = sorted_tests[0] if sorted_tests else "unknown_test" - # Create table header with models as columns - header = "| Test | " + " | ".join(provider_models) + " |" + match = re.match(r"^(.*?) \((.*?)\)$", first_test_name) + if match: + example_base_test_name = match.group(1).strip() + example_case_id = match.group(2).strip() + else: + example_base_test_name = first_test_name + + base_name = base_test_name_map.get(first_test_name, first_test_name) # Get base name + case_count = base_test_case_counts.get(base_name, 1) # Get count + filter_str = f"{example_base_test_name} and {example_case_id}" if case_count > 1 else example_base_test_name + + test_cmd_specific_case = ( + f'pytest tests/verifications/openai_api/test_chat_completion.py --provider={provider} -k "{filter_str}"' + ) + report.append( + f"# Example: Run only the '{example_case_id}' case of {example_base_test_name}:\n{test_cmd_specific_case}\n```\n" + ) + + # Get display names (use passed-in providers dict) + provider_config = VERIFICATION_CONFIG.get("providers", {}).get(provider, {}) + display_name_map = provider_config.get("model_display_names", {}) + + # Add Model Key Table (use provider_models) + report.append(f"\n**Model Key ({provider.capitalize()})**\n") + provider_key_lines = ["| Display Name | Full Model ID |", "| --- | --- |"] + for model_id in provider_models: + display_name = display_name_map.get(model_id, model_id) + provider_key_lines.append(f"| {display_name} | `{model_id}` |") + report.extend(provider_key_lines) + report.append("\n") + + # Create results table header (use provider_models) + display_names = [display_name_map.get(m, m) for m in provider_models] + header = "| Test | " + " | ".join(display_names) + " |" separator = "| --- | " + " | ".join(["---"] * len(provider_models)) + " |" - report.append(header) report.append(separator) - # Get results for this provider - provider_results = results_dict.get(provider, {}) + # Get results for this provider from results_dict + provider_results_data = results_dict.get(provider, {}) - # Add rows for each test + # Add rows for each test (use sorted_tests) for test in sorted_tests: - row = f"| {test} |" + # Determine display name based on case count + base_name = base_test_name_map.get(test, test) # Get base name + case_count = base_test_case_counts.get(base_name, 1) # Get count + display_test_name = base_name if case_count == 1 else test # Choose display name + row = f"| {display_test_name} |" # Use display name - # Add results for each model in this test - for model in provider_models: - if model in provider_results and test in provider_results[model]: - result = pass_icon if provider_results[model][test] else fail_icon + for model_id in provider_models: + if model_id in provider_results_data and test in provider_results_data[model_id]: + result = pass_icon if provider_results_data[model_id][test] else fail_icon else: result = na_icon row += f" {result} |" - report.append(row) # Write to file @@ -439,46 +438,62 @@ def main(): "--providers", type=str, nargs="+", - help="Specify providers to test (comma-separated or space-separated, default: all)", + help="Specify providers to include/test (comma-separated or space-separated, default: uses DEFAULT_PROVIDERS)", ) parser.add_argument("--output", type=str, help="Output file location (default: tests/verifications/REPORT.md)") + parser.add_argument("--k", type=str, help="Keyword expression to filter tests (passed to pytest -k)") args = parser.parse_args() all_results = {} + final_providers_order = {} # Dictionary to store results, preserving processing order + aggregated_tests = set() + provider_timestamps = {} - if args.run_tests: - # Get list of available providers from command line or use detected providers - if args.providers: - # Handle both comma-separated and space-separated lists - test_providers = [] - for provider_arg in args.providers: - # Split by comma if commas are present - if "," in provider_arg: - test_providers.extend(provider_arg.split(",")) - else: - test_providers.append(provider_arg) - else: - # Default providers to test - test_providers = PROVIDER_ORDER - - for provider in test_providers: - provider = provider.strip() # Remove any whitespace - result_file = run_tests(provider) - if result_file: - provider_results = parse_results(result_file) - all_results.update(provider_results) + # 1. Determine the desired list and order of providers + if args.providers: + desired_providers = [] + for provider_arg in args.providers: + desired_providers.extend([p.strip() for p in provider_arg.split(",")]) else: - # Use existing results - provider_result_files = get_latest_results_by_provider() + desired_providers = DEFAULT_PROVIDERS # Use default order/list - for result_file in provider_result_files.values(): - provider_results = parse_results(result_file) - all_results.update(provider_results) + # 2. Run tests if requested (using the desired provider list) + if args.run_tests: + run_multiple_tests(desired_providers, args.k) - # Generate the report - generate_report(all_results, args.output) + for provider in desired_providers: + # Construct the expected result file path directly + result_file = RESULTS_DIR / f"{provider}.json" - cleanup_old_results() + if result_file.exists(): # Check if the specific file exists + print(f"Loading results for {provider} from {result_file}") + try: + parsed_data = parse_results(result_file) + parsed_results, providers_in_file, tests_in_file, run_timestamp = parsed_data + all_results.update(parsed_results) + aggregated_tests.update(tests_in_file) + + # Add models for this provider, ensuring it's added in the correct report order + if provider in providers_in_file: + if provider not in final_providers_order: + final_providers_order[provider] = set() + final_providers_order[provider].update(providers_in_file[provider]) + if run_timestamp != "Unknown": + provider_timestamps[provider] = run_timestamp + else: + print( + f"Warning: Provider '{provider}' found in desired list but not within its result file data ({result_file})." + ) + + except Exception as e: + print(f"Error parsing results for provider {provider} from {result_file}: {e}") + else: + # Only print warning if we expected results (i.e., provider was in the desired list) + print(f"Result file for desired provider '{provider}' not found at {result_file}. Skipping.") + + # 5. Generate the report using the filtered & ordered results + print(f"Final Provider Order for Report: {list(final_providers_order.keys())}") + generate_report(all_results, final_providers_order, aggregated_tests, provider_timestamps, args.output) if __name__ == "__main__": diff --git a/tests/verifications/openai-api-verification-run.yaml b/tests/verifications/openai-api-verification-run.yaml new file mode 100644 index 000000000..71885d058 --- /dev/null +++ b/tests/verifications/openai-api-verification-run.yaml @@ -0,0 +1,146 @@ +version: '2' +image_name: openai-api-verification +apis: +- inference +- telemetry +- tool_runtime +- vector_io +providers: + inference: + - provider_id: together + provider_type: remote::together + config: + url: https://api.together.xyz/v1 + api_key: ${env.TOGETHER_API_KEY:} + - provider_id: fireworks + provider_type: remote::fireworks + config: + url: https://api.fireworks.ai/inference/v1 + api_key: ${env.FIREWORKS_API_KEY} + - provider_id: groq + provider_type: remote::groq + config: + url: https://api.groq.com + api_key: ${env.GROQ_API_KEY} + - provider_id: openai + provider_type: remote::openai + config: + url: https://api.openai.com/v1 + api_key: ${env.OPENAI_API_KEY:} + - provider_id: sentence-transformers + provider_type: inline::sentence-transformers + config: {} + vector_io: + - provider_id: faiss + provider_type: inline::faiss + config: + kvstore: + type: sqlite + namespace: null + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/openai}/faiss_store.db + telemetry: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + service_name: "${env.OTEL_SERVICE_NAME:\u200B}" + sinks: ${env.TELEMETRY_SINKS:console,sqlite} + sqlite_db_path: ${env.SQLITE_DB_PATH:~/.llama/distributions/openai/trace_store.db} + tool_runtime: + - provider_id: brave-search + provider_type: remote::brave-search + config: + api_key: ${env.BRAVE_SEARCH_API_KEY:} + max_results: 3 + - provider_id: tavily-search + provider_type: remote::tavily-search + config: + api_key: ${env.TAVILY_SEARCH_API_KEY:} + max_results: 3 + - provider_id: code-interpreter + provider_type: inline::code-interpreter + config: {} + - provider_id: rag-runtime + provider_type: inline::rag-runtime + config: {} + - provider_id: model-context-protocol + provider_type: remote::model-context-protocol + config: {} + - provider_id: wolfram-alpha + provider_type: remote::wolfram-alpha + config: + api_key: ${env.WOLFRAM_ALPHA_API_KEY:} +metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/openai}/registry.db +models: +- metadata: {} + model_id: together/meta-llama/Llama-3.3-70B-Instruct-Turbo + provider_id: together + provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo + model_type: llm +- metadata: {} + model_id: together/meta-llama/Llama-4-Scout-17B-16E-Instruct + provider_id: together + provider_model_id: meta-llama/Llama-4-Scout-17B-16E-Instruct + model_type: llm +- metadata: {} + model_id: together/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 + provider_id: together + provider_model_id: meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 + model_type: llm +- metadata: {} + model_id: fireworks/llama-v3p3-70b-instruct + provider_id: fireworks + provider_model_id: accounts/fireworks/models/llama-v3p3-70b-instruct + model_type: llm +- metadata: {} + model_id: fireworks/llama4-scout-instruct-basic + provider_id: fireworks + provider_model_id: accounts/fireworks/models/llama4-scout-instruct-basic + model_type: llm +- metadata: {} + model_id: fireworks/llama4-maverick-instruct-basic + provider_id: fireworks + provider_model_id: accounts/fireworks/models/llama4-maverick-instruct-basic + model_type: llm +- metadata: {} + model_id: groq/llama-3.3-70b-versatile + provider_id: groq + provider_model_id: groq/llama-3.3-70b-versatile + model_type: llm +- metadata: {} + model_id: groq/llama-4-scout-17b-16e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-scout-17b-16e-instruct + model_type: llm +- metadata: {} + model_id: groq/llama-4-maverick-17b-128e-instruct + provider_id: groq + provider_model_id: groq/meta-llama/llama-4-maverick-17b-128e-instruct + model_type: llm +- metadata: {} + model_id: openai/gpt-4o + provider_id: openai + provider_model_id: openai/gpt-4o + model_type: llm +- metadata: {} + model_id: openai/gpt-4o-mini + provider_id: openai + provider_model_id: openai/gpt-4o-mini + model_type: llm +shields: [] +vector_dbs: [] +datasets: [] +scoring_fns: [] +benchmarks: [] +tool_groups: +- toolgroup_id: builtin::websearch + provider_id: tavily-search +- toolgroup_id: builtin::rag + provider_id: rag-runtime +- toolgroup_id: builtin::code_interpreter + provider_id: code-interpreter +- toolgroup_id: builtin::wolfram_alpha + provider_id: wolfram-alpha +server: + port: 8321 diff --git a/tests/verifications/openai/fixtures/fixtures.py b/tests/verifications/openai/fixtures/fixtures.py deleted file mode 100644 index b86de3662..000000000 --- a/tests/verifications/openai/fixtures/fixtures.py +++ /dev/null @@ -1,97 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -import os - -import pytest -from openai import OpenAI - - -@pytest.fixture -def providers_model_mapping(): - """ - Mapping from model names used in test cases to provider's model names. - """ - return { - "fireworks": { - "Llama-3.3-70B-Instruct": "accounts/fireworks/models/llama-v3p1-70b-instruct", - "Llama-3.2-11B-Vision-Instruct": "accounts/fireworks/models/llama-v3p2-11b-vision-instruct", - "Llama-4-Scout-17B-16E-Instruct": "accounts/fireworks/models/llama4-scout-instruct-basic", - "Llama-4-Maverick-17B-128E-Instruct": "accounts/fireworks/models/llama4-maverick-instruct-basic", - }, - "together": { - "Llama-3.3-70B-Instruct": "meta-llama/Llama-3.3-70B-Instruct-Turbo", - "Llama-3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo", - "Llama-4-Scout-17B-16E-Instruct": "meta-llama/Llama-4-Scout-17B-16E-Instruct", - "Llama-4-Maverick-17B-128E-Instruct": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", - }, - "groq": { - "Llama-3.3-70B-Instruct": "llama-3.3-70b-versatile", - "Llama-3.2-11B-Vision-Instruct": "llama-3.2-11b-vision-preview", - "Llama-4-Scout-17B-16E-Instruct": "llama-4-scout-17b-16e-instruct", - "Llama-4-Maverick-17B-128E-Instruct": "llama-4-maverick-17b-128e-instruct", - }, - "cerebras": { - "Llama-3.3-70B-Instruct": "llama-3.3-70b", - }, - "openai": { - "gpt-4o": "gpt-4o", - "gpt-4o-mini": "gpt-4o-mini", - }, - } - - -@pytest.fixture -def provider_metadata(): - return { - "fireworks": ("https://api.fireworks.ai/inference/v1", "FIREWORKS_API_KEY"), - "together": ("https://api.together.xyz/v1", "TOGETHER_API_KEY"), - "groq": ("https://api.groq.com/openai/v1", "GROQ_API_KEY"), - "cerebras": ("https://api.cerebras.ai/v1", "CEREBRAS_API_KEY"), - "openai": ("https://api.openai.com/v1", "OPENAI_API_KEY"), - } - - -@pytest.fixture -def provider(request, provider_metadata): - provider = request.config.getoption("--provider") - base_url = request.config.getoption("--base-url") - - if provider and base_url and provider_metadata[provider][0] != base_url: - raise ValueError(f"Provider {provider} is not supported for base URL {base_url}") - - if not provider: - if not base_url: - raise ValueError("Provider and base URL are not provided") - for provider, metadata in provider_metadata.items(): - if metadata[0] == base_url: - provider = provider - break - - return provider - - -@pytest.fixture -def base_url(request, provider, provider_metadata): - return request.config.getoption("--base-url") or provider_metadata[provider][0] - - -@pytest.fixture -def api_key(request, provider, provider_metadata): - return request.config.getoption("--api-key") or os.getenv(provider_metadata[provider][1]) - - -@pytest.fixture -def model_mapping(provider, providers_model_mapping): - return providers_model_mapping[provider] - - -@pytest.fixture -def openai_client(base_url, api_key): - return OpenAI( - base_url=base_url, - api_key=api_key, - ) diff --git a/tests/verifications/openai/fixtures/test_cases/chat_completion.yaml b/tests/verifications/openai/fixtures/test_cases/chat_completion.yaml deleted file mode 100644 index 2c302a704..000000000 --- a/tests/verifications/openai/fixtures/test_cases/chat_completion.yaml +++ /dev/null @@ -1,162 +0,0 @@ -test_chat_basic: - test_name: test_chat_basic - test_params: - input_output: - - input: - messages: - - content: Which planet do humans live on? - role: user - output: Earth - - input: - messages: - - content: Which planet has rings around it with a name starting with letter - S? - role: user - output: Saturn - model: - - Llama-3.3-8B-Instruct - - Llama-3.3-70B-Instruct - - Llama-4-Scout-17B-16E - - Llama-4-Scout-17B-16E-Instruct - - Llama-4-Maverick-17B-128E - - Llama-4-Maverick-17B-128E-Instruct - - gpt-4o - - gpt-4o-mini -test_chat_image: - test_name: test_chat_image - test_params: - input_output: - - input: - messages: - - content: - - text: What is in this image? - type: text - - image_url: - url: https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg - type: image_url - role: user - output: llama - model: - - Llama-4-Scout-17B-16E - - Llama-4-Scout-17B-16E-Instruct - - Llama-4-Maverick-17B-128E - - Llama-4-Maverick-17B-128E-Instruct - - gpt-4o - - gpt-4o-mini -test_chat_structured_output: - test_name: test_chat_structured_output - test_params: - input_output: - - input: - messages: - - content: Extract the event information. - role: system - - content: Alice and Bob are going to a science fair on Friday. - role: user - response_format: - json_schema: - name: calendar_event - schema: - properties: - date: - title: Date - type: string - name: - title: Name - type: string - participants: - items: - type: string - title: Participants - type: array - required: - - name - - date - - participants - title: CalendarEvent - type: object - type: json_schema - output: valid_calendar_event - - input: - messages: - - content: You are a helpful math tutor. Guide the user through the solution - step by step. - role: system - - content: how can I solve 8x + 7 = -23 - role: user - response_format: - json_schema: - name: math_reasoning - schema: - $defs: - Step: - properties: - explanation: - title: Explanation - type: string - output: - title: Output - type: string - required: - - explanation - - output - title: Step - type: object - properties: - final_answer: - title: Final Answer - type: string - steps: - items: - $ref: '#/$defs/Step' - title: Steps - type: array - required: - - steps - - final_answer - title: MathReasoning - type: object - type: json_schema - output: valid_math_reasoning - model: - - Llama-3.3-8B-Instruct - - Llama-3.3-70B-Instruct - - Llama-4-Scout-17B-16E - - Llama-4-Scout-17B-16E-Instruct - - Llama-4-Maverick-17B-128E - - Llama-4-Maverick-17B-128E-Instruct - - gpt-4o - - gpt-4o-mini -test_tool_calling: - test_name: test_tool_calling - test_params: - input_output: - - input: - messages: - - content: You are a helpful assistant that can use tools to get information. - role: system - - content: What's the weather like in San Francisco? - role: user - tools: - - function: - description: Get current temperature for a given location. - name: get_weather - parameters: - additionalProperties: false - properties: - location: - description: "City and country e.g. Bogot\xE1, Colombia" - type: string - required: - - location - type: object - type: function - output: get_weather_tool_call - model: - - Llama-3.3-70B-Instruct - - Llama-4-Scout-17B-16E - - Llama-4-Scout-17B-16E-Instruct - - Llama-4-Maverick-17B-128E - - Llama-4-Maverick-17B-128E-Instruct - - gpt-4o - - gpt-4o-mini diff --git a/tests/verifications/openai/test_chat_completion.py b/tests/verifications/openai/test_chat_completion.py deleted file mode 100644 index c6a10de7b..000000000 --- a/tests/verifications/openai/test_chat_completion.py +++ /dev/null @@ -1,202 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from typing import Any - -import pytest -from pydantic import BaseModel - -from tests.verifications.openai.fixtures.load import load_test_cases - -chat_completion_test_cases = load_test_cases("chat_completion") - - -@pytest.fixture -def correct_model_name(model, provider, providers_model_mapping): - """Return the provider-specific model name based on the generic model name.""" - mapping = providers_model_mapping[provider] - if model not in mapping: - pytest.skip(f"Provider {provider} does not support model {model}") - return mapping[model] - - -@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"]) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"], -) -def test_chat_non_streaming_basic(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - stream=False, - ) - assert response.choices[0].message.role == "assistant" - assert input_output["output"].lower() in response.choices[0].message.content.lower() - - -@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"]) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"], -) -def test_chat_streaming_basic(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - stream=True, - ) - content = "" - for chunk in response: - content += chunk.choices[0].delta.content or "" - - # TODO: add detailed type validation - - assert input_output["output"].lower() in content.lower() - - -@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"]) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"], -) -def test_chat_non_streaming_image(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - stream=False, - ) - assert response.choices[0].message.role == "assistant" - assert input_output["output"].lower() in response.choices[0].message.content.lower() - - -@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"]) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"], -) -def test_chat_streaming_image(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - stream=True, - ) - content = "" - for chunk in response: - content += chunk.choices[0].delta.content or "" - - # TODO: add detailed type validation - - assert input_output["output"].lower() in content.lower() - - -@pytest.mark.parametrize( - "model", - chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"], -) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"], -) -def test_chat_non_streaming_structured_output(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - response_format=input_output["input"]["response_format"], - stream=False, - ) - - assert response.choices[0].message.role == "assistant" - maybe_json_content = response.choices[0].message.content - - validate_structured_output(maybe_json_content, input_output["output"]) - - -@pytest.mark.parametrize( - "model", - chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"], -) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"], -) -def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - response_format=input_output["input"]["response_format"], - stream=True, - ) - maybe_json_content = "" - for chunk in response: - maybe_json_content += chunk.choices[0].delta.content or "" - validate_structured_output(maybe_json_content, input_output["output"]) - - -@pytest.mark.parametrize( - "model", - chat_completion_test_cases["test_tool_calling"]["test_params"]["model"], -) -@pytest.mark.parametrize( - "input_output", - chat_completion_test_cases["test_tool_calling"]["test_params"]["input_output"], -) -def test_chat_non_streaming_tool_calling(openai_client, input_output, correct_model_name): - response = openai_client.chat.completions.create( - model=correct_model_name, - messages=input_output["input"]["messages"], - tools=input_output["input"]["tools"], - stream=False, - ) - - assert response.choices[0].message.role == "assistant" - assert len(response.choices[0].message.tool_calls) > 0 - assert input_output["output"] == "get_weather_tool_call" - assert response.choices[0].message.tool_calls[0].function.name == "get_weather" - # TODO: add detailed type validation - - -def get_structured_output(maybe_json_content: str, schema_name: str) -> Any | None: - if schema_name == "valid_calendar_event": - - class CalendarEvent(BaseModel): - name: str - date: str - participants: list[str] - - try: - calendar_event = CalendarEvent.model_validate_json(maybe_json_content) - return calendar_event - except Exception: - return None - elif schema_name == "valid_math_reasoning": - - class Step(BaseModel): - explanation: str - output: str - - class MathReasoning(BaseModel): - steps: list[Step] - final_answer: str - - try: - math_reasoning = MathReasoning.model_validate_json(maybe_json_content) - return math_reasoning - except Exception: - return None - - return None - - -def validate_structured_output(maybe_json_content: str, schema_name: str) -> None: - structured_output = get_structured_output(maybe_json_content, schema_name) - assert structured_output is not None - if schema_name == "valid_calendar_event": - assert structured_output.name is not None - assert structured_output.date is not None - assert len(structured_output.participants) == 2 - elif schema_name == "valid_math_reasoning": - assert len(structured_output.final_answer) > 0 diff --git a/tests/verifications/openai/__init__.py b/tests/verifications/openai_api/__init__.py similarity index 100% rename from tests/verifications/openai/__init__.py rename to tests/verifications/openai_api/__init__.py diff --git a/tests/verifications/openai/fixtures/__init__.py b/tests/verifications/openai_api/fixtures/__init__.py similarity index 100% rename from tests/verifications/openai/fixtures/__init__.py rename to tests/verifications/openai_api/fixtures/__init__.py diff --git a/tests/verifications/openai_api/fixtures/fixtures.py b/tests/verifications/openai_api/fixtures/fixtures.py new file mode 100644 index 000000000..940b99b2a --- /dev/null +++ b/tests/verifications/openai_api/fixtures/fixtures.py @@ -0,0 +1,108 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import os +from pathlib import Path + +import pytest +import yaml +from openai import OpenAI + + +# --- Helper Function to Load Config --- +def _load_all_verification_configs(): + """Load and aggregate verification configs from the conf/ directory.""" + # Note: Path is relative to *this* file (fixtures.py) + conf_dir = Path(__file__).parent.parent.parent / "conf" + if not conf_dir.is_dir(): + # Use pytest.fail if called during test collection, otherwise raise error + # For simplicity here, we'll raise an error, assuming direct calls + # are less likely or can handle it. + raise FileNotFoundError(f"Verification config directory not found at {conf_dir}") + + all_provider_configs = {} + yaml_files = list(conf_dir.glob("*.yaml")) + if not yaml_files: + raise FileNotFoundError(f"No YAML configuration files found in {conf_dir}") + + for config_path in yaml_files: + provider_name = config_path.stem + try: + with open(config_path, "r") as f: + provider_config = yaml.safe_load(f) + if provider_config: + all_provider_configs[provider_name] = provider_config + else: + # Log warning if possible, or just skip empty files silently + print(f"Warning: Config file {config_path} is empty or invalid.") + except Exception as e: + raise IOError(f"Error loading config file {config_path}: {e}") from e + + return {"providers": all_provider_configs} + + +# --- End Helper Function --- + + +@pytest.fixture(scope="session") +def verification_config(): + """Pytest fixture to provide the loaded verification config.""" + try: + return _load_all_verification_configs() + except (FileNotFoundError, IOError) as e: + pytest.fail(str(e)) # Fail test collection if config loading fails + + +@pytest.fixture +def provider(request, verification_config): + provider = request.config.getoption("--provider") + base_url = request.config.getoption("--base-url") + + if provider and base_url and verification_config["providers"][provider]["base_url"] != base_url: + raise ValueError(f"Provider {provider} is not supported for base URL {base_url}") + + if not provider: + if not base_url: + raise ValueError("Provider and base URL are not provided") + for provider, metadata in verification_config["providers"].items(): + if metadata["base_url"] == base_url: + provider = provider + break + + return provider + + +@pytest.fixture +def base_url(request, provider, verification_config): + return request.config.getoption("--base-url") or verification_config["providers"][provider]["base_url"] + + +@pytest.fixture +def api_key(request, provider, verification_config): + provider_conf = verification_config.get("providers", {}).get(provider, {}) + api_key_env_var = provider_conf.get("api_key_var") + + key_from_option = request.config.getoption("--api-key") + key_from_env = os.getenv(api_key_env_var) if api_key_env_var else None + + final_key = key_from_option or key_from_env + return final_key + + +@pytest.fixture +def model_mapping(provider, providers_model_mapping): + return providers_model_mapping[provider] + + +@pytest.fixture +def openai_client(base_url, api_key): + # Simplify running against a local Llama Stack + if "localhost" in base_url and not api_key: + api_key = "empty" + return OpenAI( + base_url=base_url, + api_key=api_key, + ) diff --git a/tests/verifications/openai_api/fixtures/images/vision_test_1.jpg b/tests/verifications/openai_api/fixtures/images/vision_test_1.jpg new file mode 100644 index 000000000..32fd0c0e3 Binary files /dev/null and b/tests/verifications/openai_api/fixtures/images/vision_test_1.jpg differ diff --git a/tests/verifications/openai_api/fixtures/images/vision_test_2.jpg b/tests/verifications/openai_api/fixtures/images/vision_test_2.jpg new file mode 100644 index 000000000..f9c28e3d5 Binary files /dev/null and b/tests/verifications/openai_api/fixtures/images/vision_test_2.jpg differ diff --git a/tests/verifications/openai_api/fixtures/images/vision_test_3.jpg b/tests/verifications/openai_api/fixtures/images/vision_test_3.jpg new file mode 100644 index 000000000..63165ea86 Binary files /dev/null and b/tests/verifications/openai_api/fixtures/images/vision_test_3.jpg differ diff --git a/tests/verifications/openai/fixtures/load.py b/tests/verifications/openai_api/fixtures/load.py similarity index 100% rename from tests/verifications/openai/fixtures/load.py rename to tests/verifications/openai_api/fixtures/load.py diff --git a/tests/verifications/openai_api/fixtures/test_cases/chat_completion.yaml b/tests/verifications/openai_api/fixtures/test_cases/chat_completion.yaml new file mode 100644 index 000000000..1ace76e34 --- /dev/null +++ b/tests/verifications/openai_api/fixtures/test_cases/chat_completion.yaml @@ -0,0 +1,351 @@ +test_chat_basic: + test_name: test_chat_basic + test_params: + case: + - case_id: "earth" + input: + messages: + - content: Which planet do humans live on? + role: user + output: Earth + - case_id: "saturn" + input: + messages: + - content: Which planet has rings around it with a name starting with letter + S? + role: user + output: Saturn +test_chat_image: + test_name: test_chat_image + test_params: + case: + - input: + messages: + - content: + - text: What is in this image? + type: text + - image_url: + url: https://upload.wikimedia.org/wikipedia/commons/f/f7/Llamas%2C_Vernagt-Stausee%2C_Italy.jpg + type: image_url + role: user + output: llama +test_chat_structured_output: + test_name: test_chat_structured_output + test_params: + case: + - case_id: "calendar" + input: + messages: + - content: Extract the event information. + role: system + - content: Alice and Bob are going to a science fair on Friday. + role: user + response_format: + json_schema: + name: calendar_event + schema: + properties: + date: + title: Date + type: string + name: + title: Name + type: string + participants: + items: + type: string + title: Participants + type: array + required: + - name + - date + - participants + title: CalendarEvent + type: object + type: json_schema + output: valid_calendar_event + - case_id: "math" + input: + messages: + - content: You are a helpful math tutor. Guide the user through the solution + step by step. + role: system + - content: how can I solve 8x + 7 = -23 + role: user + response_format: + json_schema: + name: math_reasoning + schema: + $defs: + Step: + properties: + explanation: + title: Explanation + type: string + output: + title: Output + type: string + required: + - explanation + - output + title: Step + type: object + properties: + final_answer: + title: Final Answer + type: string + steps: + items: + $ref: '#/$defs/Step' + title: Steps + type: array + required: + - steps + - final_answer + title: MathReasoning + type: object + type: json_schema + output: valid_math_reasoning +test_tool_calling: + test_name: test_tool_calling + test_params: + case: + - input: + messages: + - content: You are a helpful assistant that can use tools to get information. + role: system + - content: What's the weather like in San Francisco? + role: user + tools: + - function: + description: Get current temperature for a given location. + name: get_weather + parameters: + additionalProperties: false + properties: + location: + description: "City and country e.g. Bogot\xE1, Colombia" + type: string + required: + - location + type: object + type: function + output: get_weather_tool_call + +test_chat_multi_turn_tool_calling: + test_name: test_chat_multi_turn_tool_calling + test_params: + case: + - case_id: "text_then_weather_tool" + input: + messages: + - - role: user + content: "What's the name of the Sun in latin?" + - - role: user + content: "What's the weather like in San Francisco?" + tools: + - function: + description: Get the current weather + name: get_weather + parameters: + type: object + properties: + location: + description: "The city and state (both required), e.g. San Francisco, CA." + type: string + required: ["location"] + type: function + tool_responses: + - response: "{'response': '70 degrees and foggy'}" + expected: + - num_tool_calls: 0 + answer: ["sol"] + - num_tool_calls: 1 + tool_name: get_weather + tool_arguments: + location: "San Francisco, CA" + - num_tool_calls: 0 + answer: ["foggy", "70 degrees"] + - case_id: "weather_tool_then_text" + input: + messages: + - - role: user + content: "What's the weather like in San Francisco?" + tools: + - function: + description: Get the current weather + name: get_weather + parameters: + type: object + properties: + location: + description: "The city and state (both required), e.g. San Francisco, CA." + type: string + required: ["location"] + type: function + tool_responses: + - response: "{'response': '70 degrees and foggy'}" + expected: + - num_tool_calls: 1 + tool_name: get_weather + tool_arguments: + location: "San Francisco, CA" + - num_tool_calls: 0 + answer: ["foggy", "70 degrees"] + - case_id: "add_product_tool" + input: + messages: + - - role: user + content: "Please add a new product with name 'Widget', price 19.99, in stock, and tags ['new', 'sale'] and give me the product id." + tools: + - function: + description: Add a new product + name: addProduct + parameters: + type: object + properties: + name: + description: "Name of the product" + type: string + price: + description: "Price of the product" + type: number + inStock: + description: "Availability status of the product." + type: boolean + tags: + description: "List of product tags" + type: array + items: + type: string + required: ["name", "price", "inStock"] + type: function + tool_responses: + - response: "{'response': 'Successfully added product with id: 123'}" + expected: + - num_tool_calls: 1 + tool_name: addProduct + tool_arguments: + name: "Widget" + price: 19.99 + inStock: true + tags: + - "new" + - "sale" + - num_tool_calls: 0 + answer: ["123", "product id: 123"] + - case_id: "get_then_create_event_tool" + input: + messages: + - - role: system + content: "Todays date is 2025-03-01." + - role: user + content: "Do i have any meetings on March 3rd at 10 am? Yes or no?" + - - role: user + content: "Alright then, Create an event named 'Team Building', scheduled for that time same time, in the 'Main Conference Room' and add Alice, Bob, Charlie to it. Give me the created event id." + tools: + - function: + description: Create a new event + name: create_event + parameters: + type: object + properties: + name: + description: "Name of the event" + type: string + date: + description: "Date of the event in ISO format" + type: string + time: + description: "Event Time (HH:MM)" + type: string + location: + description: "Location of the event" + type: string + participants: + description: "List of participant names" + type: array + items: + type: string + required: ["name", "date", "time", "location", "participants"] + type: function + - function: + description: Get an event by date and time + name: get_event + parameters: + type: object + properties: + date: + description: "Date of the event in ISO format" + type: string + time: + description: "Event Time (HH:MM)" + type: string + required: ["date", "time"] + type: function + tool_responses: + - response: "{'response': 'No events found for 2025-03-03 at 10:00'}" + - response: "{'response': 'Successfully created new event with id: e_123'}" + expected: + - num_tool_calls: 1 + tool_name: get_event + tool_arguments: + date: "2025-03-03" + time: "10:00" + - num_tool_calls: 0 + answer: ["no", "no events found", "no meetings"] + - num_tool_calls: 1 + tool_name: create_event + tool_arguments: + name: "Team Building" + date: "2025-03-03" + time: "10:00" + location: "Main Conference Room" + participants: + - "Alice" + - "Bob" + - "Charlie" + - num_tool_calls: 0 + answer: ["e_123", "event id: e_123"] + - case_id: "compare_monthly_expense_tool" + input: + messages: + - - role: system + content: "Todays date is 2025-03-01." + - role: user + content: "what was my monthly expense in Jan of this year?" + - - role: user + content: "Was it less than Feb of last year? Only answer with yes or no." + tools: + - function: + description: Get monthly expense summary + name: getMonthlyExpenseSummary + parameters: + type: object + properties: + month: + description: "Month of the year (1-12)" + type: integer + year: + description: "Year" + type: integer + required: ["month", "year"] + type: function + tool_responses: + - response: "{'response': 'Total expenses for January 2025: $1000'}" + - response: "{'response': 'Total expenses for February 2024: $2000'}" + expected: + - num_tool_calls: 1 + tool_name: getMonthlyExpenseSummary + tool_arguments: + month: 1 + year: 2025 + - num_tool_calls: 0 + answer: ["1000", "$1,000", "1,000"] + - num_tool_calls: 1 + tool_name: getMonthlyExpenseSummary + tool_arguments: + month: 2 + year: 2024 + - num_tool_calls: 0 + answer: ["yes"] diff --git a/tests/verifications/openai_api/test_chat_completion.py b/tests/verifications/openai_api/test_chat_completion.py new file mode 100644 index 000000000..3a311667a --- /dev/null +++ b/tests/verifications/openai_api/test_chat_completion.py @@ -0,0 +1,722 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import base64 +import copy +import json +import re +from pathlib import Path +from typing import Any + +import pytest +from pydantic import BaseModel + +from tests.verifications.openai_api.fixtures.fixtures import ( + _load_all_verification_configs, +) +from tests.verifications.openai_api.fixtures.load import load_test_cases + +chat_completion_test_cases = load_test_cases("chat_completion") + +THIS_DIR = Path(__file__).parent + + +def case_id_generator(case): + """Generate a test ID from the case's 'case_id' field, or use a default.""" + case_id = case.get("case_id") + if isinstance(case_id, (str, int)): + return re.sub(r"\\W|^(?=\\d)", "_", str(case_id)) + return None + + +def pytest_generate_tests(metafunc): + """Dynamically parametrize tests based on the selected provider and config.""" + if "model" in metafunc.fixturenames: + provider = metafunc.config.getoption("provider") + if not provider: + print("Warning: --provider not specified. Skipping model parametrization.") + metafunc.parametrize("model", []) + return + + try: + config_data = _load_all_verification_configs() + except (FileNotFoundError, IOError) as e: + print(f"ERROR loading verification configs: {e}") + config_data = {"providers": {}} + + provider_config = config_data.get("providers", {}).get(provider) + if provider_config: + models = provider_config.get("models", []) + if models: + metafunc.parametrize("model", models) + else: + print(f"Warning: No models found for provider '{provider}' in config.") + metafunc.parametrize("model", []) # Parametrize empty if no models found + else: + print(f"Warning: Provider '{provider}' not found in config. No models parametrized.") + metafunc.parametrize("model", []) # Parametrize empty if provider not found + + +def should_skip_test(verification_config, provider, model, test_name_base): + """Check if a test should be skipped based on config exclusions.""" + provider_config = verification_config.get("providers", {}).get(provider) + if not provider_config: + return False # No config for provider, don't skip + + exclusions = provider_config.get("test_exclusions", {}).get(model, []) + return test_name_base in exclusions + + +# Helper to get the base test name from the request object +def get_base_test_name(request): + return request.node.originalname + + +@pytest.fixture +def multi_image_data(): + files = [ + THIS_DIR / "fixtures/images/vision_test_1.jpg", + THIS_DIR / "fixtures/images/vision_test_2.jpg", + THIS_DIR / "fixtures/images/vision_test_3.jpg", + ] + encoded_files = [] + for file in files: + with open(file, "rb") as image_file: + base64_data = base64.b64encode(image_file.read()).decode("utf-8") + encoded_files.append(f"data:image/jpeg;base64,{base64_data}") + return encoded_files + + +# --- Test Functions --- + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_basic"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_non_streaming_basic(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + stream=False, + ) + assert response.choices[0].message.role == "assistant" + assert case["output"].lower() in response.choices[0].message.content.lower() + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_basic"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + stream=True, + ) + content = "" + for chunk in response: + content += chunk.choices[0].delta.content or "" + + # TODO: add detailed type validation + + assert case["output"].lower() in content.lower() + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_image"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_non_streaming_image(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + stream=False, + ) + assert response.choices[0].message.role == "assistant" + assert case["output"].lower() in response.choices[0].message.content.lower() + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_image"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_streaming_image(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + stream=True, + ) + content = "" + for chunk in response: + content += chunk.choices[0].delta.content or "" + + # TODO: add detailed type validation + + assert case["output"].lower() in content.lower() + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_structured_output"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_non_streaming_structured_output(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + response_format=case["input"]["response_format"], + stream=False, + ) + + assert response.choices[0].message.role == "assistant" + maybe_json_content = response.choices[0].message.content + + validate_structured_output(maybe_json_content, case["output"]) + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_chat_structured_output"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + response_format=case["input"]["response_format"], + stream=True, + ) + maybe_json_content = "" + for chunk in response: + maybe_json_content += chunk.choices[0].delta.content or "" + validate_structured_output(maybe_json_content, case["output"]) + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_non_streaming_tool_calling(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + stream=False, + ) + + assert response.choices[0].message.role == "assistant" + assert len(response.choices[0].message.tool_calls) > 0 + assert case["output"] == "get_weather_tool_call" + assert response.choices[0].message.tool_calls[0].function.name == "get_weather" + # TODO: add detailed type validation + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], + ids=case_id_generator, +) +def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + stream = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + stream=True, + ) + + _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream) + assert len(tool_calls_buffer) == 1 + for call in tool_calls_buffer: + assert len(call["id"]) > 0 + function = call["function"] + assert function["name"] == "get_weather" + + args_dict = json.loads(function["arguments"]) + assert "san francisco" in args_dict["location"].lower() + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], # Reusing existing case for now + ids=case_id_generator, +) +def test_chat_non_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + tool_choice="required", # Force tool call + stream=False, + ) + + assert response.choices[0].message.role == "assistant" + assert len(response.choices[0].message.tool_calls) > 0, "Expected tool call when tool_choice='required'" + expected_tool_name = case["input"]["tools"][0]["function"]["name"] + assert response.choices[0].message.tool_calls[0].function.name == expected_tool_name + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], # Reusing existing case for now + ids=case_id_generator, +) +def test_chat_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + stream = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + tool_choice="required", # Force tool call + stream=True, + ) + + _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream) + + assert len(tool_calls_buffer) > 0, "Expected tool call when tool_choice='required'" + expected_tool_name = case["input"]["tools"][0]["function"]["name"] + assert any(call["function"]["name"] == expected_tool_name for call in tool_calls_buffer), ( + f"Expected tool call '{expected_tool_name}' not found in stream" + ) + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], # Reusing existing case for now + ids=case_id_generator, +) +def test_chat_non_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + response = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + tool_choice="none", + stream=False, + ) + + assert response.choices[0].message.role == "assistant" + assert response.choices[0].message.tool_calls is None, "Expected no tool calls when tool_choice='none'" + assert response.choices[0].message.content is not None, "Expected content when tool_choice='none'" + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases["test_tool_calling"]["test_params"]["case"], # Reusing existing case for now + ids=case_id_generator, +) +def test_chat_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + stream = openai_client.chat.completions.create( + model=model, + messages=case["input"]["messages"], + tools=case["input"]["tools"], + tool_choice="none", + stream=True, + ) + + content = "" + for chunk in stream: + delta = chunk.choices[0].delta + if delta.content: + content += delta.content + assert not delta.tool_calls, "Expected no tool call chunks when tool_choice='none'" + + assert len(content) > 0, "Expected content when tool_choice='none'" + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases.get("test_chat_multi_turn_tool_calling", {}).get("test_params", {}).get("case", []), + ids=case_id_generator, +) +def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case): + """ + Test cases for multi-turn tool calling. + Tool calls are asserted. + Tool responses are provided in the test case. + Final response is asserted. + """ + + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + # Create a copy of the messages list to avoid modifying the original + messages = [] + tools = case["input"]["tools"] + # Use deepcopy to prevent modification across runs/parametrization + expected_results = copy.deepcopy(case["expected"]) + tool_responses = copy.deepcopy(case.get("tool_responses", [])) + input_messages_turns = copy.deepcopy(case["input"]["messages"]) + + # keep going until either + # 1. we have messages to test in multi-turn + # 2. no messages but last message is tool response + while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1]["role"] == "tool"): + # do not take new messages if last message is tool response + if len(messages) == 0 or messages[-1]["role"] != "tool": + new_messages = input_messages_turns.pop(0) + # Ensure new_messages is a list of message objects + if isinstance(new_messages, list): + messages.extend(new_messages) + else: + # If it's a single message object, add it directly + messages.append(new_messages) + + # --- API Call --- + response = openai_client.chat.completions.create( + model=model, + messages=messages, + tools=tools, + stream=False, + ) + + # --- Process Response --- + assistant_message = response.choices[0].message + messages.append(assistant_message.model_dump(exclude_unset=True)) + + assert assistant_message.role == "assistant" + + # Get the expected result data + expected = expected_results.pop(0) + num_tool_calls = expected["num_tool_calls"] + + # --- Assertions based on expected result --- + assert len(assistant_message.tool_calls or []) == num_tool_calls, ( + f"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}" + ) + + if num_tool_calls > 0: + tool_call = assistant_message.tool_calls[0] + assert tool_call.function.name == expected["tool_name"], ( + f"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'" + ) + # Parse the JSON string arguments before comparing + actual_arguments = json.loads(tool_call.function.arguments) + assert actual_arguments == expected["tool_arguments"], ( + f"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'" + ) + + # Prepare and append the tool response for the next turn + tool_response = tool_responses.pop(0) + messages.append( + { + "role": "tool", + "tool_call_id": tool_call.id, + "content": tool_response["response"], + } + ) + else: + assert assistant_message.content is not None, "Expected content, but none received." + expected_answers = expected["answer"] # This is now a list + content_lower = assistant_message.content.lower() + assert any(ans.lower() in content_lower for ans in expected_answers), ( + f"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'" + ) + + +@pytest.mark.parametrize( + "case", + chat_completion_test_cases.get("test_chat_multi_turn_tool_calling", {}).get("test_params", {}).get("case", []), + ids=case_id_generator, +) +def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case): + """ """ + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + messages = [] + tools = case["input"]["tools"] + expected_results = copy.deepcopy(case["expected"]) + tool_responses = copy.deepcopy(case.get("tool_responses", [])) + input_messages_turns = copy.deepcopy(case["input"]["messages"]) + + while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1]["role"] == "tool"): + if len(messages) == 0 or messages[-1]["role"] != "tool": + new_messages = input_messages_turns.pop(0) + if isinstance(new_messages, list): + messages.extend(new_messages) + else: + messages.append(new_messages) + + # --- API Call (Streaming) --- + stream = openai_client.chat.completions.create( + model=model, + messages=messages, + tools=tools, + stream=True, + ) + + # --- Process Stream --- + accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream) + + # --- Construct Assistant Message for History --- + assistant_message_dict = {"role": "assistant"} + if accumulated_content: + assistant_message_dict["content"] = accumulated_content + if accumulated_tool_calls: + assistant_message_dict["tool_calls"] = accumulated_tool_calls + + messages.append(assistant_message_dict) + + # --- Assertions --- + expected = expected_results.pop(0) + num_tool_calls = expected["num_tool_calls"] + + assert len(accumulated_tool_calls or []) == num_tool_calls, ( + f"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}" + ) + + if num_tool_calls > 0: + # Use the first accumulated tool call for assertion + tool_call = accumulated_tool_calls[0] + assert tool_call["function"]["name"] == expected["tool_name"], ( + f"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'" + ) + # Parse the accumulated arguments string for comparison + actual_arguments = json.loads(tool_call["function"]["arguments"]) + assert actual_arguments == expected["tool_arguments"], ( + f"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'" + ) + + # Prepare and append the tool response for the next turn + tool_response = tool_responses.pop(0) + messages.append( + { + "role": "tool", + "tool_call_id": tool_call["id"], + "content": tool_response["response"], + } + ) + else: + assert accumulated_content is not None and accumulated_content != "", "Expected content, but none received." + expected_answers = expected["answer"] + content_lower = accumulated_content.lower() + assert any(ans.lower() in content_lower for ans in expected_answers), ( + f"Expected one of {expected_answers} in content, but got: '{accumulated_content}'" + ) + + +@pytest.mark.parametrize("stream", [False, True], ids=["stream=False", "stream=True"]) +def test_chat_multi_turn_multiple_images( + request, openai_client, model, provider, verification_config, multi_image_data, stream +): + test_name_base = get_base_test_name(request) + if should_skip_test(verification_config, provider, model, test_name_base): + pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") + + messages_turn1 = [ + { + "role": "user", + "content": [ + { + "type": "image_url", + "image_url": { + "url": multi_image_data[0], + }, + }, + { + "type": "image_url", + "image_url": { + "url": multi_image_data[1], + }, + }, + { + "type": "text", + "text": "What furniture is in the first image that is not in the second image?", + }, + ], + }, + ] + + # First API call + response1 = openai_client.chat.completions.create( + model=model, + messages=messages_turn1, + stream=stream, + ) + if stream: + message_content1 = "" + for chunk in response1: + message_content1 += chunk.choices[0].delta.content or "" + else: + message_content1 = response1.choices[0].message.content + assert len(message_content1) > 0 + assert any(expected in message_content1.lower().strip() for expected in {"chair", "table"}), message_content1 + + # Prepare messages for the second turn + messages_turn2 = messages_turn1 + [ + {"role": "assistant", "content": message_content1}, + { + "role": "user", + "content": [ + { + "type": "image_url", + "image_url": { + "url": multi_image_data[2], + }, + }, + {"type": "text", "text": "What is in this image that is also in the first image?"}, + ], + }, + ] + + # Second API call + response2 = openai_client.chat.completions.create( + model=model, + messages=messages_turn2, + stream=stream, + ) + if stream: + message_content2 = "" + for chunk in response2: + message_content2 += chunk.choices[0].delta.content or "" + else: + message_content2 = response2.choices[0].message.content + assert len(message_content2) > 0 + assert any(expected in message_content2.lower().strip() for expected in {"bed"}), message_content2 + + +# --- Helper functions (structured output validation) --- + + +def get_structured_output(maybe_json_content: str, schema_name: str) -> Any | None: + if schema_name == "valid_calendar_event": + + class CalendarEvent(BaseModel): + name: str + date: str + participants: list[str] + + try: + calendar_event = CalendarEvent.model_validate_json(maybe_json_content) + return calendar_event + except Exception: + return None + elif schema_name == "valid_math_reasoning": + + class Step(BaseModel): + explanation: str + output: str + + class MathReasoning(BaseModel): + steps: list[Step] + final_answer: str + + try: + math_reasoning = MathReasoning.model_validate_json(maybe_json_content) + return math_reasoning + except Exception: + return None + + return None + + +def validate_structured_output(maybe_json_content: str, schema_name: str) -> None: + structured_output = get_structured_output(maybe_json_content, schema_name) + assert structured_output is not None + if schema_name == "valid_calendar_event": + assert structured_output.name is not None + assert structured_output.date is not None + assert len(structured_output.participants) == 2 + elif schema_name == "valid_math_reasoning": + assert len(structured_output.final_answer) > 0 + + +def _accumulate_streaming_tool_calls(stream): + """Accumulates tool calls and content from a streaming ChatCompletion response.""" + tool_calls_buffer = {} + current_id = None + full_content = "" # Initialize content accumulator + # Process streaming chunks + for chunk in stream: + choice = chunk.choices[0] + delta = choice.delta + + # Accumulate content + if delta.content: + full_content += delta.content + + if delta.tool_calls is None: + continue + + for tool_call_delta in delta.tool_calls: + if tool_call_delta.id: + current_id = tool_call_delta.id + call_id = current_id + # Skip if no ID seen yet for this tool call delta + if not call_id: + continue + func_delta = tool_call_delta.function + + if call_id not in tool_calls_buffer: + tool_calls_buffer[call_id] = { + "id": call_id, + "type": "function", # Assume function type + "function": {"name": None, "arguments": ""}, # Nested structure + } + + # Accumulate name and arguments into the nested function dict + if func_delta: + if func_delta.name: + tool_calls_buffer[call_id]["function"]["name"] = func_delta.name + if func_delta.arguments: + tool_calls_buffer[call_id]["function"]["arguments"] += func_delta.arguments + + # Return content and tool calls as a list + return full_content, list(tool_calls_buffer.values()) diff --git a/tests/verifications/test_results/fireworks.json b/tests/verifications/test_results/fireworks.json new file mode 100644 index 000000000..ef5cf142e --- /dev/null +++ b/tests/verifications/test_results/fireworks.json @@ -0,0 +1,3751 @@ +{ + "created": 1744918448.686489, + "duration": 254.68238854408264, + "exitcode": 1, + "root": "/home/erichuang/llama-stack", + "environment": {}, + "summary": { + "passed": 40, + "skipped": 4, + "failed": 40, + "total": 84, + "collected": 84 + }, + "collectors": [ + { + "nodeid": "", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "type": "Module" + } + ] + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=True]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=True]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=True]", + "type": "Function", + "lineno": 554 + } + ] + } + ], + "tests": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.13845239393413067, + "outcome": "passed" + }, + "call": { + "duration": 1.3300942620262504, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025453977286815643, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.0806605163961649, + "outcome": "passed" + }, + "call": { + "duration": 0.6202042903751135, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026358477771282196, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "earth" + }, + "setup": { + "duration": 0.07190297450870275, + "outcome": "passed" + }, + "call": { + "duration": 0.7458920907229185, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024067144840955734, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07551384158432484, + "outcome": "passed" + }, + "call": { + "duration": 0.6140249809250236, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024476367980241776, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "earth" + }, + "setup": { + "duration": 0.07434738799929619, + "outcome": "passed" + }, + "call": { + "duration": 1.6738943997770548, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000227426178753376, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07130288146436214, + "outcome": "passed" + }, + "call": { + "duration": 1.337895905598998, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028038304299116135, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.0727478675544262, + "outcome": "passed" + }, + "call": { + "duration": 0.7670011632144451, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023174844682216644, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama-v3p3-70b-instruct-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07163545861840248, + "outcome": "passed" + }, + "call": { + "duration": 0.7582714259624481, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028524454683065414, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "earth" + }, + "setup": { + "duration": 0.08122281823307276, + "outcome": "passed" + }, + "call": { + "duration": 0.6061851140111685, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002497304230928421, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama4-scout-instruct-basic-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07185561209917068, + "outcome": "passed" + }, + "call": { + "duration": 0.7516075978055596, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026526860892772675, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-earth]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "earth" + }, + "setup": { + "duration": 0.07012896798551083, + "outcome": "passed" + }, + "call": { + "duration": 1.8946502823382616, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002452842891216278, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[accounts/fireworks/models/llama4-maverick-instruct-basic-saturn]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "saturn" + }, + "setup": { + "duration": 0.06955648958683014, + "outcome": "passed" + }, + "call": { + "duration": 1.0446623722091317, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023738667368888855, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 138, + "outcome": "skipped", + "keywords": [ + "test_chat_non_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07077906839549541, + "outcome": "passed" + }, + "call": { + "duration": 0.00021365191787481308, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 147, 'Skipped: Skipping test_chat_non_streaming_image for model accounts/fireworks/models/llama-v3p3-70b-instruct on provider fireworks based on config.')" + }, + "teardown": { + "duration": 0.00018982868641614914, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07118859142065048, + "outcome": "passed" + }, + "call": { + "duration": 4.20654855389148, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023640412837266922, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07351029943674803, + "outcome": "passed" + }, + "call": { + "duration": 4.875292049720883, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002571679651737213, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 157, + "outcome": "skipped", + "keywords": [ + "test_chat_streaming_image[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07474396284669638, + "outcome": "passed" + }, + "call": { + "duration": 0.0002510417252779007, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 166, 'Skipped: Skipping test_chat_streaming_image for model accounts/fireworks/models/llama-v3p3-70b-instruct on provider fireworks based on config.')" + }, + "teardown": { + "duration": 0.00020200759172439575, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 157, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_image[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07380561903119087, + "outcome": "passed" + }, + "call": { + "duration": 2.0082657346501946, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002522030845284462, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 157, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_image[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07040839456021786, + "outcome": "passed" + }, + "call": { + "duration": 4.871666649356484, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002490682527422905, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07167178671807051, + "outcome": "passed" + }, + "call": { + "duration": 0.9903911761939526, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002704570069909096, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.07073096185922623, + "outcome": "passed" + }, + "call": { + "duration": 3.9858130905777216, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024665892124176025, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07138721086084843, + "outcome": "passed" + }, + "call": { + "duration": 1.1312237158417702, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027671270072460175, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "math" + }, + "setup": { + "duration": 0.08204951789230108, + "outcome": "passed" + }, + "call": { + "duration": 2.7500197598710656, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024303700774908066, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07405088562518358, + "outcome": "passed" + }, + "call": { + "duration": 1.238045932725072, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024984683841466904, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "math" + }, + "setup": { + "duration": 0.07009329181164503, + "outcome": "passed" + }, + "call": { + "duration": 3.55908961314708, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026627909392118454, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07596437353640795, + "outcome": "passed" + }, + "call": { + "duration": 1.0093460381031036, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002171723172068596, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama-v3p3-70b-instruct-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.06995268166065216, + "outcome": "passed" + }, + "call": { + "duration": 2.617857910692692, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024063047021627426, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "calendar" + }, + "setup": { + "duration": 0.0729895168915391, + "outcome": "passed" + }, + "call": { + "duration": 0.9500969992950559, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000257221981883049, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama4-scout-instruct-basic-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "math" + }, + "setup": { + "duration": 0.07070339564234018, + "outcome": "passed" + }, + "call": { + "duration": 2.6405998673290014, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002397783100605011, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-calendar]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07140882592648268, + "outcome": "passed" + }, + "call": { + "duration": 0.7515814090147614, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002773841843008995, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[accounts/fireworks/models/llama4-maverick-instruct-basic-math]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "math" + }, + "setup": { + "duration": 0.07105506956577301, + "outcome": "passed" + }, + "call": { + "duration": 3.091084435582161, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002588946372270584, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 226, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07215945608913898, + "outcome": "passed" + }, + "call": { + "duration": 