diff --git a/docs/source/getting_started/index.md b/docs/source/getting_started/index.md index eb19454fc..6ba208bf1 100644 --- a/docs/source/getting_started/index.md +++ b/docs/source/getting_started/index.md @@ -68,10 +68,8 @@ The config file is a YAML file that specifies the providers and their configurat ```bash INFERENCE_MODEL=llama3.2:3b llama stack build --template ollama --image-type venv --run ``` - You will see output like below: ``` -... INFO: Application startup complete. INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) ``` @@ -79,7 +77,7 @@ INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit ### ii. Using the Llama Stack Client Now you can use the llama stack client to run inference and build agents! -:::{dropdown} You can reuse the server setup or the Llama Stack Client +_Note: You can reuse the server setup or the Llama Stack Client_ Open a new terminal and navigate to the same directory you started the server from. @@ -138,7 +136,7 @@ ChatCompletionResponse( ], ) ``` -### i. Create a Script used by the Llama Stack Client +### i. Create the Script Create a file `inference.py` and add the following code: ```python @@ -180,6 +178,7 @@ Beauty in the bits ``` ## Step 5: Run Your First Agent +### i. Create the Script Now we can move beyond simple inference and build an agent that can perform tasks using the Llama Stack server. Create a file `agent.py` and add the following code: @@ -226,7 +225,7 @@ Let's run the script using `uv` ```bash uv run python agent.py ``` -:::{dropdown} `Sample output` +:::{dropdown} `👋 Click here to see the sample output` ``` Non-streaming ... agent> I'm an artificial intelligence designed to assist and communicate with users like you. I don't have a personal identity, but I'm here to provide information, answer questions, and help with tasks to the best of my abilities. @@ -436,7 +435,7 @@ Let's run the script using `uv` ```bash uv run python rag_agent.py ``` -:::{dropdown} `Sample output` +:::{dropdown} `👋 Click here to see the sample output` ``` user> what is torchtune inference> [knowledge_search(query='TorchTune')]