1.13668860681355, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError: object of type 'NoneType' has no len()" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai_api/test_chat_completion.py:245: TypeError" + }, + "teardown": { + "duration": 0.0003727646544575691, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 226, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07085339725017548, + "outcome": "passed" + }, + "call": { + "duration": 6.564900263212621, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError: object of type 'NoneType' has no len()" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai_api/test_chat_completion.py:245: TypeError" + }, + "teardown": { + "duration": 0.00036074407398700714, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 226, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07105840742588043, + "outcome": "passed" + }, + "call": { + "duration": 1.9664474660530686, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError: object of type 'NoneType' has no len()" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 245, + "message": "TypeError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai_api/test_chat_completion.py:245: TypeError" + }, + "teardown": { + "duration": 0.0003125220537185669, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 250, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07491886802017689, + "outcome": "passed" + }, + "call": { + "duration": 1.6239055208861828, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "assert 0 == 1\n + where 0 = len([])" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=True,\n )\n \n _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n> assert len(tool_calls_buffer) == 1\nE assert 0 == 1\nE + where 0 = len([])\n\ntests/verifications/openai_api/test_chat_completion.py:269: AssertionError" + }, + "teardown": { + "duration": 0.0003996873274445534, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 250, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07084537390619516, + "outcome": "passed" + }, + "call": { + "duration": 7.175910825841129, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "assert 0 == 1\n + where 0 = len([])" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=True,\n )\n \n _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n> assert len(tool_calls_buffer) == 1\nE assert 0 == 1\nE + where 0 = len([])\n\ntests/verifications/openai_api/test_chat_completion.py:269: AssertionError" + }, + "teardown": { + "duration": 0.0003013862296938896, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 250, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07152015157043934, + "outcome": "passed" + }, + "call": { + "duration": 9.749054622836411, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "assert 0 == 1\n + where 0 = len([])" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 269, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=True,\n )\n \n _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n> assert len(tool_calls_buffer) == 1\nE assert 0 == 1\nE + where 0 = len([])\n\ntests/verifications/openai_api/test_chat_completion.py:269: AssertionError" + }, + "teardown": { + "duration": 0.0002990690991282463, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07075500208884478, + "outcome": "passed" + }, + "call": { + "duration": 0.9870151281356812, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00022785458713769913, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 278, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.0698307491838932, + "outcome": "passed" + }, + "call": { + "duration": 4.061793921515346, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 298, + "message": "TypeError: object of type 'NoneType' has no len()" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 298, + "message": "TypeError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0, \"Expected tool call when tool_choice='required'\"\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai_api/test_chat_completion.py:298: TypeError" + }, + "teardown": { + "duration": 0.00028742197901010513, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 278, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07069965451955795, + "outcome": "passed" + }, + "call": { + "duration": 24.973835667595267, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 298, + "message": "TypeError: object of type 'NoneType' has no len()" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 298, + "message": "TypeError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0, \"Expected tool call when tool_choice='required'\"\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai_api/test_chat_completion.py:298: TypeError" + }, + "teardown": { + "duration": 0.00034868158400058746, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 302, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07031871005892754, + "outcome": "passed" + }, + "call": { + "duration": 0.7874777475371957, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027067307382822037, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 302, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07194838207215071, + "outcome": "passed" + }, + "call": { + "duration": 5.034253670834005, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 323, + "message": "AssertionError: Expected tool call when tool_choice='required'\nassert 0 > 0\n + where 0 = len([])" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 323, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=True,\n )\n \n _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n \n> assert len(tool_calls_buffer) > 0, \"Expected tool call when tool_choice='required'\"\nE AssertionError: Expected tool call when tool_choice='required'\nE assert 0 > 0\nE + where 0 = len([])\n\ntests/verifications/openai_api/test_chat_completion.py:323: AssertionError" + }, + "teardown": { + "duration": 0.00030618347227573395, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 302, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_required[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07107715681195259, + "outcome": "passed" + }, + "call": { + "duration": 6.841737313196063, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 323, + "message": "AssertionError: Expected tool call when tool_choice='required'\nassert 0 > 0\n + where 0 = len([])" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 323, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=True,\n )\n \n _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n \n> assert len(tool_calls_buffer) > 0, \"Expected tool call when tool_choice='required'\"\nE AssertionError: Expected tool call when tool_choice='required'\nE assert 0 > 0\nE + where 0 = len([])\n\ntests/verifications/openai_api/test_chat_completion.py:323: AssertionError" + }, + "teardown": { + "duration": 0.0003354279324412346, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.0726231737062335, + "outcome": "passed" + }, + "call": { + "duration": 0.7659661257639527, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003337552770972252, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.09297824744135141, + "outcome": "passed" + }, + "call": { + "duration": 3.257608976215124, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00022768322378396988, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.0726541867479682, + "outcome": "passed" + }, + "call": { + "duration": 4.5413802824914455, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026340410113334656, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama-v3p3-70b-instruct-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07666508108377457, + "outcome": "passed" + }, + "call": { + "duration": 0.5535151390358806, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003251638263463974, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-scout-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.09550460614264011, + "outcome": "passed" + }, + "call": { + "duration": 1.171110725030303, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002604629844427109, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[accounts/fireworks/models/llama4-maverick-instruct-basic-case0]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "case0" + }, + "setup": { + "duration": 0.07114547491073608, + "outcome": "passed" + }, + "call": { + "duration": 27.369331603869796, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023956969380378723, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07612851448357105, + "outcome": "passed" + }, + "call": { + "duration": 2.10164753254503, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError: Expected one of ['sol'] in content, but got: 'I cannot perform this task as it requires additional functionality that is not available in the given functions.'\nassert False\n + where False = any(. at 0x7f1acda87ca0>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call.id,\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert assistant_message.content is not None, \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"] # This is now a list\n content_lower = assistant_message.content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: 'I cannot perform this task as it requires additional functionality that is not available in the given functions.'\nE assert False\nE + where False = any(. at 0x7f1acda87ca0>)\n\ntests/verifications/openai_api/test_chat_completion.py:467: AssertionError" + }, + "teardown": { + "duration": 0.00030514132231473923, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07009781803935766, + "outcome": "passed" + }, + "call": { + "duration": 2.49614445772022, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_weather\", \"parameters\": {\"location\": \"San Francisco, CA\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_weather\", \"parameters\": {\"location\": \"San Francisco, CA\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.00035297591239213943, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.0719120567664504, + "outcome": "passed" + }, + "call": { + "duration": 1.181352874264121, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"addProduct\", \"parameters\": {\"name\": \"Widget\", \"price\": \"19.99\", \"inStock\": \"true\", \"tags\": \"[\\\\\"new\\\\\", \\\\\"sale\\\\\"]\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"addProduct\", \"parameters\": {\"name\": \"Widget\", \"price\": \"19.99\", \"inStock\": \"true\", \"tags\": \"[\\\\\"new\\\\\", \\\\\"sale\\\\\"]\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.000303901731967926, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07158921286463737, + "outcome": "passed" + }, + "call": { + "duration": 3.7202864307910204, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003700554370880127, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07388217654079199, + "outcome": "passed" + }, + "call": { + "duration": 0.6030126195400953, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": \"1\", \"year\": \"2025\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": \"1\", \"year\": \"2025\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003188345581293106, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07314795535057783, + "outcome": "passed" + }, + "call": { + "duration": 1.0849075820297003, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required). e.g. San Francisco, CA.\", \"type\": \"string\"}}}}'\nassert False\n + where False = any(. at 0x7f1acdad8970>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call.id,\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert assistant_message.content is not None, \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"] # This is now a list\n content_lower = assistant_message.content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required). e.g. San Francisco, CA.\", \"type\": \"string\"}}}}'\nE assert False\nE + where False = any(. at 0x7f1acdad8970>)\n\ntests/verifications/openai_api/test_chat_completion.py:467: AssertionError" + }, + "teardown": { + "duration": 0.00032442156225442886, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07257637288421392, + "outcome": "passed" + }, + "call": { + "duration": 1.1364115234464407, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required)\", \"type\": \"string\"}}}, \"required\": [\"location\"]}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required)\", \"type\": \"string\"}}}, \"required\": [\"location\"]}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003107702359557152, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.0716616166755557, + "outcome": "passed" + }, + "call": { + "duration": 1.6755285635590553, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"addProduct\", \"parameters\": {\"name\": {\"type\": \"string\", \"value\": \"Widget\"}, \"description\": {\"type\": \"string\", \"value\": \"Name of the product\"}, \"price\": {\"type\": \"number\", \"value\": 19.99}, \"inStock\": {\"type\": \"boolean\", \"value\": true}, \"tags\": {\"type\": \"array\", \"value\": [\"new\", \"sale\"]}}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"addProduct\", \"parameters\": {\"name\": {\"type\": \"string\", \"value\": \"Widget\"}, \"description\": {\"type\": \"string\", \"value\": \"Name of the product\"}, \"price\": {\"type\": \"number\", \"value\": 19.99}, \"inStock\": {\"type\": \"boolean\", \"value\": true}, \"tags\": {\"type\": \"array\", \"value\": [\"new\", \"sale\"]}}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003323536366224289, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07031949236989021, + "outcome": "passed" + }, + "call": { + "duration": 2.363899651914835, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"March 3rd\"}, \"time\": {\"time\": \"10 am\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\nThe function provided is not sufficient for me to answer the question.assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\nThe function provided is not sufficient for me to answer the question.', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"March 3rd\"}, \"time\": {\"time\": \"10 am\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\nThe function provided is not sufficient for me to answer the question.assistant\\n\\n{\"name\": \"get_event\", \"parameters\": {\"date\": {\"date\": \"2025-03-03\"}, \"time\": {\"time\": \"10:00\"}}}assistant\\n\\nThe function provided is not sufficient for me to answer the question.', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003245687112212181, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07069017831236124, + "outcome": "passed" + }, + "call": { + "duration": 1.8757586162537336, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\"}, \"year\": {\"description\": \"Year\", \"type\": \"integer\"}}}assistant\\n\\n{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\"}, \"year\": {\"description\": \"Year\", \"type\": \"integer\"}}}assistant\\n\\n{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\", \"value\": 1}, \"year\": {\"description\": \"Year\", \"type\": \"integer\", \"value\": 2025}}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\"}, \"year\": {\"description\": \"Year\", \"type\": \"integer\"}}}assistant\\n\\n{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\"}, \"year\": {\"description\": \"Year\", \"type\": \"integer\"}}}assistant\\n\\n{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": {\"description\": \"Month of the year (1-12)\", \"type\": \"integer\", \"value\": 1}, \"year\": {\"description\": \"Year\", \"type\": \"integer\", \"value\": 2025}}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.00030215736478567123, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07024750486016273, + "outcome": "passed" + }, + "call": { + "duration": 2.9532439298927784, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError: Expected one of ['sol'] in content, but got: 'Since there's no function defined to directly answer \"What's the name of the Sun in latin?\", I'll assume there's a general knowledge or information retrieval function available. Let's call it \"get_general_knowledge\". \n \n Here is a potential JSON response for a function call:\n \n {\"name\": \"get_general_knowledge\", \"parameters\": {\"query\": \"Latin name of the Sun\"}} \n \n However, the exact function and parameter names might vary based on the actual function definitions available. If we consider the given function \"get_weather\" and its parameters, it doesn't fit the prompt. Therefore, based on a hypothetical \"get_general_knowledge\" function, the response is provided. \n \n If the actual available functions were listed, a more accurate response could be provided. \n \n For the sake of the given prompt and assuming the presence of a \"get_general_knowledge\" function, the response is:\n \n {\"name\": \"get_general_knowledge\", \"parameters\": {\"query\": \"Latin name of the Sun\"}}'\nassert False\n + where False = any(. at 0x7f1acd9d54d0>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call.id,\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert assistant_message.content is not None, \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"] # This is now a list\n content_lower = assistant_message.content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: 'Since there's no function defined to directly answer \"What's the name of the Sun in latin?\", I'll assume there's a general knowledge or information retrieval function available. Let's call it \"get_general_knowledge\". \nE \nE Here is a potential JSON response for a function call:\nE \nE {\"name\": \"get_general_knowledge\", \"parameters\": {\"query\": \"Latin name of the Sun\"}} \nE \nE However, the exact function and parameter names might vary based on the actual function definitions available. If we consider the given function \"get_weather\" and its parameters, it doesn't fit the prompt. Therefore, based on a hypothetical \"get_general_knowledge\" function, the response is provided. \nE \nE If the actual available functions were listed, a more accurate response could be provided. \nE \nE For the sake of the given prompt and assuming the presence of a \"get_general_knowledge\" function, the response is:\nE \nE {\"name\": \"get_general_knowledge\", \"parameters\": {\"query\": \"Latin name of the Sun\"}}'\nE assert False\nE + where False = any(. at 0x7f1acd9d54d0>)\n\ntests/verifications/openai_api/test_chat_completion.py:467: AssertionError" + }, + "teardown": { + "duration": 0.00038253143429756165, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07193771284073591, + "outcome": "passed" + }, + "call": { + "duration": 0.9909431086853147, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"get_weather\", \"parameters\": {\"location\": \"San Francisco, CA\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"get_weather\", \"parameters\": {\"location\": \"San Francisco, CA\"}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003658318892121315, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.0702557684853673, + "outcome": "passed" + }, + "call": { + "duration": 0.8836336443200707, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"addProduct\", \"parameters\": {\"name\": \"Widget\", \"price\": 19.99, \"inStock\": true, \"tags\": [\"new\", \"sale\"]}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"addProduct\", \"parameters\": {\"name\": \"Widget\", \"price\": 19.99, \"inStock\": true, \"tags\": [\"new\", \"sale\"]}}', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.00036840979009866714, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07019469328224659, + "outcome": "passed" + }, + "call": { + "duration": 7.394101745449007, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}} \"\\n\\n{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}assistant\\n\\n{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}assistant\\n\\nimport json\\noutput = json.loads(\"{\\\\\"type\\\\\": \\\\\"function\\\\\", \\\\\"name\\\\\": \\\\\"get_event\\\\\", \\\\\"parameters\\\\\": {\\\\\"date\\\\\": \\\\\"2025-03-03\\\\\", \\\\\"time\\\\\": \\\\\"10:00\\\\\"}}\")\\nprint(output)assistant\\n\\nimport json\\n\\n# Define the input data\\ndata = \\'[{\"type\": \"function\", \"name\": \"create_event\", \"parameters\": {\"name\": \"Meeting\", \"date\": \"2025-03-03\", \"time\": \"10:00\", \"location\": \"Conference Room\", \"participants\": [\"John\", \"Jane\"]}}, {\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}]\\'\\n\\n# Parse the JSON string into a Python object\\njson_data = json.loads(data)\\n\\n# Print the parsed data\\nprint(json_data)assistant\\n\\nimport json\\n\\ndef check_meeting(data):\\n # Parse the JSON string into a Python object\\n json_data = json.loads(data)\\n\\n # Check if there is a meeting on March 3rd at 10 am\\n for item in json_data:\\n if item[\\'type\\'] == \\'function\\' and item[\\'name\\'] == \\'get_event\\':\\n date = item[\\'parameters\\'][\\'date\\']\\n time = item[\\'parameters\\'][\\'time\\']\\n # Assuming you have a function to check if there is a meeting at the given date and time\\n # For simplicity, let\\'s assume the function is called \\'has_meeting\\'\\n # if has_meeting(date, time):\\n # return \\'Yes\\'\\n # else:\\n # return \\'No\\'\\n return \\'Yes\\' # For demonstration purposes, let\\'s assume there is a meeting\\n\\n return \\'No\\'\\n\\ndata = \\'[{\"type\": \"function\", \"name\": \"create_event\", \"parameters\": {\"name\": \"Meeting\", \"date\": \"2025-03-03\", \"time\": \"10:00\", \"location\": \"Conference Room\", \"participants\": [\"John\", \"Jane\"]}}, {\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}]\\'\\nprint(check_meeting(data))assistant\\n\\nYes.', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}} \"\\n\\n{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}assistant\\n\\n{\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}assistant\\n\\nimport json\\noutput = json.loads(\"{\\\\\"type\\\\\": \\\\\"function\\\\\", \\\\\"name\\\\\": \\\\\"get_event\\\\\", \\\\\"parameters\\\\\": {\\\\\"date\\\\\": \\\\\"2025-03-03\\\\\", \\\\\"time\\\\\": \\\\\"10:00\\\\\"}}\")\\nprint(output)assistant\\n\\nimport json\\n\\n# Define the input data\\ndata = \\'[{\"type\": \"function\", \"name\": \"create_event\", \"parameters\": {\"name\": \"Meeting\", \"date\": \"2025-03-03\", \"time\": \"10:00\", \"location\": \"Conference Room\", \"participants\": [\"John\", \"Jane\"]}}, {\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}]\\'\\n\\n# Parse the JSON string into a Python object\\njson_data = json.loads(data)\\n\\n# Print the parsed data\\nprint(json_data)assistant\\n\\nimport json\\n\\ndef check_meeting(data):\\n # Parse the JSON string into a Python object\\n json_data = json.loads(data)\\n\\n # Check if there is a meeting on March 3rd at 10 am\\n for item in json_data:\\n if item[\\'type\\'] == \\'function\\' and item[\\'name\\'] == \\'get_event\\':\\n date = item[\\'parameters\\'][\\'date\\']\\n time = item[\\'parameters\\'][\\'time\\']\\n # Assuming you have a function to check if there is a meeting at the given date and time\\n # For simplicity, let\\'s assume the function is called \\'has_meeting\\'\\n # if has_meeting(date, time):\\n # return \\'Yes\\'\\n # else:\\n # return \\'No\\'\\n return \\'Yes\\' # For demonstration purposes, let\\'s assume there is a meeting\\n\\n return \\'No\\'\\n\\ndata = \\'[{\"type\": \"function\", \"name\": \"create_event\", \"parameters\": {\"name\": \"Meeting\", \"date\": \"2025-03-03\", \"time\": \"10:00\", \"location\": \"Conference Room\", \"participants\": [\"John\", \"Jane\"]}}, {\"type\": \"function\", \"name\": \"get_event\", \"parameters\": {\"date\": \"2025-03-03\", \"time\": \"10:00\"}}]\\'\\nprint(check_meeting(data))assistant\\n\\nYes.', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.0003475993871688843, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07140176557004452, + "outcome": "passed" + }, + "call": { + "duration": 1.5649437978863716, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len((None or []))\n + where None = ChatCompletionMessage(content='{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": 1, \"year\": 2024}}\"\" \"\" \" \"\"\"\"\"\"\"\"\"\"\"\"\" \"\" \"\"\" \"}\",\"\" \" \"}\",\"\" \" \"}\",\"\" \" \"{\" \"name\" \": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": 1, \"year\": 2024}}\"', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len((None or []))\nE + where None = ChatCompletionMessage(content='{\"name\": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": 1, \"year\": 2024}}\"\" \"\" \" \"\"\"\"\"\"\"\"\"\"\"\"\" \"\" \"\"\" \"}\",\"\" \" \"}\",\"\" \" \"}\",\"\" \" \"{\" \"name\" \": \"getMonthlyExpenseSummary\", \"parameters\": {\"month\": 1, \"year\": 2024}}\"', refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=None).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.00034684035927057266, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07161083538085222, + "outcome": "passed" + }, + "call": { + "duration": 0.972024847753346, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError: Expected one of ['sol'] in content, but got: 'I cannot perform this task as it requires additional functionality that is not available in the given functions.'\nassert False\n + where False = any(. at 0x7f1acd9d4510>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"]\n content_lower = accumulated_content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{accumulated_content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: 'I cannot perform this task as it requires additional functionality that is not available in the given functions.'\nE assert False\nE + where False = any(. at 0x7f1acd9d4510>)\n\ntests/verifications/openai_api/test_chat_completion.py:550: AssertionError" + }, + "teardown": { + "duration": 0.0003080591559410095, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07267874106764793, + "outcome": "passed" + }, + "call": { + "duration": 0.632216920144856, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003350367769598961, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.0707720061764121, + "outcome": "passed" + }, + "call": { + "duration": 0.9429405080154538, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0002858620136976242, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.06923680566251278, + "outcome": "passed" + }, + "call": { + "duration": 0.7107308339327574, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003181472420692444, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07021687645465136, + "outcome": "passed" + }, + "call": { + "duration": 0.7717038569971919, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama-v3p3-70b-instruct'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.00030398648232221603, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07320436742156744, + "outcome": "passed" + }, + "call": { + "duration": 1.2869794629514217, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required) (e.g. San Francisco, CA.\", \"type\": \"string\"}}}, \"required\": [\"location\"]}}'\nassert False\n + where False = any(. at 0x7f1acd9b8e40>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"]\n content_lower = accumulated_content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{accumulated_content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": \"get_weather\", \"parameters\": {\"description\": \"Get the current weather\", \"parameters\": {\"type\": \"object\", \"properties\": {\"location\": {\"description\": \"The city and state (both required) (e.g. San Francisco, CA.\", \"type\": \"string\"}}}, \"required\": [\"location\"]}}'\nE assert False\nE + where False = any(. at 0x7f1acd9b8e40>)\n\ntests/verifications/openai_api/test_chat_completion.py:550: AssertionError" + }, + "teardown": { + "duration": 0.0003076540306210518, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.0732570867985487, + "outcome": "passed" + }, + "call": { + "duration": 0.9204158475622535, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.000310627743601799, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07232664246112108, + "outcome": "passed" + }, + "call": { + "duration": 3.829266043379903, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.00034091807901859283, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07045515719801188, + "outcome": "passed" + }, + "call": { + "duration": 6.550140863284469, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003092316910624504, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07400601450353861, + "outcome": "passed" + }, + "call": { + "duration": 3.142588397487998, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-scout-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003124792128801346, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07049713470041752, + "outcome": "passed" + }, + "call": { + "duration": 4.074657499790192, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError: Expected one of ['sol'] in content, but got: 'Since the provided text describes a JSON schema for a function call to get the weather, and the prompt asks for the name of the Sun in Latin, we need to identify a suitable function that can provide this information. However, the given schema is for a \"get_weather\" function, which doesn't directly relate to the question about the Sun's name in Latin.\n \n Assuming there's another function available that can provide information about celestial bodies or their names in different languages, we might look for something like \"get_celestial_body_info\" or a similar function.\n \n However, based on the given format and the information provided, it seems there's an implication that we should directly provide a response in the specified JSON format for a hypothetical or related function. Let's assume a function named \"get_celestial_body_name\" that takes parameters like \"body\" and \"language\".\n \n Given the constraint of the format and assuming a function that fits, we might construct a response like:\n \n ```json\n {\n \"name\": \"get_celestial_body_name\",\n \"parameters\": {\n \"body\": \"Sun\",\n \"language\": \"Latin\"\n }\n }\n ```\n \n This response implies the existence of a function \"get_celestial_body_name\" that can take the name of a celestial body and a language as input and return the name of the celestial body in that language. \n \n So, the response is:\n {\"name\": \"get_celestial_body_name\", \"parameters\": {\"body\": \"Sun\", \"language\": \"Latin\"}}'\nassert False\n + where False = any(. at 0x7f1acdaba030>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 550, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"]\n content_lower = accumulated_content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{accumulated_content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: 'Since the provided text describes a JSON schema for a function call to get the weather, and the prompt asks for the name of the Sun in Latin, we need to identify a suitable function that can provide this information. However, the given schema is for a \"get_weather\" function, which doesn't directly relate to the question about the Sun's name in Latin.\nE \nE Assuming there's another function available that can provide information about celestial bodies or their names in different languages, we might look for something like \"get_celestial_body_info\" or a similar function.\nE \nE However, based on the given format and the information provided, it seems there's an implication that we should directly provide a response in the specified JSON format for a hypothetical or related function. Let's assume a function named \"get_celestial_body_name\" that takes parameters like \"body\" and \"language\".\nE \nE Given the constraint of the format and assuming a function that fits, we might construct a response like:\nE \nE ```json\nE {\nE \"name\": \"get_celestial_body_name\",\nE \"parameters\": {\nE \"body\": \"Sun\",\nE \"language\": \"Latin\"\nE }\nE }\nE ```\nE \nE This response implies the existence of a function \"get_celestial_body_name\" that can take the name of a celestial body and a language as input and return the name of the celestial body in that language. \nE \nE So, the response is:\nE {\"name\": \"get_celestial_body_name\", \"parameters\": {\"body\": \"Sun\", \"language\": \"Latin\"}}'\nE assert False\nE + where False = any(. at 0x7f1acdaba030>)\n\ntests/verifications/openai_api/test_chat_completion.py:550: AssertionError" + }, + "teardown": { + "duration": 0.00031174439936876297, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07156828418374062, + "outcome": "passed" + }, + "call": { + "duration": 0.6585372854024172, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003233151510357857, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07135927956551313, + "outcome": "passed" + }, + "call": { + "duration": 1.0483367526903749, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.00028971116989851, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07051362749189138, + "outcome": "passed" + }, + "call": { + "duration": 4.592376064509153, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.00029074493795633316, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07347700279206038, + "outcome": "passed" + }, + "call": { + "duration": 1.5335856154561043, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 1 tool calls, but got 0\nassert 0 == 1\n + where 0 = len(([] or []))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\nprovider = 'fireworks'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 1 tool calls, but got 0\nE assert 0 == 1\nE + where 0 = len(([] or []))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003180811181664467, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=False]", + "lineno": 554, + "outcome": "skipped", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=False]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07250582799315453, + "outcome": "passed" + }, + "call": { + "duration": 0.00022417306900024414, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 561, 'Skipped: Skipping test_chat_multi_turn_multiple_images for model accounts/fireworks/models/llama-v3p3-70b-instruct on provider fireworks based on config.')" + }, + "teardown": { + "duration": 0.0036543207243084908, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=True]", + "lineno": 554, + "outcome": "skipped", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama-v3p3-70b-instruct-stream=True]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama-v3p3-70b-instruct-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama-v3p3-70b-instruct", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07320290431380272, + "outcome": "passed" + }, + "call": { + "duration": 0.0002203313633799553, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 561, 'Skipped: Skipping test_chat_multi_turn_multiple_images for model accounts/fireworks/models/llama-v3p3-70b-instruct on provider fireworks based on config.')" + }, + "teardown": { + "duration": 0.00035103876143693924, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=False]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07001570798456669, + "outcome": "passed" + }, + "call": { + "duration": 6.779760396108031, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023057777434587479, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=True]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-scout-instruct-basic-stream=True]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-scout-instruct-basic-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-scout-instruct-basic", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07039657514542341, + "outcome": "passed" + }, + "call": { + "duration": 4.335017805919051, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023656059056520462, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=False]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07107001543045044, + "outcome": "passed" + }, + "call": { + "duration": 5.857806807383895, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028312671929597855, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=True]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[accounts/fireworks/models/llama4-maverick-instruct-basic-stream=True]", + "parametrize", + "pytestmark", + "accounts/fireworks/models/llama4-maverick-instruct-basic-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "accounts/fireworks/models/llama4-maverick-instruct-basic", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07257402781397104, + "outcome": "passed" + }, + "call": { + "duration": 5.412369452416897, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0018147435039281845, + "outcome": "passed" + } + } + ], + "run_timestamp": 1744918193 +} diff --git a/tests/verifications/test_results/fireworks_1744154308.json b/tests/verifications/test_results/fireworks_1744154308.json deleted file mode 100644 index 691f6e474..000000000 --- a/tests/verifications/test_results/fireworks_1744154308.json +++ /dev/null @@ -1,2744 +0,0 @@ -{ - "created": 1744154399.039055, - "duration": 87.73799800872803, - "exitcode": 1, - "root": "/Users/erichuang/projects/llama-stack", - "environment": {}, - "summary": { - "skipped": 52, - "passed": 28, - "failed": 3, - "total": 83, - "collected": 83 - }, - "collectors": [ - { - "nodeid": "", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "type": "Module" - } - ] - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 138 - } - ] - } - ], - "tests": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.17320987500716, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.000177707988768816, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009193749981932342, - "outcome": "passed" - }, - "call": { - "duration": 1.1473859580000862, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00043337501119822264, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01645291701424867, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002898749662563205, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01562033302616328, - "outcome": "passed" - }, - "call": { - "duration": 0.8782661251025274, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0002795408945530653, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008571124984882772, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0003043749602511525, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00842841702979058, - "outcome": "passed" - }, - "call": { - "duration": 1.3863223339430988, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009970410028472543, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007089875056408346, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00017958390526473522, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005809499998576939, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00016495899762958288, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0119722920935601, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00016962504014372826, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005716291954740882, - "outcome": "passed" - }, - "call": { - "duration": 0.6822018750244752, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005292498972266912, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.025827708072029054, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.000295999925583601, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010980832972563803, - "outcome": "passed" - }, - "call": { - "duration": 0.7537062909686938, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0008091670460999012, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006567832897417247, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001545000122860074, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005985083989799023, - "outcome": "passed" - }, - "call": { - "duration": 0.7263387079583481, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006324589485302567, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0171962499152869, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.000780042028054595, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01365620899014175, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00016758404672145844, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0064070840599015355, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0002031669719144702, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010951624950394034, - "outcome": "passed" - }, - "call": { - "duration": 0.5433399169705808, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0013178749941289425, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.022056750021874905, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0006570409750565886, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008314333041198552, - "outcome": "passed" - }, - "call": { - "duration": 0.7779882500180975, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006799160037189722, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.03601404093205929, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.000610582996159792, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014321292052045465, - "outcome": "passed" - }, - "call": { - "duration": 1.0243758750148118, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0010485410457476974, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.021133000031113625, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0005400830414146185, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007212458993308246, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00026770797558128834, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012334750033915043, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00042683398351073265, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011477917083539069, - "outcome": "passed" - }, - "call": { - "duration": 1.670572166913189, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005759169580414891, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.024620208074338734, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0005166250048205256, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008708957931958139, - "outcome": "passed" - }, - "call": { - "duration": 0.6654335829662159, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0002927089808508754, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.018128167022950947, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001929170684888959, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0063874589977785945, - "outcome": "passed" - }, - "call": { - "duration": 0.8047525839647278, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00039245898369699717, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01366533397231251, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00028241705149412155, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010844790958799422, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.000258082989603281, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00936354196164757, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00020533299539238214, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008578249951824546, - "outcome": "passed" - }, - "call": { - "duration": 2.6288582499837503, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006052498938515782, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.02061279199551791, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00029320805333554745, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00995812495239079, - "outcome": "passed" - }, - "call": { - "duration": 3.0904540000483394, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0003214169992133975, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0261635419446975, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00032716698478907347, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.027220541960559785, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0003192499279975891, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010883458075113595, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002687909873202443, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 75, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0171177500160411, - "outcome": "passed" - }, - "call": { - "duration": 1.6752691670553759, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004877089522778988, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011608208995312452, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00017137499526143074, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 75, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009284624946303666, - "outcome": "passed" - }, - "call": { - "duration": 3.537356249988079, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005068340105935931, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.016660499968566, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00029341597110033035, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01374066702555865, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0002625000197440386, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013120374991558492, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00021954195108264685, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015080374898388982, - "outcome": "passed" - }, - "call": { - "duration": 1.157175041968003, - "outcome": "passed" - }, - "teardown": { - "duration": 0.000495875021442771, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013946042046882212, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002954580122604966, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011617792071774602, - "outcome": "passed" - }, - "call": { - "duration": 0.9537639999762177, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004819999448955059, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.027436082949861884, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00030274991877377033, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.016110333963297307, - "outcome": "passed" - }, - "call": { - "duration": 0.8493227910948917, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004883749643340707, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.017850833013653755, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0003287500003352761, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012523208046332002, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00023500004317611456, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007516667013987899, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00018912507221102715, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007337165996432304, - "outcome": "passed" - }, - "call": { - "duration": 3.124099582899362, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006703329272568226, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014259999967180192, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00030262500513345003, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010863124975003302, - "outcome": "passed" - }, - "call": { - "duration": 1.3330956250429153, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00018679199274629354, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005797958001494408, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00017529097385704517, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005647709011100233, - "outcome": "passed" - }, - "call": { - "duration": 3.2295467499643564, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005654999986290932, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007151791942305863, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00015316694043576717, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006435790914110839, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00015954102855175734, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006164791993796825, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00014074996579438448, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010064583038911223, - "outcome": "passed" - }, - "call": { - "duration": 1.1676458748988807, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0002513329964131117, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011011417023837566, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00020608294289559126, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011654542060568929, - "outcome": "passed" - }, - "call": { - "duration": 0.7950789160095155, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0002690000692382455, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0066834589233621955, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00017270795069634914, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011390416999347508, - "outcome": "passed" - }, - "call": { - "duration": 0.7844940840732306, - "outcome": "passed" - }, - "teardown": { - "duration": 0.000511458027176559, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005813500029034913, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00015495799016207457, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0075639160349965096, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00014358304906636477, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008526541059836745, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00015841599088162184, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007805416011251509, - "outcome": "passed" - }, - "call": { - "duration": 13.25898533302825, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 196, - "message": "assert None is not None" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 136, - "message": "" - }, - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 196, - "message": "AssertionError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'You are a helpful math tutor. Guide the user through the solution step by step.',... ['steps', 'final_answer'], 'title': 'MathReasoning', ...}}, 'type': 'json_schema'}}, 'output': 'valid_math_reasoning'}\ncorrect_model_name = 'accounts/fireworks/models/llama-v3p1-70b-instruct'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n response_format=input_output[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n maybe_json_content += chunk.choices[0].delta.content or \"\"\n> validate_structured_output(maybe_json_content, input_output[\"output\"])\n\ntests/verifications/openai/test_chat_completion.py:136: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nmaybe_json_content = '{ \"final_answer\": \"}To solve the equation 8x + 7 = -23, we need to isolate the variable x. We can do this by followin...tassistantassistantassistantassistantassistantassistantassistantassistantassistantassistantassistantassistantassistant'\nschema_name = 'valid_math_reasoning'\n\n def validate_structured_output(maybe_json_content: str, schema_name: str) -> None:\n structured_output = get_structured_output(maybe_json_content, schema_name)\n> assert structured_output is not None\nE assert None is not None\n\ntests/verifications/openai/test_chat_completion.py:196: AssertionError" - }, - "teardown": { - "duration": 0.00022583396639674902, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006412541959434748, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0001449589617550373, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010353000019676983, - "outcome": "passed" - }, - "call": { - "duration": 4.559281209018081, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00021179206669330597, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011320417048409581, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001623749267309904, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005637791007757187, - "outcome": "passed" - }, - "call": { - "duration": 2.9282109580235556, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00019149994477629662, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.021475916961207986, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0002605828922241926, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012046082993037999, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00016966694965958595, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00782629195600748, - "outcome": "passed" - }, - "call": { - "duration": 0.9290615000063553, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004110001027584076, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00842183397617191, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider fireworks does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00023745803628116846, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 138, - "outcome": "failed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010762874968349934, - "outcome": "passed" - }, - "call": { - "duration": 23.62101216695737, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 156, - "message": "TypeError: object of type 'NoneType' has no len()" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 156, - "message": "TypeError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\ncorrect_model_name = 'accounts/fireworks/models/llama4-scout-instruct-basic'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_non_streaming_tool_calling(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n tools=input_output[\"input\"][\"tools\"],\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai/test_chat_completion.py:156: TypeError" - }, - "teardown": { - "duration": 0.0004520840011537075, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00953104195650667, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider fireworks does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00017912499606609344, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 138, - "outcome": "failed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010302042006514966, - "outcome": "passed" - }, - "call": { - "duration": 5.55651158397086, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 156, - "message": "TypeError: object of type 'NoneType' has no len()" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 156, - "message": "TypeError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\ncorrect_model_name = 'accounts/fireworks/models/llama4-maverick-instruct-basic'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_non_streaming_tool_calling(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n tools=input_output[\"input\"][\"tools\"],\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert len(response.choices[0].message.tool_calls) > 0\nE TypeError: object of type 'NoneType' has no len()\n\ntests/verifications/openai/test_chat_completion.py:156: TypeError" - }, - "teardown": { - "duration": 0.0003929579397663474, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01593891705852002, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider fireworks does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0003579579060897231, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01874550001230091, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider fireworks does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00031995808240026236, - "outcome": "passed" - } - } - ] -} diff --git a/tests/verifications/test_results/meta_reference.json b/tests/verifications/test_results/meta_reference.json new file mode 100644 index 000000000..9f9a6de82 --- /dev/null +++ b/tests/verifications/test_results/meta_reference.json @@ -0,0 +1,1097 @@ +{ + "created": 1744918847.712677, + "duration": 215.2132911682129, + "exitcode": 0, + "root": "/home/erichuang/llama-stack", + "environment": {}, + "summary": { + "passed": 28, + "total": 28, + "collected": 28 + }, + "collectors": [ + { + "nodeid": "", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "type": "Module" + } + ] + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "type": "Function", + "lineno": 554 + } + ] + } + ], + "tests": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.09800294879823923, + "outcome": "passed" + }, + "call": { + "duration": 4.066351721994579, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025077443569898605, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07197055127471685, + "outcome": "passed" + }, + "call": { + "duration": 1.1918699434027076, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027959980070590973, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.07294174749404192, + "outcome": "passed" + }, + "call": { + "duration": 2.027987685985863, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026049185544252396, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.0741243390366435, + "outcome": "passed" + }, + "call": { + "duration": 1.2185465842485428, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002712178975343704, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07473955396562815, + "outcome": "passed" + }, + "call": { + "duration": 10.396870554424822, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025566015392541885, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 157, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07153997663408518, + "outcome": "passed" + }, + "call": { + "duration": 10.59731453191489, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002689240500330925, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07629724312573671, + "outcome": "passed" + }, + "call": { + "duration": 5.293915126472712, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002626115456223488, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.07231003511697054, + "outcome": "passed" + }, + "call": { + "duration": 19.020215207710862, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025262776762247086, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07291634101420641, + "outcome": "passed" + }, + "call": { + "duration": 6.105666604824364, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027642492204904556, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.07050449773669243, + "outcome": "passed" + }, + "call": { + "duration": 19.080777555704117, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000232757069170475, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07927203364670277, + "outcome": "passed" + }, + "call": { + "duration": 0.7760327504947782, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024862587451934814, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 250, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07514432724565268, + "outcome": "passed" + }, + "call": { + "duration": 0.7971448050811887, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002687377855181694, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07167623657733202, + "outcome": "passed" + }, + "call": { + "duration": 0.6906132427975535, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003270544111728668, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 302, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.0725558316335082, + "outcome": "passed" + }, + "call": { + "duration": 0.9245227407664061, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002602478489279747, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07299680262804031, + "outcome": "passed" + }, + "call": { + "duration": 31.90802155341953, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023696757853031158, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07331038825213909, + "outcome": "passed" + }, + "call": { + "duration": 39.341348845511675, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00022847391664981842, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.10512833576649427, + "outcome": "passed" + }, + "call": { + "duration": 2.9590865215286613, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002405792474746704, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07294358871877193, + "outcome": "passed" + }, + "call": { + "duration": 1.7672317335382104, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003217160701751709, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.11179900728166103, + "outcome": "passed" + }, + "call": { + "duration": 2.411543940193951, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023025460541248322, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07234534807503223, + "outcome": "passed" + }, + "call": { + "duration": 4.438527720049024, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028106197714805603, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.06979168020188808, + "outcome": "passed" + }, + "call": { + "duration": 3.186668715439737, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002599591389298439, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07083943020552397, + "outcome": "passed" + }, + "call": { + "duration": 2.31697681453079, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00029378384351730347, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07374998275190592, + "outcome": "passed" + }, + "call": { + "duration": 1.7863417640328407, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025129225105047226, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07009322382509708, + "outcome": "passed" + }, + "call": { + "duration": 2.248749589547515, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00022566411644220352, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.10290939453989267, + "outcome": "passed" + }, + "call": { + "duration": 4.644147016108036, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002319561317563057, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07125874608755112, + "outcome": "passed" + }, + "call": { + "duration": 3.2340452317148447, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002202410250902176, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07085523661226034, + "outcome": "passed" + }, + "call": { + "duration": 17.7453119084239, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00037308502942323685, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07670701760798693, + "outcome": "passed" + }, + "call": { + "duration": 12.663874679245055, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0008251797407865524, + "outcome": "passed" + } + } + ], + "run_timestamp": 1744918631 +} diff --git a/tests/verifications/test_results/openai.json b/tests/verifications/test_results/openai.json new file mode 100644 index 000000000..f40b8f532 --- /dev/null +++ b/tests/verifications/test_results/openai.json @@ -0,0 +1,2161 @@ +{ + "created": 1744918586.2136743, + "duration": 136.56194758415222, + "exitcode": 0, + "root": "/home/erichuang/llama-stack", + "environment": {}, + "summary": { + "passed": 56, + "total": 56, + "collected": 56 + }, + "collectors": [ + { + "nodeid": "", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "type": "Module" + } + ] + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[gpt-4o-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[gpt-4o-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[gpt-4o-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[gpt-4o-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[gpt-4o-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[gpt-4o-mini-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-stream=True]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=True]", + "type": "Function", + "lineno": 554 + } + ] + } + ], + "tests": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[gpt-4o-earth]", + "parametrize", + "pytestmark", + "gpt-4o-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "earth" + }, + "setup": { + "duration": 0.09683514852076769, + "outcome": "passed" + }, + "call": { + "duration": 1.2521671634167433, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002309884876012802, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[gpt-4o-saturn]", + "parametrize", + "pytestmark", + "gpt-4o-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "saturn" + }, + "setup": { + "duration": 0.08609516825526953, + "outcome": "passed" + }, + "call": { + "duration": 0.8818014115095139, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002558426931500435, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[gpt-4o-mini-earth]", + "parametrize", + "pytestmark", + "gpt-4o-mini-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "earth" + }, + "setup": { + "duration": 0.07237763796001673, + "outcome": "passed" + }, + "call": { + "duration": 0.44337860122323036, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027293339371681213, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[gpt-4o-mini-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[gpt-4o-mini-saturn]", + "parametrize", + "pytestmark", + "gpt-4o-mini-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07486020587384701, + "outcome": "passed" + }, + "call": { + "duration": 0.7754815155640244, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026193633675575256, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[gpt-4o-earth]", + "parametrize", + "pytestmark", + "gpt-4o-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "earth" + }, + "setup": { + "duration": 0.07270221784710884, + "outcome": "passed" + }, + "call": { + "duration": 0.5725504904985428, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025644712150096893, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[gpt-4o-saturn]", + "parametrize", + "pytestmark", + "gpt-4o-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07263980247080326, + "outcome": "passed" + }, + "call": { + "duration": 0.6277077253907919, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002706516534090042, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[gpt-4o-mini-earth]", + "parametrize", + "pytestmark", + "gpt-4o-mini-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "earth" + }, + "setup": { + "duration": 0.07290142774581909, + "outcome": "passed" + }, + "call": { + "duration": 0.45955433789640665, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002704532817006111, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[gpt-4o-mini-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[gpt-4o-mini-saturn]", + "parametrize", + "pytestmark", + "gpt-4o-mini-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "saturn" + }, + "setup": { + "duration": 0.0736015671864152, + "outcome": "passed" + }, + "call": { + "duration": 1.1738686058670282, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026966072618961334, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.07560365367680788, + "outcome": "passed" + }, + "call": { + "duration": 2.4073661137372255, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002443268895149231, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[gpt-4o-mini-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.06925276480615139, + "outcome": "passed" + }, + "call": { + "duration": 2.777276105247438, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002748873084783554, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-case0]", + "lineno": 157, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_image[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.07098669931292534, + "outcome": "passed" + }, + "call": { + "duration": 3.0149426590651274, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002702716737985611, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[gpt-4o-mini-case0]", + "lineno": 157, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_image[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.07316321693360806, + "outcome": "passed" + }, + "call": { + "duration": 2.401849321089685, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003180522471666336, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[gpt-4o-calendar]", + "parametrize", + "pytestmark", + "gpt-4o-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07038832642138004, + "outcome": "passed" + }, + "call": { + "duration": 1.0188098661601543, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027244072407484055, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[gpt-4o-math]", + "parametrize", + "pytestmark", + "gpt-4o-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "math" + }, + "setup": { + "duration": 0.07331131957471371, + "outcome": "passed" + }, + "call": { + "duration": 7.0907115917652845, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003256639465689659, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[gpt-4o-mini-calendar]", + "parametrize", + "pytestmark", + "gpt-4o-mini-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "calendar" + }, + "setup": { + "duration": 0.0749899847432971, + "outcome": "passed" + }, + "call": { + "duration": 0.6721736947074533, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002617714926600456, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[gpt-4o-mini-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[gpt-4o-mini-math]", + "parametrize", + "pytestmark", + "gpt-4o-mini-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "math" + }, + "setup": { + "duration": 0.07268172968178988, + "outcome": "passed" + }, + "call": { + "duration": 2.6800331017002463, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002518612891435623, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[gpt-4o-calendar]", + "parametrize", + "pytestmark", + "gpt-4o-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07150284852832556, + "outcome": "passed" + }, + "call": { + "duration": 0.6667193034663796, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025727134197950363, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[gpt-4o-math]", + "parametrize", + "pytestmark", + "gpt-4o-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "math" + }, + "setup": { + "duration": 0.07039738819003105, + "outcome": "passed" + }, + "call": { + "duration": 4.870940984226763, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025987718254327774, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[gpt-4o-mini-calendar]", + "parametrize", + "pytestmark", + "gpt-4o-mini-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07166357431560755, + "outcome": "passed" + }, + "call": { + "duration": 0.9911826532334089, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028301775455474854, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[gpt-4o-mini-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[gpt-4o-mini-math]", + "parametrize", + "pytestmark", + "gpt-4o-mini-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "math" + }, + "setup": { + "duration": 0.07489973120391369, + "outcome": "passed" + }, + "call": { + "duration": 5.81621040776372, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027776509523391724, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.0709689250215888, + "outcome": "passed" + }, + "call": { + "duration": 0.6838962603360415, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00038875360041856766, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.07440952491015196, + "outcome": "passed" + }, + "call": { + "duration": 0.6124099707230926, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00031805597245693207, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[gpt-4o-case0]", + "lineno": 250, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_calling[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.07558728754520416, + "outcome": "passed" + }, + "call": { + "duration": 1.0413735723122954, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026555173099040985, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[gpt-4o-mini-case0]", + "lineno": 250, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_calling[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.07159029692411423, + "outcome": "passed" + }, + "call": { + "duration": 0.619917850010097, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026798900216817856, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[gpt-4o-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.10359053406864405, + "outcome": "passed" + }, + "call": { + "duration": 0.6396236326545477, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000257750041782856, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[gpt-4o-mini-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.07243514712899923, + "outcome": "passed" + }, + "call": { + "duration": 0.6169720906764269, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002462640404701233, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[gpt-4o-case0]", + "lineno": 302, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_required[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.07266584690660238, + "outcome": "passed" + }, + "call": { + "duration": 0.9391414495185018, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003280108794569969, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[gpt-4o-mini-case0]", + "lineno": 302, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_required[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.08437065314501524, + "outcome": "passed" + }, + "call": { + "duration": 0.6935106571763754, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027523748576641083, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[gpt-4o-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.07208988349884748, + "outcome": "passed" + }, + "call": { + "duration": 0.6744982637465, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002555781975388527, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[gpt-4o-mini-case0]", + "lineno": 329, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.07785151246935129, + "outcome": "passed" + }, + "call": { + "duration": 0.6253539212048054, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028202030807733536, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[gpt-4o-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[gpt-4o-case0]", + "parametrize", + "pytestmark", + "gpt-4o-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "case0" + }, + "setup": { + "duration": 0.0911521203815937, + "outcome": "passed" + }, + "call": { + "duration": 0.7869452070444822, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00043197907507419586, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[gpt-4o-mini-case0]", + "lineno": 352, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_none[gpt-4o-mini-case0]", + "parametrize", + "pytestmark", + "gpt-4o-mini-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "case0" + }, + "setup": { + "duration": 0.10472878441214561, + "outcome": "passed" + }, + "call": { + "duration": 0.6786438375711441, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025699567049741745, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "parametrize", + "pytestmark", + "gpt-4o-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07002853509038687, + "outcome": "passed" + }, + "call": { + "duration": 2.395758199505508, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002955012023448944, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "parametrize", + "pytestmark", + "gpt-4o-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07316868472844362, + "outcome": "passed" + }, + "call": { + "duration": 1.3224441464990377, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002612341195344925, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "parametrize", + "pytestmark", + "gpt-4o-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.10713072493672371, + "outcome": "passed" + }, + "call": { + "duration": 1.0061814906075597, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002610785886645317, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "gpt-4o-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07267123833298683, + "outcome": "passed" + }, + "call": { + "duration": 4.26907461322844, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025866832584142685, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "gpt-4o-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07208938524127007, + "outcome": "passed" + }, + "call": { + "duration": 2.8186135441064835, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026924535632133484, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07148494757711887, + "outcome": "passed" + }, + "call": { + "duration": 2.1276168935000896, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024427566677331924, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "parametrize", + "pytestmark", + "gpt-4o-mini-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07107946090400219, + "outcome": "passed" + }, + "call": { + "duration": 1.1634307894855738, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00030216481536626816, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07261826191097498, + "outcome": "passed" + }, + "call": { + "duration": 1.4525672728195786, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002602897584438324, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.0710728308185935, + "outcome": "passed" + }, + "call": { + "duration": 4.533652591519058, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002704774960875511, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.0781267425045371, + "outcome": "passed" + }, + "call": { + "duration": 2.160066588781774, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002731531858444214, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-text_then_weather_tool]", + "parametrize", + "pytestmark", + "gpt-4o-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07118126843124628, + "outcome": "passed" + }, + "call": { + "duration": 2.068133544176817, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002514524385333061, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-weather_tool_then_text]", + "parametrize", + "pytestmark", + "gpt-4o-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07241942081600428, + "outcome": "passed" + }, + "call": { + "duration": 1.1098179938271642, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028003379702568054, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-add_product_tool]", + "parametrize", + "pytestmark", + "gpt-4o-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07439264003187418, + "outcome": "passed" + }, + "call": { + "duration": 1.0720843756571412, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026407837867736816, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "gpt-4o-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07028928305953741, + "outcome": "passed" + }, + "call": { + "duration": 5.23135226033628, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002559954300522804, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "gpt-4o-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.0733694015070796, + "outcome": "passed" + }, + "call": { + "duration": 2.3011497305706143, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002724975347518921, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-text_then_weather_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07319487817585468, + "outcome": "passed" + }, + "call": { + "duration": 2.060736038722098, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002620834857225418, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-weather_tool_then_text]", + "parametrize", + "pytestmark", + "gpt-4o-mini-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07086801622062922, + "outcome": "passed" + }, + "call": { + "duration": 1.1969546489417553, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023349467664957047, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-add_product_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07276885025203228, + "outcome": "passed" + }, + "call": { + "duration": 2.2494191862642765, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002493094652891159, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07039583195000887, + "outcome": "passed" + }, + "call": { + "duration": 4.528189226053655, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025649741291999817, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[gpt-4o-mini-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "gpt-4o-mini-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07187813706696033, + "outcome": "passed" + }, + "call": { + "duration": 2.446169280447066, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024812109768390656, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[gpt-4o-stream=False]", + "parametrize", + "pytestmark", + "gpt-4o-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07299137767404318, + "outcome": "passed" + }, + "call": { + "duration": 8.35237762145698, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026817526668310165, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-stream=True]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[gpt-4o-stream=True]", + "parametrize", + "pytestmark", + "gpt-4o-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07363969460129738, + "outcome": "passed" + }, + "call": { + "duration": 4.653971025720239, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026602670550346375, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=False]", + "parametrize", + "pytestmark", + "gpt-4o-mini-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07377734407782555, + "outcome": "passed" + }, + "call": { + "duration": 9.776036521419883, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000254971906542778, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=True]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[gpt-4o-mini-stream=True]", + "parametrize", + "pytestmark", + "gpt-4o-mini-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "gpt-4o-mini", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07054048776626587, + "outcome": "passed" + }, + "call": { + "duration": 12.58133109845221, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0013354746624827385, + "outcome": "passed" + } + } + ], + "run_timestamp": 1744918448 +} diff --git a/tests/verifications/test_results/openai_1744154522.json b/tests/verifications/test_results/openai_1744154522.json deleted file mode 100644 index 310f3500d..000000000 --- a/tests/verifications/test_results/openai_1744154522.json +++ /dev/null @@ -1,2672 +0,0 @@ -{ - "created": 1744154576.251519, - "duration": 51.50739002227783, - "exitcode": 0, - "root": "/Users/erichuang/projects/llama-stack", - "environment": {}, - "summary": { - "skipped": 61, - "passed": 22, - "total": 83, - "collected": 83 - }, - "collectors": [ - { - "nodeid": "", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "type": "Module" - } - ] - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 138 - } - ] - } - ], - "tests": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0531630830373615, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0001657919492572546, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006063499953597784, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.00014004099648445845, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005356832989491522, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00016508297994732857, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006139832898043096, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00014450005255639553, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00542324990965426, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00014112505596131086, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.004965625004842877, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00013720791321247816, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005054084002040327, - "outcome": "passed" - }, - "call": { - "duration": 0.6271341659594327, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00043925002682954073, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0159178749890998, - "outcome": "passed" - }, - "call": { - "duration": 0.44088316697161645, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006467089988291264, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.016705541987903416, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0005769169656559825, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012067249976098537, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.00016683305148035288, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009295083000324667, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00017204193864017725, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009534333017654717, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00020175008103251457, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006628665956668556, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0003687090938910842, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0061322919791564345, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.0003664169926196337, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00623433303553611, - "outcome": "passed" - }, - "call": { - "duration": 0.7898445830214769, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006602079374715686, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014758958015590906, - "outcome": "passed" - }, - "call": { - "duration": 1.1555478329537436, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0011781250359490514, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.03454475000035018, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.000967124942690134, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.025206666090525687, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.000189624959602952, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014331333106383681, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00023133307695388794, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009339665994048119, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00020329200197011232, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010387042071670294, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00018254201859235764, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012297999928705394, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00018662505317479372, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006984042003750801, - "outcome": "passed" - }, - "call": { - "duration": 0.32529433304443955, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0033042499562725425, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01832079200539738, - "outcome": "passed" - }, - "call": { - "duration": 0.48440287495031953, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00047233293298631907, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.02893691696226597, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0001747499918565154, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006553041050210595, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.00016829196829348803, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013746666954830289, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00019237503875046968, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007175332983024418, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.0001873329747468233, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006127291941083968, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00019004102796316147, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006421791040338576, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.0001611249754205346, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009806249989196658, - "outcome": "passed" - }, - "call": { - "duration": 0.9556747920578346, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004937920020893216, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.03146500000730157, - "outcome": "passed" - }, - "call": { - "duration": 1.082494750036858, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0006242080125957727, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.021534667001105845, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0003469999646767974, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.025929750059731305, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.0008774169255048037, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012507125036790967, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00022008304949849844, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008156375028192997, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.0002079169498756528, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012587749981321394, - "outcome": "passed" - }, - "call": { - "duration": 2.7379885419504717, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00044579198583960533, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.017111250082962215, - "outcome": "passed" - }, - "call": { - "duration": 2.599374584038742, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009177909232676029, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.02198700001463294, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00042749999556690454, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015032917028293014, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00041016703471541405, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013976250076666474, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00027600000612437725, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00799729092977941, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00020320899784564972, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "lineno": 75, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010483540943823755, - "outcome": "passed" - }, - "call": { - "duration": 4.249965250026435, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0008596250554546714, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 75, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.018141582957468927, - "outcome": "passed" - }, - "call": { - "duration": 2.297856790944934, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005075830267742276, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.017144332989118993, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0006829580524936318, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009827250032685697, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.00024204188957810402, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006737958989106119, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00022729102056473494, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006030917051248252, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00022229203023016453, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009183833957649767, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00022629194427281618, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007097500027157366, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00826825003605336, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006604874972254038, - "outcome": "passed" - }, - "call": { - "duration": 1.4057738750707358, - "outcome": "passed" - }, - "teardown": { - "duration": 0.000506040989421308, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015966624952852726, - "outcome": "passed" - }, - "call": { - "duration": 0.540478374925442, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009536249563097954, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.020631707971915603, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0004928340204060078, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.016745459055528045, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.0003412909572944045, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012252667103894055, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00028650008607655764, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01128904102370143, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00027041707653552294, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009191332967020571, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0002074999501928687, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007687666919082403, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.0002027079463005066, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007542708073742688, - "outcome": "passed" - }, - "call": { - "duration": 4.244797708000988, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0012778330128639936, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.026919999974779785, - "outcome": "passed" - }, - "call": { - "duration": 9.006108874920756, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00046324997674673796, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01554666692391038, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0004023330984637141, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007354958914220333, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.0002900830004364252, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.017274250043556094, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002668329980224371, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006813667016103864, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.00024500000290572643, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007385291974060237, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00017024995759129524, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00857366609852761, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00016850000247359276, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005570041947066784, - "outcome": "passed" - }, - "call": { - "duration": 0.8564215000951663, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004029169213026762, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00786762498319149, - "outcome": "passed" - }, - "call": { - "duration": 0.6419672920601442, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005102079594507813, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.017147499951533973, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00032350001856684685, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01194737502373755, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.0005004579434171319, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010250666993670166, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00022554199676960707, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007847042055800557, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.000283458037301898, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008078000042587519, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001794169656932354, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007204750087112188, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.00017725001089274883, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006797667010687292, - "outcome": "passed" - }, - "call": { - "duration": 5.411579457926564, - "outcome": "passed" - }, - "teardown": { - "duration": 0.001134666963480413, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.025059624924324453, - "outcome": "passed" - }, - "call": { - "duration": 9.112342999898829, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009202499641105533, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.024287916952744126, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider openai does not support model Llama-3.3-70B-Instruct')" - }, - "teardown": { - "duration": 0.00015587499365210533, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006531457998789847, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00014670798555016518, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006190375075675547, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider openai does not support model Llama-4-Scout-17B-16E-Instruct')" - }, - "teardown": { - "duration": 0.0001603750279173255, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005670750048011541, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001479999627918005, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005662833107635379, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider openai does not support model Llama-4-Maverick-17B-128E-Instruct')" - }, - "teardown": { - "duration": 0.0001480829669162631, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00573637499473989, - "outcome": "passed" - }, - "call": { - "duration": 0.6269576249178499, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0010142088867723942, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01623620803002268, - "outcome": "passed" - }, - "call": { - "duration": 0.7144521250156686, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0011040839599445462, - "outcome": "passed" - } - } - ] -} diff --git a/tests/verifications/test_results/together.json b/tests/verifications/test_results/together.json new file mode 100644 index 000000000..2d74b8cca --- /dev/null +++ b/tests/verifications/test_results/together.json @@ -0,0 +1,3821 @@ +{ + "created": 1744918192.9299376, + "duration": 126.91354608535767, + "exitcode": 1, + "root": "/home/erichuang/llama-stack", + "environment": {}, + "summary": { + "passed": 40, + "failed": 40, + "skipped": 4, + "total": 84, + "collected": 84 + }, + "collectors": [ + { + "nodeid": "", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "type": "Module" + } + ] + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py", + "outcome": "passed", + "result": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "type": "Function", + "lineno": 95 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "type": "Function", + "lineno": 114 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 138 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 157 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "type": "Function", + "lineno": 181 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "type": "Function", + "lineno": 204 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 226 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 250 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 278 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 302 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 329 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "type": "Function", + "lineno": 352 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 380 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "type": "Function", + "lineno": 471 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=True]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=False]", + "type": "Function", + "lineno": 554 + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=True]", + "type": "Function", + "lineno": 554 + } + ] + } + ], + "tests": [ + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "earth" + }, + "setup": { + "duration": 0.11939296405762434, + "outcome": "passed" + }, + "call": { + "duration": 0.6422080835327506, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002934802323579788, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07340026367455721, + "outcome": "passed" + }, + "call": { + "duration": 0.6134521719068289, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00031049735844135284, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.07351398840546608, + "outcome": "passed" + }, + "call": { + "duration": 0.898847377859056, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002735760062932968, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.08612977154552937, + "outcome": "passed" + }, + "call": { + "duration": 0.6511319326236844, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003559151664376259, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "earth" + }, + "setup": { + "duration": 0.08106738794595003, + "outcome": "passed" + }, + "call": { + "duration": 1.206272155046463, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003584325313568115, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "lineno": 95, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "saturn" + }, + "setup": { + "duration": 0.0796442786231637, + "outcome": "passed" + }, + "call": { + "duration": 0.4815350500866771, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025806669145822525, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "earth" + }, + "setup": { + "duration": 0.07231954019516706, + "outcome": "passed" + }, + "call": { + "duration": 1.1521263290196657, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00032721273601055145, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "lineno": 114, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07364387530833483, + "outcome": "passed" + }, + "call": { + "duration": 1.0600289879366755, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00028987880796194077, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "lineno": 114, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "earth" + }, + "setup": { + "duration": 0.07162868417799473, + "outcome": "passed" + }, + "call": { + "duration": 0.2930005770176649, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'earth', 'input': {'messages': [{'content': 'Which planet do humans live on?', 'role': 'user'}]}, 'output': 'Earth'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:132: IndexError" + }, + "teardown": { + "duration": 0.0004123607650399208, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "lineno": 114, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07553945016115904, + "outcome": "passed" + }, + "call": { + "duration": 0.4265708066523075, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'saturn', 'input': {'messages': [{'content': 'Which planet has rings around it with a name starting with letter S?', 'role': 'user'}]}, 'output': 'Saturn'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:132: IndexError" + }, + "teardown": { + "duration": 0.0003767991438508034, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "lineno": 114, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-earth", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "earth" + }, + "setup": { + "duration": 0.07143466174602509, + "outcome": "passed" + }, + "call": { + "duration": 1.0281891459599137, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'earth', 'input': {'messages': [{'content': 'Which planet do humans live on?', 'role': 'user'}]}, 'output': 'Earth'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:132: IndexError" + }, + "teardown": { + "duration": 0.0003773234784603119, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "lineno": 114, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_basic[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-saturn", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "saturn" + }, + "setup": { + "duration": 0.07092289440333843, + "outcome": "passed" + }, + "call": { + "duration": 0.4124102909117937, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 132, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'saturn', 'input': {'messages': [{'content': 'Which planet has rings around it with a name starting with letter S?', 'role': 'user'}]}, 'output': 'Saturn'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_basic(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:132: IndexError" + }, + "teardown": { + "duration": 0.0003204820677638054, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 138, + "outcome": "skipped", + "keywords": [ + "test_chat_non_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.07159135863184929, + "outcome": "passed" + }, + "call": { + "duration": 0.0002104705199599266, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 147, 'Skipped: Skipping test_chat_non_streaming_image for model meta-llama/Llama-3.3-70B-Instruct-Turbo on provider together based on config.')" + }, + "teardown": { + "duration": 0.0003354400396347046, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.0744061404839158, + "outcome": "passed" + }, + "call": { + "duration": 2.2864254424348474, + "outcome": "passed" + }, + "teardown": { + "duration": 0.000246487557888031, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 138, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07066962588578463, + "outcome": "passed" + }, + "call": { + "duration": 4.47614302393049, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00034836214035749435, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 157, + "outcome": "skipped", + "keywords": [ + "test_chat_streaming_image[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.09739464800804853, + "outcome": "passed" + }, + "call": { + "duration": 0.0003191335126757622, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 166, 'Skipped: Skipping test_chat_streaming_image for model meta-llama/Llama-3.3-70B-Instruct-Turbo on provider together based on config.')" + }, + "teardown": { + "duration": 0.00026350561529397964, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 157, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_image[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.10561292432248592, + "outcome": "passed" + }, + "call": { + "duration": 2.6175378002226353, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 175, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 175, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': [{'text': 'What is in this image?', 'type': 'text'}, {'image_url': {...}, 'type': 'image_url'}], 'role': 'user'}]}, 'output': 'llama'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_image(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:175: IndexError" + }, + "teardown": { + "duration": 0.0003682933747768402, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 157, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_image[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07195662055164576, + "outcome": "passed" + }, + "call": { + "duration": 3.2985631534829736, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 175, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 175, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': [{'text': 'What is in this image?', 'type': 'text'}, {'image_url': {...}, 'type': 'image_url'}], 'role': 'user'}]}, 'output': 'llama'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_image(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:175: IndexError" + }, + "teardown": { + "duration": 0.0003777453675866127, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "calendar" + }, + "setup": { + "duration": 0.0733196372166276, + "outcome": "passed" + }, + "call": { + "duration": 0.40959454514086246, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00029125437140464783, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "math" + }, + "setup": { + "duration": 0.07248916011303663, + "outcome": "passed" + }, + "call": { + "duration": 3.498455540277064, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023921672254800797, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07911352813243866, + "outcome": "passed" + }, + "call": { + "duration": 0.6717434097081423, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00025916099548339844, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.07156322989612818, + "outcome": "passed" + }, + "call": { + "duration": 3.698870756663382, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002654632553458214, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07457748707383871, + "outcome": "passed" + }, + "call": { + "duration": 0.8891718471422791, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002395138144493103, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "lineno": 181, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "math" + }, + "setup": { + "duration": 0.07155069429427385, + "outcome": "passed" + }, + "call": { + "duration": 3.276700599119067, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002568913623690605, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07365360390394926, + "outcome": "passed" + }, + "call": { + "duration": 0.7638470390811563, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027653202414512634, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "lineno": 204, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-3.3-70B-Instruct-Turbo-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "math" + }, + "setup": { + "duration": 0.07424602191895247, + "outcome": "passed" + }, + "call": { + "duration": 3.622116087935865, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002861013635993004, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "lineno": 204, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07192372716963291, + "outcome": "passed" + }, + "call": { + "duration": 0.5049019353464246, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'calendar', 'input': {'messages': [{'content': 'Extract the event information.', 'role': 'system'}, {'cont...articipants'], 'title': 'CalendarEvent', 'type': 'object'}}, 'type': 'json_schema'}}, 'output': 'valid_calendar_event'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n response_format=case[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:223: IndexError" + }, + "teardown": { + "duration": 0.00036794692277908325, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "lineno": 204, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Scout-17B-16E-Instruct-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "math" + }, + "setup": { + "duration": 0.07304532174021006, + "outcome": "passed" + }, + "call": { + "duration": 2.961389934644103, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'math', 'input': {'messages': [{'content': 'You are a helpful math tutor. Guide the user through the solut... ['steps', 'final_answer'], 'title': 'MathReasoning', ...}}, 'type': 'json_schema'}}, 'output': 'valid_math_reasoning'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n response_format=case[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:223: IndexError" + }, + "teardown": { + "duration": 0.0003312695771455765, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "lineno": 204, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-calendar", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "calendar" + }, + "setup": { + "duration": 0.07350922282785177, + "outcome": "passed" + }, + "call": { + "duration": 0.6764275450259447, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'calendar', 'input': {'messages': [{'content': 'Extract the event information.', 'role': 'system'}, {'cont...articipants'], 'title': 'CalendarEvent', 'type': 'object'}}, 'type': 'json_schema'}}, 'output': 'valid_calendar_event'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n response_format=case[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:223: IndexError" + }, + "teardown": { + "duration": 0.0003826189786195755, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "lineno": 204, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_structured_output[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-math", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "math" + }, + "setup": { + "duration": 0.07295230869203806, + "outcome": "passed" + }, + "call": { + "duration": 10.689278944395483, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 223, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'math', 'input': {'messages': [{'content': 'You are a helpful math tutor. Guide the user through the solut... ['steps', 'final_answer'], 'title': 'MathReasoning', ...}}, 'type': 'json_schema'}}, 'output': 'valid_math_reasoning'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_structured_output(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n response_format=case[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:223: IndexError" + }, + "teardown": { + "duration": 0.0004014279693365097, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.09202722646296024, + "outcome": "passed" + }, + "call": { + "duration": 0.8140280386433005, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003595082089304924, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.09484888892620802, + "outcome": "passed" + }, + "call": { + "duration": 0.3706049248576164, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003290809690952301, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 226, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.10521113499999046, + "outcome": "passed" + }, + "call": { + "duration": 0.36842701490968466, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00031410157680511475, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 250, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.10422383341938257, + "outcome": "passed" + }, + "call": { + "duration": 0.6454980997368693, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002997415140271187, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 250, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.09408890828490257, + "outcome": "passed" + }, + "call": { + "duration": 0.36066764686256647, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 268, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=True,\n )\n \n> _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:268: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00035039614886045456, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 250, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07232134602963924, + "outcome": "passed" + }, + "call": { + "duration": 0.4706049496307969, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 268, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"],\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_calling(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n stream=True,\n )\n \n> _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:268: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00039384420961141586, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.07465469185262918, + "outcome": "passed" + }, + "call": { + "duration": 0.4374591317027807, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0003099888563156128, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07351493183523417, + "outcome": "passed" + }, + "call": { + "duration": 0.4368853671476245, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026369933038949966, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 278, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07258845027536154, + "outcome": "passed" + }, + "call": { + "duration": 0.940508272498846, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00032961275428533554, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 302, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_tool_choice_required[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.07273276895284653, + "outcome": "passed" + }, + "call": { + "duration": 0.6150273764505982, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002876110374927521, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 302, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07505382597446442, + "outcome": "passed" + }, + "call": { + "duration": 0.5026597818359733, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 321, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=True,\n )\n \n> _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:321: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0003487151116132736, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 302, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_required[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07343385275453329, + "outcome": "passed" + }, + "call": { + "duration": 0.720921658910811, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 321, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_required(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"required\", # Force tool call\n stream=True,\n )\n \n> _, tool_calls_buffer = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:321: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0004109758883714676, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 329, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.07189673464745283, + "outcome": "passed" + }, + "call": { + "duration": 0.403152690269053, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError: Expected no tool calls when tool_choice='none'\nassert [ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)] is None\n + where [ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]).tool_calls\n + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]), seed=4867562177231181000).message" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert response.choices[0].message.tool_calls is None, \"Expected no tool calls when tool_choice='none'\"\nE AssertionError: Expected no tool calls when tool_choice='none'\nE assert [ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)] is None\nE + where [ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]).tool_calls\nE + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_xx4eg2o4wladhs7i0gy8d2cb', function=Function(arguments='{\"location\":\"San Francisco, USA\"}', name='get_weather'), type='function', index=0)]), seed=4867562177231181000).message\n\ntests/verifications/openai_api/test_chat_completion.py:349: AssertionError" + }, + "teardown": { + "duration": 0.00037758704274892807, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 329, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07282305508852005, + "outcome": "passed" + }, + "call": { + "duration": 0.4538485202938318, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError: Expected no tool calls when tool_choice='none'\nassert [ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] is None\n + where [ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]).tool_calls\n + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]), seed=None).message" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert response.choices[0].message.tool_calls is None, \"Expected no tool calls when tool_choice='none'\"\nE AssertionError: Expected no tool calls when tool_choice='none'\nE assert [ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] is None\nE + where [ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]).tool_calls\nE + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_6gehr7flf4gaqu65prmi1pca', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]), seed=None).message\n\ntests/verifications/openai_api/test_chat_completion.py:349: AssertionError" + }, + "teardown": { + "duration": 0.0003799665719270706, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 329, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07050042506307364, + "outcome": "passed" + }, + "call": { + "duration": 0.3740060832351446, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError: Expected no tool calls when tool_choice='none'\nassert [ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] is None\n + where [ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]).tool_calls\n + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]), seed=None).message" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 349, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_non_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n response = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=False,\n )\n \n assert response.choices[0].message.role == \"assistant\"\n> assert response.choices[0].message.tool_calls is None, \"Expected no tool calls when tool_choice='none'\"\nE AssertionError: Expected no tool calls when tool_choice='none'\nE assert [ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] is None\nE + where [ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]).tool_calls\nE + where ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]) = Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_ngwnt1xmgxipkswdhdepisni', function=Function(arguments='{\"location\":\"San Francisco\"}', name='get_weather'), type='function', index=0)]), seed=None).message\n\ntests/verifications/openai_api/test_chat_completion.py:349: AssertionError" + }, + "teardown": { + "duration": 0.0003066370263695717, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "lineno": 352, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_none[meta-llama/Llama-3.3-70B-Instruct-Turbo-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "case0" + }, + "setup": { + "duration": 0.06983672920614481, + "outcome": "passed" + }, + "call": { + "duration": 0.6774894064292312, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError: Expected no tool call chunks when tool_choice='none'\nassert not [ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\n + where [ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=True,\n )\n \n content = \"\"\n for chunk in stream:\n delta = chunk.choices[0].delta\n if delta.content:\n content += delta.content\n> assert not delta.tool_calls, \"Expected no tool call chunks when tool_choice='none'\"\nE AssertionError: Expected no tool call chunks when tool_choice='none'\nE assert not [ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\nE + where [ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_emdpbpvm77rqbzz66arrzv5w', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:376: AssertionError" + }, + "teardown": { + "duration": 0.0003580348566174507, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "lineno": 352, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Scout-17B-16E-Instruct-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "case0" + }, + "setup": { + "duration": 0.07331710867583752, + "outcome": "passed" + }, + "call": { + "duration": 0.38044120091944933, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError: Expected no tool call chunks when tool_choice='none'\nassert not [ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\n + where [ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=True,\n )\n \n content = \"\"\n for chunk in stream:\n delta = chunk.choices[0].delta\n if delta.content:\n content += delta.content\n> assert not delta.tool_calls, \"Expected no tool call chunks when tool_choice='none'\"\nE AssertionError: Expected no tool call chunks when tool_choice='none'\nE assert not [ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\nE + where [ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_g85q6ysacljgjczgq8r30tjv', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:376: AssertionError" + }, + "teardown": { + "duration": 0.0003765234723687172, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "lineno": 352, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_tool_choice_none[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-case0", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "case0" + }, + "setup": { + "duration": 0.07194581907242537, + "outcome": "passed" + }, + "call": { + "duration": 0.37374384608119726, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError: Expected no tool call chunks when tool_choice='none'\nassert not [ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\n + where [ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 376, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'input': {'messages': [{'content': 'You are a helpful assistant that can use tools to get information.', 'role': 'sys..., 'properties': {...}, 'required': [...], 'type': 'object'}}, 'type': 'function'}]}, 'output': 'get_weather_tool_call'}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases[\"test_tool_calling\"][\"test_params\"][\"case\"], # Reusing existing case for now\n ids=case_id_generator,\n )\n def test_chat_streaming_tool_choice_none(request, openai_client, model, provider, verification_config, case):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n stream = openai_client.chat.completions.create(\n model=model,\n messages=case[\"input\"][\"messages\"],\n tools=case[\"input\"][\"tools\"],\n tool_choice=\"none\",\n stream=True,\n )\n \n content = \"\"\n for chunk in stream:\n delta = chunk.choices[0].delta\n if delta.content:\n content += delta.content\n> assert not delta.tool_calls, \"Expected no tool call chunks when tool_choice='none'\"\nE AssertionError: Expected no tool call chunks when tool_choice='none'\nE assert not [ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]\nE + where [ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')] = ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_zq6x10vfu9pkxme6pm9zxouk', function=ChoiceDeltaToolCallFunction(arguments='', name='get_weather'), type='function')]).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:376: AssertionError" + }, + "teardown": { + "duration": 0.0003813542425632477, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07330320309847593, + "outcome": "passed" + }, + "call": { + "duration": 0.4314677305519581, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError: Expected 0 tool calls, but got 1\nassert 1 == 0\n + where 1 = len(([ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)]))\n + where [ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)]).tool_calls" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 439, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n> assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\nE AssertionError: Expected 0 tool calls, but got 1\nE assert 1 == 0\nE + where 1 = len(([ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)]))\nE + where [ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)] = ChatCompletionMessage(content=None, refusal=None, role='assistant', annotations=None, audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_l05cckdk5mooai2iyfucg4s8', function=Function(arguments='{\"location\":\"San Francisco, CA\"}', name='get_weather'), type='function', index=0)]).tool_calls\n\ntests/verifications/openai_api/test_chat_completion.py:439: AssertionError" + }, + "teardown": { + "duration": 0.00040314625948667526, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07405277714133263, + "outcome": "passed" + }, + "call": { + "duration": 0.8350177155807614, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00023361947387456894, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07361320778727531, + "outcome": "passed" + }, + "call": { + "duration": 1.0619212854653597, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002395985648036003, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07290417980402708, + "outcome": "passed" + }, + "call": { + "duration": 4.241749887354672, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00027841050177812576, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07301546633243561, + "outcome": "passed" + }, + "call": { + "duration": 2.0520667918026447, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002469858154654503, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07405530381947756, + "outcome": "passed" + }, + "call": { + "duration": 0.48041669093072414, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError: Expected one of ['sol'] in content, but got: 'I am not able to complete this task as it falls outside of the scope of the functions I have been given.'\nassert False\n + where False = any(. at 0x7f4274057610>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call.id,\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert assistant_message.content is not None, \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"] # This is now a list\n content_lower = assistant_message.content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: 'I am not able to complete this task as it falls outside of the scope of the functions I have been given.'\nE assert False\nE + where False = any(. at 0x7f4274057610>)\n\ntests/verifications/openai_api/test_chat_completion.py:467: AssertionError" + }, + "teardown": { + "duration": 0.00035319291055202484, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.0724497502669692, + "outcome": "passed" + }, + "call": { + "duration": 0.832760401070118, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026283878833055496, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07180811651051044, + "outcome": "passed" + }, + "call": { + "duration": 1.4359142612665892, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002761436626315117, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07503274269402027, + "outcome": "passed" + }, + "call": { + "duration": 1.909641013480723, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002613905817270279, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07153380755335093, + "outcome": "passed" + }, + "call": { + "duration": 2.695867782458663, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00032124295830726624, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07275318540632725, + "outcome": "passed" + }, + "call": { + "duration": 0.34551760647445917, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": null, \"parameters\": null}'\nassert False\n + where False = any(. at 0x7f42742dd4d0>)" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 467, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call.id,\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n assert assistant_message.content is not None, \"Expected content, but none received.\"\n expected_answers = expected[\"answer\"] # This is now a list\n content_lower = assistant_message.content.lower()\n> assert any(ans.lower() in content_lower for ans in expected_answers), (\n f\"Expected one of {expected_answers} in content, but got: '{assistant_message.content}'\"\n )\nE AssertionError: Expected one of ['sol'] in content, but got: '{\"name\": null, \"parameters\": null}'\nE assert False\nE + where False = any(. at 0x7f42742dd4d0>)\n\ntests/verifications/openai_api/test_chat_completion.py:467: AssertionError" + }, + "teardown": { + "duration": 0.0003842068836092949, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07281951513141394, + "outcome": "passed" + }, + "call": { + "duration": 1.008104412816465, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00026233773678541183, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07155719958245754, + "outcome": "passed" + }, + "call": { + "duration": 2.3485742239281535, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002629430964589119, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "lineno": 380, + "outcome": "failed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07251190021634102, + "outcome": "passed" + }, + "call": { + "duration": 2.9882029946893454, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 450, + "message": "AssertionError: Expected arguments '{'name': 'Team Building', 'date': '2025-03-03', 'time': '10:00', 'location': 'Main Conference Room', 'participants': ['Alice', 'Bob', 'Charlie']}', got '{'date': '\"2025-03-03\"', 'location': '\"Main Conference Room\"', 'name': '\"Team Building\"', 'participants': ['Alice', 'Bob', 'Charlie'], 'time': '\"10:00\"'}'\nassert {'date': '\"20...harlie'], ...} == {'date': '202...harlie'], ...}\n \n Omitting 1 identical items, use -vv to show\n Differing items:\n {'date': '\"2025-03-03\"'} != {'date': '2025-03-03'}\n {'name': '\"Team Building\"'} != {'name': 'Team Building'}\n {'time': '\"10:00\"'} != {'time': '10:00'}\n {'location': '\"Main Conference Room\"'} != {'location': 'Main Conference Room'}...\n \n ...Full output truncated (21 lines hidden), use '-vv' to show" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 450, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_non_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\"\n Test cases for multi-turn tool calling.\n Tool calls are asserted.\n Tool responses are provided in the test case.\n Final response is asserted.\n \"\"\"\n \n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n # Create a copy of the messages list to avoid modifying the original\n messages = []\n tools = case[\"input\"][\"tools\"]\n # Use deepcopy to prevent modification across runs/parametrization\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n # keep going until either\n # 1. we have messages to test in multi-turn\n # 2. no messages but last message is tool response\n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n # do not take new messages if last message is tool response\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n # Ensure new_messages is a list of message objects\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n # If it's a single message object, add it directly\n messages.append(new_messages)\n \n # --- API Call ---\n response = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=False,\n )\n \n # --- Process Response ---\n assistant_message = response.choices[0].message\n messages.append(assistant_message.model_dump(exclude_unset=True))\n \n assert assistant_message.role == \"assistant\"\n \n # Get the expected result data\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n # --- Assertions based on expected result ---\n assert len(assistant_message.tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(assistant_message.tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n tool_call = assistant_message.tool_calls[0]\n assert tool_call.function.name == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call.function.name}'\"\n )\n # Parse the JSON string arguments before comparing\n actual_arguments = json.loads(tool_call.function.arguments)\n> assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\nE AssertionError: Expected arguments '{'name': 'Team Building', 'date': '2025-03-03', 'time': '10:00', 'location': 'Main Conference Room', 'participants': ['Alice', 'Bob', 'Charlie']}', got '{'date': '\"2025-03-03\"', 'location': '\"Main Conference Room\"', 'name': '\"Team Building\"', 'participants': ['Alice', 'Bob', 'Charlie'], 'time': '\"10:00\"'}'\nE assert {'date': '\"20...harlie'], ...} == {'date': '202...harlie'], ...}\nE \nE Omitting 1 identical items, use -vv to show\nE Differing items:\nE {'date': '\"2025-03-03\"'} != {'date': '2025-03-03'}\nE {'name': '\"Team Building\"'} != {'name': 'Team Building'}\nE {'time': '\"10:00\"'} != {'time': '10:00'}\nE {'location': '\"Main Conference Room\"'} != {'location': 'Main Conference Room'}...\nE \nE ...Full output truncated (21 lines hidden), use '-vv' to show\n\ntests/verifications/openai_api/test_chat_completion.py:450: AssertionError" + }, + "teardown": { + "duration": 0.0003328891471028328, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "lineno": 380, + "outcome": "passed", + "keywords": [ + "test_chat_non_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07363704219460487, + "outcome": "passed" + }, + "call": { + "duration": 4.031332626007497, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002817586064338684, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07673048228025436, + "outcome": "passed" + }, + "call": { + "duration": 0.3994998000562191, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError: Expected 0 tool calls, but got 1\nassert 1 == 0\n + where 1 = len(([{'function': {'arguments': '{\"location\":\"San Francisco, CA\"}', 'name': 'get_weather'}, 'id': 'call_dqcu28a6iyxlobv36c23k0qp', 'type': 'function'}]))" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 521, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n> assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\nE AssertionError: Expected 0 tool calls, but got 1\nE assert 1 == 0\nE + where 1 = len(([{'function': {'arguments': '{\"location\":\"San Francisco, CA\"}', 'name': 'get_weather'}, 'id': 'call_dqcu28a6iyxlobv36c23k0qp', 'type': 'function'}]))\n\ntests/verifications/openai_api/test_chat_completion.py:521: AssertionError" + }, + "teardown": { + "duration": 0.0003687366843223572, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07477510999888182, + "outcome": "passed" + }, + "call": { + "duration": 0.918418399989605, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError: Expected content, but none received.\nassert ('' is not None and '' != '')" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n> assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\nE AssertionError: Expected content, but none received.\nE assert ('' is not None and '' != '')\n\ntests/verifications/openai_api/test_chat_completion.py:547: AssertionError" + }, + "teardown": { + "duration": 0.00036141276359558105, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "lineno": 471, + "outcome": "passed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07217607088387012, + "outcome": "passed" + }, + "call": { + "duration": 1.2676455974578857, + "outcome": "passed" + }, + "teardown": { + "duration": 0.00024215038865804672, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.0713065592572093, + "outcome": "passed" + }, + "call": { + "duration": 1.0453352769836783, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError: Expected content, but none received.\nassert ('' is not None and '' != '')" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n> assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\nE AssertionError: Expected content, but none received.\nE assert ('' is not None and '' != '')\n\ntests/verifications/openai_api/test_chat_completion.py:547: AssertionError" + }, + "teardown": { + "duration": 0.00030668359249830246, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07108221855014563, + "outcome": "passed" + }, + "call": { + "duration": 1.034472893923521, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError: Expected content, but none received.\nassert ('' is not None and '' != '')" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 547, + "message": "AssertionError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-3.3-70B-Instruct-Turbo', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n \n # --- Construct Assistant Message for History ---\n assistant_message_dict = {\"role\": \"assistant\"}\n if accumulated_content:\n assistant_message_dict[\"content\"] = accumulated_content\n if accumulated_tool_calls:\n assistant_message_dict[\"tool_calls\"] = accumulated_tool_calls\n \n messages.append(assistant_message_dict)\n \n # --- Assertions ---\n expected = expected_results.pop(0)\n num_tool_calls = expected[\"num_tool_calls\"]\n \n assert len(accumulated_tool_calls or []) == num_tool_calls, (\n f\"Expected {num_tool_calls} tool calls, but got {len(accumulated_tool_calls or [])}\"\n )\n \n if num_tool_calls > 0:\n # Use the first accumulated tool call for assertion\n tool_call = accumulated_tool_calls[0]\n assert tool_call[\"function\"][\"name\"] == expected[\"tool_name\"], (\n f\"Expected tool '{expected['tool_name']}', got '{tool_call['function']['name']}'\"\n )\n # Parse the accumulated arguments string for comparison\n actual_arguments = json.loads(tool_call[\"function\"][\"arguments\"])\n assert actual_arguments == expected[\"tool_arguments\"], (\n f\"Expected arguments '{expected['tool_arguments']}', got '{actual_arguments}'\"\n )\n \n # Prepare and append the tool response for the next turn\n tool_response = tool_responses.pop(0)\n messages.append(\n {\n \"role\": \"tool\",\n \"tool_call_id\": tool_call[\"id\"],\n \"content\": tool_response[\"response\"],\n }\n )\n else:\n> assert accumulated_content is not None and accumulated_content != \"\", \"Expected content, but none received.\"\nE AssertionError: Expected content, but none received.\nE assert ('' is not None and '' != '')\n\ntests/verifications/openai_api/test_chat_completion.py:547: AssertionError" + }, + "teardown": { + "duration": 0.00035398639738559723, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07186305243521929, + "outcome": "passed" + }, + "call": { + "duration": 1.8766405330970883, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0003088880330324173, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.0846314700320363, + "outcome": "passed" + }, + "call": { + "duration": 0.40889575984328985, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0003652172163128853, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07273881137371063, + "outcome": "passed" + }, + "call": { + "duration": 2.251293654553592, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00030664633959531784, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.071181770414114, + "outcome": "passed" + }, + "call": { + "duration": 0.5708655547350645, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00036500580608844757, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.06934114638715982, + "outcome": "passed" + }, + "call": { + "duration": 0.5055103581398726, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00035354867577552795, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-text_then_weather_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "text_then_weather_tool" + }, + "setup": { + "duration": 0.07129869516938925, + "outcome": "passed" + }, + "call": { + "duration": 1.5799349313601851, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'text_then_weather_tool', 'expected': [{'answer': ['sol'], 'num_tool_calls': 0}, {'num_tool_calls': 1, 'to...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00033699069172143936, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-weather_tool_then_text", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "weather_tool_then_text" + }, + "setup": { + "duration": 0.07074506860226393, + "outcome": "passed" + }, + "call": { + "duration": 0.5245106862857938, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'weather_tool_then_text', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'location': 'San Francisco...], 'type': 'object'}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': '70 degrees and foggy'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00042015407234430313, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-add_product_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "add_product_tool" + }, + "setup": { + "duration": 0.07020766660571098, + "outcome": "passed" + }, + "call": { + "duration": 0.6389470677822828, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'add_product_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'inStock': True, 'name': 'Widget...}}, 'type': 'function'}]}, 'tool_responses': [{'response': \"{'response': 'Successfully added product with id: 123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.00035757478326559067, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-get_then_create_event_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "get_then_create_event_tool" + }, + "setup": { + "duration": 0.07121358439326286, + "outcome": "passed" + }, + "call": { + "duration": 0.5222592242062092, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'get_then_create_event_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'date': '2025-03-03', ...ents found for 2025-03-03 at 10:00'}\"}, {'response': \"{'response': 'Successfully created new event with id: e_123'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0003436664119362831, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "lineno": 471, + "outcome": "failed", + "keywords": [ + "test_chat_streaming_multi_turn_tool_calling[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-compare_monthly_expense_tool", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "compare_monthly_expense_tool" + }, + "setup": { + "duration": 0.07017400953918695, + "outcome": "passed" + }, + "call": { + "duration": 1.7245550760999322, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 506, + "message": "" + }, + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 688, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\ncase = {'case_id': 'compare_monthly_expense_tool', 'expected': [{'num_tool_calls': 1, 'tool_arguments': {'month': 1, 'year': ... 'Total expenses for January 2025: $1000'}\"}, {'response': \"{'response': 'Total expenses for February 2024: $2000'}\"}]}\n\n @pytest.mark.parametrize(\n \"case\",\n chat_completion_test_cases.get(\"test_chat_multi_turn_tool_calling\", {}).get(\"test_params\", {}).get(\"case\", []),\n ids=case_id_generator,\n )\n def test_chat_streaming_multi_turn_tool_calling(request, openai_client, model, provider, verification_config, case):\n \"\"\" \"\"\"\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages = []\n tools = case[\"input\"][\"tools\"]\n expected_results = copy.deepcopy(case[\"expected\"])\n tool_responses = copy.deepcopy(case.get(\"tool_responses\", []))\n input_messages_turns = copy.deepcopy(case[\"input\"][\"messages\"])\n \n while len(input_messages_turns) > 0 or (len(messages) > 0 and messages[-1][\"role\"] == \"tool\"):\n if len(messages) == 0 or messages[-1][\"role\"] != \"tool\":\n new_messages = input_messages_turns.pop(0)\n if isinstance(new_messages, list):\n messages.extend(new_messages)\n else:\n messages.append(new_messages)\n \n # --- API Call (Streaming) ---\n stream = openai_client.chat.completions.create(\n model=model,\n messages=messages,\n tools=tools,\n stream=True,\n )\n \n # --- Process Stream ---\n> accumulated_content, accumulated_tool_calls = _accumulate_streaming_tool_calls(stream)\n\ntests/verifications/openai_api/test_chat_completion.py:506: \n_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ \n\nstream = \n\n def _accumulate_streaming_tool_calls(stream):\n \"\"\"Accumulates tool calls and content from a streaming ChatCompletion response.\"\"\"\n tool_calls_buffer = {}\n current_id = None\n full_content = \"\" # Initialize content accumulator\n # Process streaming chunks\n for chunk in stream:\n> choice = chunk.choices[0]\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:688: IndexError" + }, + "teardown": { + "duration": 0.0003162780776619911, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=False]", + "lineno": 554, + "outcome": "skipped", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=False]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07253758516162634, + "outcome": "passed" + }, + "call": { + "duration": 0.00021537486463785172, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 561, 'Skipped: Skipping test_chat_multi_turn_multiple_images for model meta-llama/Llama-3.3-70B-Instruct-Turbo on provider together based on config.')" + }, + "teardown": { + "duration": 0.0004162406548857689, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=True]", + "lineno": 554, + "outcome": "skipped", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=True]", + "parametrize", + "pytestmark", + "meta-llama/Llama-3.3-70B-Instruct-Turbo-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-3.3-70B-Instruct-Turbo", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.07268107868731022, + "outcome": "passed" + }, + "call": { + "duration": 0.0002132616937160492, + "outcome": "skipped", + "longrepr": "('/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py', 561, 'Skipped: Skipping test_chat_multi_turn_multiple_images for model meta-llama/Llama-3.3-70B-Instruct-Turbo on provider together based on config.')" + }, + "teardown": { + "duration": 0.00021094270050525665, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.07398672867566347, + "outcome": "passed" + }, + "call": { + "duration": 4.383559702895582, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002781357616186142, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "lineno": 554, + "outcome": "failed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Scout-17B-16E-Instruct-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Scout-17B-16E-Instruct", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.08006586041301489, + "outcome": "passed" + }, + "call": { + "duration": 2.16784877050668, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 596, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 596, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Scout-17B-16E-Instruct', provider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\nmulti_image_data = ['...6pH9jaTzNv7vfRRXzubfxj9f8Pv8AkTz/AMX/ALbEz5Ly38lfMk/5Z/u64PxhqEZh+z/6rzvn2UUV5EvgPuzy/wAc6p5dt5ccibJpNkkdFFFec27mZ//Z']\nstream = True\n\n @pytest.mark.parametrize(\"stream\", [False, True], ids=[\"stream=False\", \"stream=True\"])\n def test_chat_multi_turn_multiple_images(\n request, openai_client, model, provider, verification_config, multi_image_data, stream\n ):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages_turn1 = [\n {\n \"role\": \"user\",\n \"content\": [\n {\n \"type\": \"image_url\",\n \"image_url\": {\n \"url\": multi_image_data[0],\n },\n },\n {\n \"type\": \"image_url\",\n \"image_url\": {\n \"url\": multi_image_data[1],\n },\n },\n {\n \"type\": \"text\",\n \"text\": \"What furniture is in the first image that is not in the second image?\",\n },\n ],\n },\n ]\n \n # First API call\n response1 = openai_client.chat.completions.create(\n model=model,\n messages=messages_turn1,\n stream=stream,\n )\n if stream:\n message_content1 = \"\"\n for chunk in response1:\n> message_content1 += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:596: IndexError" + }, + "teardown": { + "duration": 0.0003619194030761719, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=False]", + "lineno": 554, + "outcome": "passed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=False]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=False", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "stream=False" + }, + "setup": { + "duration": 0.0709412069991231, + "outcome": "passed" + }, + "call": { + "duration": 6.110534753650427, + "outcome": "passed" + }, + "teardown": { + "duration": 0.0002450142055749893, + "outcome": "passed" + } + }, + { + "nodeid": "tests/verifications/openai_api/test_chat_completion.py::test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=True]", + "lineno": 554, + "outcome": "failed", + "keywords": [ + "test_chat_multi_turn_multiple_images[meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=True]", + "parametrize", + "pytestmark", + "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8-stream=True", + "test_chat_completion.py", + "openai_api", + "verifications", + "tests", + "llama-stack", + "" + ], + "metadata": { + "model": "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", + "case_id": "stream=True" + }, + "setup": { + "duration": 0.0725309094414115, + "outcome": "passed" + }, + "call": { + "duration": 2.291131243109703, + "outcome": "failed", + "crash": { + "path": "/home/erichuang/llama-stack/tests/verifications/openai_api/test_chat_completion.py", + "lineno": 596, + "message": "IndexError: list index out of range" + }, + "traceback": [ + { + "path": "tests/verifications/openai_api/test_chat_completion.py", + "lineno": 596, + "message": "IndexError" + } + ], + "longrepr": "request = >\nopenai_client = \nmodel = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\nprovider = 'together'\nverification_config = {'providers': {'cerebras': {'api_key_var': 'CEREBRAS_API_KEY', 'base_url': 'https://api.cerebras.ai/v1', 'model_displa...-versatile', 'meta-llama/llama-4-scout-17b-16e-instruct', 'meta-llama/llama-4-maverick-17b-128e-instruct'], ...}, ...}}\nmulti_image_data = ['...6pH9jaTzNv7vfRRXzubfxj9f8Pv8AkTz/AMX/ALbEz5Ly38lfMk/5Z/u64PxhqEZh+z/6rzvn2UUV5EvgPuzy/wAc6p5dt5ccibJpNkkdFFFec27mZ//Z']\nstream = True\n\n @pytest.mark.parametrize(\"stream\", [False, True], ids=[\"stream=False\", \"stream=True\"])\n def test_chat_multi_turn_multiple_images(\n request, openai_client, model, provider, verification_config, multi_image_data, stream\n ):\n test_name_base = get_base_test_name(request)\n if should_skip_test(verification_config, provider, model, test_name_base):\n pytest.skip(f\"Skipping {test_name_base} for model {model} on provider {provider} based on config.\")\n \n messages_turn1 = [\n {\n \"role\": \"user\",\n \"content\": [\n {\n \"type\": \"image_url\",\n \"image_url\": {\n \"url\": multi_image_data[0],\n },\n },\n {\n \"type\": \"image_url\",\n \"image_url\": {\n \"url\": multi_image_data[1],\n },\n },\n {\n \"type\": \"text\",\n \"text\": \"What furniture is in the first image that is not in the second image?\",\n },\n ],\n },\n ]\n \n # First API call\n response1 = openai_client.chat.completions.create(\n model=model,\n messages=messages_turn1,\n stream=stream,\n )\n if stream:\n message_content1 = \"\"\n for chunk in response1:\n> message_content1 += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai_api/test_chat_completion.py:596: IndexError" + }, + "teardown": { + "duration": 0.0018906639888882637, + "outcome": "passed" + } + } + ], + "run_timestamp": 1744918065 +} diff --git a/tests/verifications/test_results/together_1744154399.json b/tests/verifications/test_results/together_1744154399.json deleted file mode 100644 index ae801e83b..000000000 --- a/tests/verifications/test_results/together_1744154399.json +++ /dev/null @@ -1,2830 +0,0 @@ -{ - "created": 1744154470.9868789, - "duration": 59.6187219619751, - "exitcode": 1, - "root": "/Users/erichuang/projects/llama-stack", - "environment": {}, - "summary": { - "skipped": 52, - "passed": 21, - "failed": 10, - "total": 83, - "collected": 83 - }, - "collectors": [ - { - "nodeid": "", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "type": "Module" - } - ] - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py", - "outcome": "passed", - "result": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 25 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 40 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 60 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 75 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 95 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "type": "Function", - "lineno": 117 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "type": "Function", - "lineno": 138 - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "type": "Function", - "lineno": 138 - } - ] - } - ], - "tests": [ - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.39231995795853436, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0002014160854741931, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0071710830088704824, - "outcome": "passed" - }, - "call": { - "duration": 0.7968309168936685, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004362498875707388, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012780916062183678, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00029158301185816526, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013563874992541969, - "outcome": "passed" - }, - "call": { - "duration": 0.5071627920260653, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005456249928101897, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.020708917058072984, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00030325003899633884, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014170082984492183, - "outcome": "passed" - }, - "call": { - "duration": 1.2383921250002459, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009597090538591146, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013402250013314188, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00028245802968740463, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008693707990460098, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00016249995678663254, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005904874997213483, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0001960420049726963, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006532749976031482, - "outcome": "passed" - }, - "call": { - "duration": 0.5410778749501333, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00019516597967594862, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009374375105835497, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00015524995978921652, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007205875008367002, - "outcome": "passed" - }, - "call": { - "duration": 0.42584729101508856, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009506250498816371, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.029625958995893598, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001860830234363675, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 25, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.023576707928441465, - "outcome": "passed" - }, - "call": { - "duration": 1.2249365829629824, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004278330598026514, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014816291979514062, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00029558304231613874, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 25, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012769333901815116, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 26, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00024329195730388165, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009145625052042305, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00021195888984948397, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0133140409598127, - "outcome": "passed" - }, - "call": { - "duration": 0.7228892090497538, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004301250446587801, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013998750015161932, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002961249556392431, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012570249964483082, - "outcome": "passed" - }, - "call": { - "duration": 0.7193170419195667, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Which planet do humans live on?', 'role': 'user'}]}, 'output': 'Earth'}\ncorrect_model_name = 'meta-llama/Llama-4-Scout-17B-16E-Instruct'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_basic(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:54: IndexError" - }, - "teardown": { - "duration": 0.00022504094522446394, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006660082959569991, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001445829402655363, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_basic[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.021228999947197735, - "outcome": "passed" - }, - "call": { - "duration": 1.5670281670754775, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Which planet do humans live on?', 'role': 'user'}]}, 'output': 'Earth'}\ncorrect_model_name = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_basic(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:54: IndexError" - }, - "teardown": { - "duration": 0.0004656669916585088, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009595917072147131, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00025625003036111593, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009242708911187947, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0002484159776940942, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00905474997125566, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00023312494158744812, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 40, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007183165987953544, - "outcome": "passed" - }, - "call": { - "duration": 1.0667660840554163, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005163750611245632, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.05233616603072733, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0003471659729257226, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 40, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015932541922666132, - "outcome": "passed" - }, - "call": { - "duration": 0.41540695796720684, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Which planet has rings around it with a name starting with letter S?', 'role': 'user'}]}, 'output': 'Saturn'}\ncorrect_model_name = 'meta-llama/Llama-4-Scout-17B-16E-Instruct'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_basic(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:54: IndexError" - }, - "teardown": { - "duration": 0.0002845840062946081, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007243875064887106, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00016258296091109514, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 40, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_basic[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009275624994188547, - "outcome": "passed" - }, - "call": { - "duration": 1.43309554096777, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 54, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Which planet has rings around it with a name starting with letter S?', 'role': 'user'}]}, 'output': 'Saturn'}\ncorrect_model_name = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_basic\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_basic(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:54: IndexError" - }, - "teardown": { - "duration": 0.0003690000157803297, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011570582981221378, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00024937500711530447, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "lineno": 40, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_basic[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010756584000773728, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 41, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00026183295994997025, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.008863041992299259, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00023283297196030617, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.007975792046636343, - "outcome": "passed" - }, - "call": { - "duration": 2.1585817909799516, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005107080796733499, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.05228079203516245, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0017226670170202851, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 60, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009964749915525317, - "outcome": "passed" - }, - "call": { - "duration": 4.6593364590080455, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009852920193225145, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.023214041953906417, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0003567079547792673, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 60, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01705008395947516, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 61, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0003085409989580512, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014711958006955683, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0003121249610558152, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 75, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01843333407305181, - "outcome": "passed" - }, - "call": { - "duration": 2.8683876669965684, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 89, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 89, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': [{'text': 'What is in this image?', 'type': 'text'}, {'image_url': {...}, 'type': 'image_url'}], 'role': 'user'}]}, 'output': 'llama'}\ncorrect_model_name = 'meta-llama/Llama-4-Scout-17B-16E-Instruct'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_image(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:89: IndexError" - }, - "teardown": { - "duration": 0.00028662499971687794, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00653208396397531, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.00021291698794811964, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 75, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_image[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.006028458010405302, - "outcome": "passed" - }, - "call": { - "duration": 4.981105040991679, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 89, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 89, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': [{'text': 'What is in this image?', 'type': 'text'}, {'image_url': {...}, 'type': 'image_url'}], 'role': 'user'}]}, 'output': 'llama'}\ncorrect_model_name = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\n\n @pytest.mark.parametrize(\"model\", chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"model\"])\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_image\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_image(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n stream=True,\n )\n content = \"\"\n for chunk in response:\n> content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:89: IndexError" - }, - "teardown": { - "duration": 0.0010110830189660192, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01591233303770423, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0003783750580623746, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_image[input_output0-gpt-4o-mini]", - "lineno": 75, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_image[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010691000032238662, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 76, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00027445796877145767, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01258529198821634, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.0002044580178335309, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010904791066423059, - "outcome": "passed" - }, - "call": { - "duration": 0.8311828339938074, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00048687495291233063, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.029216791968792677, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002269580727443099, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.013182583032175899, - "outcome": "passed" - }, - "call": { - "duration": 1.7446029160637408, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0008087089518085122, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.02009516698308289, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.000320291961543262, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015216833096928895, - "outcome": "passed" - }, - "call": { - "duration": 0.8049291669158265, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005109170451760292, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0171551660168916, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0005707499803975224, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01131124992389232, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0003044159384444356, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0054290409898385406, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00014645792543888092, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011368000064976513, - "outcome": "passed" - }, - "call": { - "duration": 4.363120499998331, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0003998749889433384, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.04945958300959319, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0002401659730821848, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.011090958025306463, - "outcome": "passed" - }, - "call": { - "duration": 4.699277375009842, - "outcome": "passed" - }, - "teardown": { - "duration": 0.000689250067807734, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.020744459005072713, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0001836250303313136, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 95, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005926624988205731, - "outcome": "passed" - }, - "call": { - "duration": 2.7814464160474017, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0009554170537739992, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.03027112502604723, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.0003245410043746233, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 95, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.009138708002865314, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 96, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0001919999485835433, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0064505410846322775, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00015720794908702374, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00582624995149672, - "outcome": "passed" - }, - "call": { - "duration": 0.8302567919017747, - "outcome": "passed" - }, - "teardown": { - "duration": 0.00020354206208139658, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.014151416951790452, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.00034970801789313555, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012150791939347982, - "outcome": "passed" - }, - "call": { - "duration": 0.7078855830477551, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Extract the event information.', 'role': 'system'}, {'content': 'Alice and Bob ar...articipants'], 'title': 'CalendarEvent', 'type': 'object'}}, 'type': 'json_schema'}}, 'output': 'valid_calendar_event'}\ncorrect_model_name = 'meta-llama/Llama-4-Scout-17B-16E-Instruct'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n response_format=input_output[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:135: IndexError" - }, - "teardown": { - "duration": 0.0008542909054085612, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.022667833953164518, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0006820419803261757, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.01285991701297462, - "outcome": "passed" - }, - "call": { - "duration": 0.6888671671040356, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'Extract the event information.', 'role': 'system'}, {'content': 'Alice and Bob ar...articipants'], 'title': 'CalendarEvent', 'type': 'object'}}, 'type': 'json_schema'}}, 'output': 'valid_calendar_event'}\ncorrect_model_name = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n response_format=input_output[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:135: IndexError" - }, - "teardown": { - "duration": 0.0007953330641612411, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.015029000001959503, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00015666603576391935, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.00622316705994308, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0001533749746158719, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-8B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-8B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005598834017291665, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-3.3-8B-Instruct')" - }, - "teardown": { - "duration": 0.00013062497600913048, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "lineno": 117, - "outcome": "passed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.005876541952602565, - "outcome": "passed" - }, - "call": { - "duration": 7.561108374968171, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0004579999949783087, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.018791542039252818, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0004900830099359155, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 117, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0065952910808846354, - "outcome": "passed" - }, - "call": { - "duration": 2.6826554159633815, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'You are a helpful math tutor. Guide the user through the solution step by step.',... ['steps', 'final_answer'], 'title': 'MathReasoning', ...}}, 'type': 'json_schema'}}, 'output': 'valid_math_reasoning'}\ncorrect_model_name = 'meta-llama/Llama-4-Scout-17B-16E-Instruct'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n response_format=input_output[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:135: IndexError" - }, - "teardown": { - "duration": 0.0009669580031186342, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.019489208003506064, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0007419160101562738, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 117, - "outcome": "failed", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output1-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012299792026169598, - "outcome": "passed" - }, - "call": { - "duration": 2.829678333015181, - "outcome": "failed", - "crash": { - "path": "/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError: list index out of range" - }, - "traceback": [ - { - "path": "tests/verifications/openai/test_chat_completion.py", - "lineno": 135, - "message": "IndexError" - } - ], - "longrepr": "openai_client = \ninput_output = {'input': {'messages': [{'content': 'You are a helpful math tutor. Guide the user through the solution step by step.',... ['steps', 'final_answer'], 'title': 'MathReasoning', ...}}, 'type': 'json_schema'}}, 'output': 'valid_math_reasoning'}\ncorrect_model_name = 'meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8'\n\n @pytest.mark.parametrize(\n \"model\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"model\"],\n )\n @pytest.mark.parametrize(\n \"input_output\",\n chat_completion_test_cases[\"test_chat_structured_output\"][\"test_params\"][\"input_output\"],\n )\n def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):\n response = openai_client.chat.completions.create(\n model=correct_model_name,\n messages=input_output[\"input\"][\"messages\"],\n response_format=input_output[\"input\"][\"response_format\"],\n stream=True,\n )\n maybe_json_content = \"\"\n for chunk in response:\n> maybe_json_content += chunk.choices[0].delta.content or \"\"\nE IndexError: list index out of range\n\ntests/verifications/openai/test_chat_completion.py:135: IndexError" - }, - "teardown": { - "duration": 0.0010418329620733857, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.016189916990697384, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.00027966592460870743, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "lineno": 117, - "outcome": "skipped", - "keywords": [ - "test_chat_streaming_structured_output[input_output1-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output1-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.010247125057503581, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 118, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.00023291702382266521, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-3.3-70B-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-3.3-70B-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012632582918740809, - "outcome": "passed" - }, - "call": { - "duration": 0.40774812502786517, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0007319580763578415, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.019890791969373822, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider together does not support model Llama-4-Scout-17B-16E')" - }, - "teardown": { - "duration": 0.0006391670322045684, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Scout-17B-16E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Scout-17B-16E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.0178165000397712, - "outcome": "passed" - }, - "call": { - "duration": 0.38229950005188584, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0010000420734286308, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.024259291938506067, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider together does not support model Llama-4-Maverick-17B-128E')" - }, - "teardown": { - "duration": 0.0003602079814299941, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "lineno": 138, - "outcome": "passed", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-Llama-4-Maverick-17B-128E-Instruct]", - "parametrize", - "pytestmark", - "input_output0-Llama-4-Maverick-17B-128E-Instruct", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012425708002410829, - "outcome": "passed" - }, - "call": { - "duration": 0.7610744580160826, - "outcome": "passed" - }, - "teardown": { - "duration": 0.0005935420049354434, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.018717541941441596, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider together does not support model gpt-4o')" - }, - "teardown": { - "duration": 0.000659791985526681, - "outcome": "passed" - } - }, - { - "nodeid": "tests/verifications/openai/test_chat_completion.py::test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "lineno": 138, - "outcome": "skipped", - "keywords": [ - "test_chat_non_streaming_tool_calling[input_output0-gpt-4o-mini]", - "parametrize", - "pytestmark", - "input_output0-gpt-4o-mini", - "test_chat_completion.py", - "openai", - "verifications", - "tests", - "llama-stack", - "" - ], - "setup": { - "duration": 0.012784749967977405, - "outcome": "skipped", - "longrepr": "('/Users/erichuang/projects/llama-stack/tests/verifications/openai/test_chat_completion.py', 139, 'Skipped: Provider together does not support model gpt-4o-mini')" - }, - "teardown": { - "duration": 0.0002145830076187849, - "outcome": "passed" - } - } - ] -} diff --git a/uv.lock b/uv.lock index 5d7ce4076..e6368f131 100644 --- a/uv.lock +++ b/uv.lock @@ -1,4 +1,5 @@ version = 1 +revision = 1 requires-python = ">=3.10" resolution-markers = [ "(python_full_version < '3.11' and platform_machine != 'aarch64' and sys_platform == 'linux') or (python_full_version < '3.11' and sys_platform != 'darwin' and sys_platform != 'linux')", @@ -139,6 +140,22 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/7e/b3/6b4067be973ae96ba0d615946e314c5ae35f9f993eca561b356540bb0c2b/alabaster-1.0.0-py3-none-any.whl", hash = "sha256:fc6786402dc3fcb2de3cabd5fe455a2db534b371124f1f21de8731783dec828b", size = 13929 }, ] +[[package]] +name = "altair" +version = "5.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jinja2" }, + { name = "jsonschema" }, + { name = "narwhals" }, + { name = "packaging" }, + { name = "typing-extensions", marker = "python_full_version < '3.14'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/16/b1/f2969c7bdb8ad8bbdda031687defdce2c19afba2aa2c8e1d2a17f78376d8/altair-5.5.0.tar.gz", hash = "sha256:d960ebe6178c56de3855a68c47b516be38640b73fb3b5111c2a9ca90546dd73d", size = 705305 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/aa/f3/0b6ced594e51cc95d8c1fc1640d3623770d01e4969d29c0bd09945fafefa/altair-5.5.0-py3-none-any.whl", hash = "sha256:91a310b926508d560fe0148d02a194f38b824122641ef528113d029fcd129f8c", size = 731200 }, +] + [[package]] name = "annotated-types" version = "0.7.0" @@ -258,6 +275,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/09/71/54e999902aed72baf26bca0d50781b01838251a462612966e9fc4891eadd/black-25.1.0-py3-none-any.whl", hash = "sha256:95e8176dae143ba9097f351d174fdaf0ccd29efb414b362ae3fd72bf0f710717", size = 207646 }, ] +[[package]] +name = "blinker" +version = "1.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/21/28/9b3f50ce0e048515135495f198351908d99540d69bfdc8c1d15b73dc55ce/blinker-1.9.0.tar.gz", hash = "sha256:b4ce2265a7abece45e7cc896e98dbebe6cead56bcf805a3d23136d145f5445bf", size = 22460 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/cb/f2ad4230dc2eb1a74edf38f1a38b9b52277f75bef262d8908e60d957e13c/blinker-1.9.0-py3-none-any.whl", hash = "sha256:ba0efaa9080b619ff2f3459d1d500c57bddea4a6b424b60a91141db6fd2f08bc", size = 8458 }, +] + [[package]] name = "blobfile" version = "3.0.0" @@ -282,6 +308,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/b3/58/a255894436f3eca4a20611785a30a43b85bc75adf1b77f227e1e6d0cce0a/braintrust_core-0.0.58-py3-none-any.whl", hash = "sha256:fa272b70376d2c6692acf00ebd9fb9bae057b0c53b2b6a59a64850bf79757311", size = 4438 }, ] +[[package]] +name = "cachetools" +version = "5.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/81/3747dad6b14fa2cf53fcf10548cf5aea6913e96fab41a3c198676f8948a5/cachetools-5.5.2.tar.gz", hash = "sha256:1a661caa9175d26759571b2e19580f9d6393969e5dfca11fdb1f947a23e640d4", size = 28380 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/76/20fa66124dbe6be5cafeb312ece67de6b61dd91a0247d1ea13db4ebb33c2/cachetools-5.5.2-py3-none-any.whl", hash = "sha256:d26a22bcc62eb95c3beabd9f1ee5e820d3d2704fe2967cbe350e20c8ffcd3f0a", size = 10080 }, +] + [[package]] name = "certifi" version = "2025.1.31" @@ -783,6 +818,30 @@ http = [ { name = "aiohttp" }, ] +[[package]] +name = "gitdb" +version = "4.0.12" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "smmap" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/94/63b0fc47eb32792c7ba1fe1b694daec9a63620db1e313033d18140c2320a/gitdb-4.0.12.tar.gz", hash = "sha256:5ef71f855d191a3326fcfbc0d5da835f26b13fbcba60c32c21091c349ffdb571", size = 394684 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/61/5c78b91c3143ed5c14207f463aecfc8f9dbb5092fb2869baf37c273b2705/gitdb-4.0.12-py3-none-any.whl", hash = "sha256:67073e15955400952c6565cc3e707c554a4eea2e428946f7a4c162fab9bd9bcf", size = 62794 }, +] + +[[package]] +name = "gitpython" +version = "3.1.44" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "gitdb" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c0/89/37df0b71473153574a5cdef8f242de422a0f5d26d7a9e231e6f169b4ad14/gitpython-3.1.44.tar.gz", hash = "sha256:c87e30b26253bf5418b01b0660f818967f3c503193838337fe5e573331249269", size = 214196 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1d/9a/4114a9057db2f1462d5c8f8390ab7383925fe1ac012eaa42402ad65c2963/GitPython-3.1.44-py3-none-any.whl", hash = "sha256:9e0e10cda9bed1ee64bc9a6de50e7e38a9c9943241cd7f585f6df3ed28011110", size = 207599 }, +] + [[package]] name = "googleapis-common-protos" version = "1.67.0" @@ -1325,6 +1384,7 @@ dependencies = [ { name = "jinja2" }, { name = "jsonschema" }, { name = "llama-stack-client" }, + { name = "openai" }, { name = "pillow" }, { name = "prompt-toolkit" }, { name = "pydantic" }, @@ -1351,6 +1411,7 @@ dev = [ { name = "pytest-asyncio" }, { name = "pytest-cov" }, { name = "pytest-html" }, + { name = "pytest-json-report" }, { name = "ruamel-yaml" }, { name = "ruff" }, { name = "types-requests" }, @@ -1386,11 +1447,18 @@ test = [ { name = "torchvision", version = "0.21.0", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "(platform_machine == 'aarch64' and sys_platform == 'linux') or sys_platform == 'darwin'" }, { name = "torchvision", version = "0.21.0+cpu", source = { registry = "https://download.pytorch.org/whl/cpu" }, marker = "(platform_machine != 'aarch64' and sys_platform == 'linux') or (sys_platform != 'darwin' and sys_platform != 'linux')" }, ] +ui = [ + { name = "llama-stack-client" }, + { name = "pandas" }, + { name = "streamlit" }, + { name = "streamlit-option-menu" }, +] unit = [ { name = "aiohttp" }, { name = "aiosqlite" }, { name = "chardet" }, { name = "openai" }, + { name = "opentelemetry-exporter-otlp-proto-http" }, { name = "pypdf" }, { name = "qdrant-client" }, { name = "sqlite-vec" }, @@ -1415,14 +1483,18 @@ requires-dist = [ { name = "jinja2", specifier = ">=3.1.6" }, { name = "jinja2", marker = "extra == 'codegen'", specifier = ">=3.1.6" }, { name = "jsonschema" }, - { name = "llama-stack-client", specifier = ">=0.2.1" }, + { name = "llama-stack-client", specifier = ">=0.2.2" }, + { name = "llama-stack-client", marker = "extra == 'ui'", specifier = ">=0.2.1" }, { name = "mcp", marker = "extra == 'test'" }, { name = "myst-parser", marker = "extra == 'docs'" }, { name = "nbval", marker = "extra == 'dev'" }, + { name = "openai", specifier = ">=1.66" }, { name = "openai", marker = "extra == 'test'" }, { name = "openai", marker = "extra == 'unit'" }, { name = "opentelemetry-exporter-otlp-proto-http", marker = "extra == 'test'" }, + { name = "opentelemetry-exporter-otlp-proto-http", marker = "extra == 'unit'" }, { name = "opentelemetry-sdk", marker = "extra == 'test'" }, + { name = "pandas", marker = "extra == 'ui'" }, { name = "pillow" }, { name = "pre-commit", marker = "extra == 'dev'" }, { name = "prompt-toolkit" }, @@ -1434,6 +1506,7 @@ requires-dist = [ { name = "pytest-asyncio", marker = "extra == 'dev'" }, { name = "pytest-cov", marker = "extra == 'dev'" }, { name = "pytest-html", marker = "extra == 'dev'" }, + { name = "pytest-json-report", marker = "extra == 'dev'" }, { name = "python-dotenv" }, { name = "qdrant-client", marker = "extra == 'unit'" }, { name = "requests" }, @@ -1452,6 +1525,8 @@ requires-dist = [ { name = "sphinxcontrib-redoc", marker = "extra == 'docs'" }, { name = "sphinxcontrib-video", marker = "extra == 'docs'" }, { name = "sqlite-vec", marker = "extra == 'unit'" }, + { name = "streamlit", marker = "extra == 'ui'" }, + { name = "streamlit-option-menu", marker = "extra == 'ui'" }, { name = "termcolor" }, { name = "tiktoken" }, { name = "tomli", marker = "extra == 'docs'" }, @@ -1461,10 +1536,11 @@ requires-dist = [ { name = "types-setuptools", marker = "extra == 'dev'" }, { name = "uvicorn", marker = "extra == 'dev'" }, ] +provides-extras = ["dev", "unit", "test", "docs", "codegen", "ui"] [[package]] name = "llama-stack-client" -version = "0.2.1" +version = "0.2.2" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "anyio" }, @@ -1481,9 +1557,9 @@ dependencies = [ { name = "tqdm" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/bb/5c/5fed03a18bfd6fb27dcf531504dfdaa5e9b79447f4530196baf16bbdddfe/llama_stack_client-0.2.1.tar.gz", hash = "sha256:2be016898ad9f12e57d6125cae26253b8cce7d894c028b9e42f58d421e7825ce", size = 242809 } +sdist = { url = "https://files.pythonhosted.org/packages/fc/1c/7d3ab0e57195f21f9cf121fba2692ee8dc792793e5c82aa702602dda9bea/llama_stack_client-0.2.2.tar.gz", hash = "sha256:a0323b18b9f68172c639755652654452b7e72e28e77d95db5146e25d83002d34", size = 241914 } wheels = [ - { url = "https://files.pythonhosted.org/packages/90/e7/23051fe5073f2fda3f509b19d0e4d7e76e3a8cfaa3606077a2bcef9a0bf0/llama_stack_client-0.2.1-py3-none-any.whl", hash = "sha256:8db3179aab48d6abf82b89ef0a2014e404faf4a72f825c0ffd467fdc4ab5f02c", size = 274293 }, + { url = "https://files.pythonhosted.org/packages/9e/68/bdd9cb19e2c151d9aa8bf91444dfa9675bc7913006d8e1e030fb79dbf8c5/llama_stack_client-0.2.2-py3-none-any.whl", hash = "sha256:2a4ef3edb861e9a3a734e6e5e65d9d3de1f10cd56c18d21d82253088d2758e53", size = 273307 }, ] [[package]] @@ -1815,6 +1891,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/5f/df/76d0321c3797b54b60fef9ec3bd6f4cfd124b9e422182156a1dd418722cf/myst_parser-4.0.1-py3-none-any.whl", hash = "sha256:9134e88959ec3b5780aedf8a99680ea242869d012e8821db3126d427edc9c95d", size = 84579 }, ] +[[package]] +name = "narwhals" +version = "1.34.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ec/1d/a21496389436e96394a6e3fb1a644d5bc382250baff76e867f0368a94068/narwhals-1.34.0.tar.gz", hash = "sha256:bdd3fa60bea1f1e8b698e483be18dd43af13290da12dba69ea16dc1f3edbb8f7", size = 265432 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/6d/875d5a7f8e14fc044ede74b94e739d7312c3c8d1a3878f649601b15fdd68/narwhals-1.34.0-py3-none-any.whl", hash = "sha256:9502b9aa5dfe125c090a3a0bbca95becfa1fac2cd67f8b80d12b1dc2ed751865", size = 325346 }, +] + [[package]] name = "nbformat" version = "5.10.4" @@ -1937,7 +2022,7 @@ wheels = [ [[package]] name = "openai" -version = "1.63.2" +version = "1.71.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "anyio" }, @@ -1949,9 +2034,9 @@ dependencies = [ { name = "tqdm" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/e6/1c/11b520deb71f9ea54ced3c52cd6a5f7131215deba63ad07f23982e328141/openai-1.63.2.tar.gz", hash = "sha256:aeabeec984a7d2957b4928ceaa339e2ead19c61cfcf35ae62b7c363368d26360", size = 356902 } +sdist = { url = "https://files.pythonhosted.org/packages/d9/19/b8f0347090a649dce55a008ec54ac6abb50553a06508cdb5e7abb2813e99/openai-1.71.0.tar.gz", hash = "sha256:52b20bb990a1780f9b0b8ccebac93416343ebd3e4e714e3eff730336833ca207", size = 409926 } wheels = [ - { url = "https://files.pythonhosted.org/packages/15/64/db3462b358072387b8e93e6e6a38d3c741a17b4a84171ef01d6c85c63f25/openai-1.63.2-py3-none-any.whl", hash = "sha256:1f38b27b5a40814c2b7d8759ec78110df58c4a614c25f182809ca52b080ff4d4", size = 472282 }, + { url = "https://files.pythonhosted.org/packages/c4/f7/049e85faf6a000890e5ca0edca8e9183f8a43c9e7bba869cad871da0caba/openai-1.71.0-py3-none-any.whl", hash = "sha256:e1c643738f1fff1af52bce6ef06a7716c95d089281e7011777179614f32937aa", size = 598975 }, ] [[package]] @@ -2571,6 +2656,19 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/0b/53/a64f03044927dc47aafe029c42a5b7aabc38dfb813475e0e1bf71c4a59d0/pydantic_settings-2.8.1-py3-none-any.whl", hash = "sha256:81942d5ac3d905f7f3ee1a70df5dfb62d5569c12f51a5a647defc1c3d9ee2e9c", size = 30839 }, ] +[[package]] +name = "pydeck" +version = "0.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jinja2" }, + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/ca/40e14e196864a0f61a92abb14d09b3d3da98f94ccb03b49cf51688140dab/pydeck-0.9.1.tar.gz", hash = "sha256:f74475ae637951d63f2ee58326757f8d4f9cd9f2a457cf42950715003e2cb605", size = 3832240 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ab/4c/b888e6cf58bd9db9c93f40d1c6be8283ff49d88919231afe93a6bcf61626/pydeck-0.9.1-py2.py3-none-any.whl", hash = "sha256:b3f75ba0d273fc917094fa61224f3f6076ca8752b93d46faf3bcfd9f9d59b038", size = 6900403 }, +] + [[package]] name = "pygments" version = "2.19.1" @@ -2648,6 +2746,19 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/c8/c7/c160021cbecd956cc1a6f79e5fe155f7868b2e5b848f1320dad0b3e3122f/pytest_html-4.1.1-py3-none-any.whl", hash = "sha256:c8152cea03bd4e9bee6d525573b67bbc6622967b72b9628dda0ea3e2a0b5dd71", size = 23491 }, ] +[[package]] +name = "pytest-json-report" +version = "1.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pytest" }, + { name = "pytest-metadata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/4f/d3/765dae9712fcd68d820338908c1337e077d5fdadccd5cacf95b9b0bea278/pytest-json-report-1.5.0.tar.gz", hash = "sha256:2dde3c647851a19b5f3700729e8310a6e66efb2077d674f27ddea3d34dc615de", size = 21241 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/35/d07400c715bf8a88aa0c1ee9c9eb6050ca7fe5b39981f0eea773feeb0681/pytest_json_report-1.5.0-py3-none-any.whl", hash = "sha256:9897b68c910b12a2e48dd849f9a284b2c79a732a8a9cb398452ddd23d3c8c325", size = 13222 }, +] + [[package]] name = "pytest-metadata" version = "3.1.1" @@ -3220,6 +3331,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 }, ] +[[package]] +name = "smmap" +version = "5.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/44/cd/a040c4b3119bbe532e5b0732286f805445375489fceaec1f48306068ee3b/smmap-5.0.2.tar.gz", hash = "sha256:26ea65a03958fa0c8a1c7e8c7a58fdc77221b8910f6be2131affade476898ad5", size = 22329 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/be/d09147ad1ec7934636ad912901c5fd7667e1c858e19d355237db0d0cd5e4/smmap-5.0.2-py3-none-any.whl", hash = "sha256:b30115f0def7d7531d22a0fb6502488d879e75b260a9db4d0819cfb25403af5e", size = 24303 }, +] + [[package]] name = "sniffio" version = "1.3.1" @@ -3502,6 +3622,47 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/d9/61/f2b52e107b1fc8944b33ef56bf6ac4ebbe16d91b94d2b87ce013bf63fb84/starlette-0.45.3-py3-none-any.whl", hash = "sha256:dfb6d332576f136ec740296c7e8bb8c8a7125044e7c6da30744718880cdd059d", size = 71507 }, ] +[[package]] +name = "streamlit" +version = "1.44.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "altair" }, + { name = "blinker" }, + { name = "cachetools" }, + { name = "click" }, + { name = "gitpython" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pandas" }, + { name = "pillow" }, + { name = "protobuf" }, + { name = "pyarrow" }, + { name = "pydeck" }, + { name = "requests" }, + { name = "tenacity" }, + { name = "toml" }, + { name = "tornado" }, + { name = "typing-extensions" }, + { name = "watchdog", marker = "sys_platform != 'darwin'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/3e/c0/7286284567e5045f0c587c426d0c41aee5d10c0a2e360e627a83037e9f0c/streamlit-1.44.1.tar.gz", hash = "sha256:c6914ed6d5b76870b461510476806db370f36425ae0e6654d227c988288198d3", size = 9423685 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/17/fc425e1d4d86e31b2aaf0812a2ef2163763a0670d671720c7c36e8679323/streamlit-1.44.1-py3-none-any.whl", hash = "sha256:9fe355f58b11f4eb71e74f115ce1f38c4c9eaff2733e6bcffb510ac1298a5990", size = 9812242 }, +] + +[[package]] +name = "streamlit-option-menu" +version = "0.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "streamlit" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5e/27/72dc451cdaef1714fd0d75cc430e50a06c12c9046295fdf1f94af1b766eb/streamlit-option-menu-0.4.0.tar.gz", hash = "sha256:48ec69d59e547fa2fa4bfae001620df8af56a80de2f765ddbb9fcbfb84017129", size = 827290 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/52/2f525ad4262dc83d67297f69ec5afcee1438b9e9ae22aa318396725ddbed/streamlit_option_menu-0.4.0-py3-none-any.whl", hash = "sha256:a55fc7554047b6db371595af2182e435b8a2c715ee6124e8543685bd4670b07e", size = 829255 }, +] + [[package]] name = "sympy" version = "1.13.1" @@ -3514,6 +3675,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 }, ] +[[package]] +name = "tenacity" +version = "9.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0a/d4/2b0cd0fe285e14b36db076e78c93766ff1d529d70408bd1d2a5a84f1d929/tenacity-9.1.2.tar.gz", hash = "sha256:1169d376c297e7de388d18b4481760d478b0e99a777cad3a9c86e556f4b697cb", size = 48036 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248 }, +] + [[package]] name = "termcolor" version = "2.5.0" @@ -3559,6 +3729,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/de/a8/8f499c179ec900783ffe133e9aab10044481679bb9aad78436d239eee716/tiktoken-0.9.0-cp313-cp313-win_amd64.whl", hash = "sha256:5ea0edb6f83dc56d794723286215918c1cde03712cbbafa0348b33448faf5b95", size = 894669 }, ] +[[package]] +name = "toml" +version = "0.10.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/be/ba/1f744cdc819428fc6b5084ec34d9b30660f6f9daaf70eead706e3203ec3c/toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f", size = 22253 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/6f/7120676b6d73228c96e17f1f794d8ab046fc910d781c8d151120c3f1569e/toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b", size = 16588 }, +] + [[package]] name = "tomli" version = "2.2.1" @@ -3836,6 +4015,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/93/fa/849483d56773ae29740ae70043ad88e068f98a6401aa819b5d6bee604683/virtualenv-20.29.2-py3-none-any.whl", hash = "sha256:febddfc3d1ea571bdb1dc0f98d7b45d24def7428214d4fb73cc486c9568cce6a", size = 4301478 }, ] +[[package]] +name = "watchdog" +version = "6.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/db/7d/7f3d619e951c88ed75c6037b246ddcf2d322812ee8ea189be89511721d54/watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282", size = 131220 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/c7/ca4bf3e518cb57a686b2feb4f55a1892fd9a3dd13f470fca14e00f80ea36/watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13", size = 79079 }, + { url = "https://files.pythonhosted.org/packages/5c/51/d46dc9332f9a647593c947b4b88e2381c8dfc0942d15b8edc0310fa4abb1/watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/d4/57/04edbf5e169cd318d5f07b4766fee38e825d64b6913ca157ca32d1a42267/watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e", size = 79076 }, + { url = "https://files.pythonhosted.org/packages/ab/cc/da8422b300e13cb187d2203f20b9253e91058aaf7db65b74142013478e66/watchdog-6.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/2c/3b/b8964e04ae1a025c44ba8e4291f86e97fac443bca31de8bd98d3263d2fcf/watchdog-6.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/62/ae/a696eb424bedff7407801c257d4b1afda455fe40821a2be430e173660e81/watchdog-6.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c", size = 79077 }, + { url = "https://files.pythonhosted.org/packages/b5/e8/dbf020b4d98251a9860752a094d09a65e1b436ad181faf929983f697048f/watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2", size = 79078 }, + { url = "https://files.pythonhosted.org/packages/07/f6/d0e5b343768e8bcb4cda79f0f2f55051bf26177ecd5651f84c07567461cf/watchdog-6.0.0-py3-none-win32.whl", hash = "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a", size = 79065 }, + { url = "https://files.pythonhosted.org/packages/db/d9/c495884c6e548fce18a8f40568ff120bc3a4b7b99813081c8ac0c936fa64/watchdog-6.0.0-py3-none-win_amd64.whl", hash = "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680", size = 79070 }, + { url = "https://files.pythonhosted.org/packages/33/e8/e40370e6d74ddba47f002a32919d91310d6074130fe4e17dabcafc15cbf1/watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f", size = 79067 }, +] + [[package]] name = "watchfiles" version = "1.0.4"