Merge branch 'main' into chroma

This commit is contained in:
Bwook (Byoungwook) Kim 2025-09-11 20:46:53 +09:00 committed by GitHub
commit 11c71c958e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
308 changed files with 26415 additions and 11807 deletions

View file

@ -7,4 +7,5 @@ Here's a list of known external providers that you can use with Llama Stack:
| KubeFlow Training | Train models with KubeFlow | Post Training | Remote | [llama-stack-provider-kft](https://github.com/opendatahub-io/llama-stack-provider-kft) |
| KubeFlow Pipelines | Train models with KubeFlow Pipelines | Post Training | Inline **and** Remote | [llama-stack-provider-kfp-trainer](https://github.com/opendatahub-io/llama-stack-provider-kfp-trainer) |
| RamaLama | Inference models with RamaLama | Inference | Remote | [ramalama-stack](https://github.com/containers/ramalama-stack) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
| TrustyAI LM-Eval | Evaluate models with TrustyAI LM-Eval | Eval | Remote | [llama-stack-provider-lmeval](https://github.com/trustyai-explainability/llama-stack-provider-lmeval) |
| MongoDB | VectorIO with MongoDB | Vector_IO | Remote | [mongodb-llama-stack](https://github.com/mongodb-partners/mongodb-llama-stack) |

View file

@ -15,8 +15,8 @@ AWS Bedrock inference provider for accessing various AI models through AWS's man
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
| `retry_mode` | `str \| None` | No | | A string representing the type of retries Boto3 will perform.Default use environment variable: AWS_RETRY_MODE |
| `connect_timeout` | `float \| None` | No | 60 | The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds. |
| `read_timeout` | `float \| None` | No | 60 | The time in seconds till a timeout exception is thrown when attempting to read from a connection.The default is 60 seconds. |
| `connect_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds. |
| `read_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to read from a connection.The default is 60 seconds. |
| `session_ttl` | `int \| None` | No | 3600 | The time in seconds till a session expires. The default is 3600 seconds (1 hour). |
## Sample Configuration

View file

@ -9,7 +9,6 @@ This section contains documentation for all available providers for the **post_t
```{toctree}
:maxdepth: 1
inline_huggingface-cpu
inline_huggingface-gpu
inline_torchtune-cpu
inline_torchtune-gpu

View file

@ -15,8 +15,8 @@ AWS Bedrock safety provider for content moderation using AWS's safety services.
| `profile_name` | `str \| None` | No | | The profile name that contains credentials to use.Default use environment variable: AWS_PROFILE |
| `total_max_attempts` | `int \| None` | No | | An integer representing the maximum number of attempts that will be made for a single request, including the initial attempt. Default use environment variable: AWS_MAX_ATTEMPTS |
| `retry_mode` | `str \| None` | No | | A string representing the type of retries Boto3 will perform.Default use environment variable: AWS_RETRY_MODE |
| `connect_timeout` | `float \| None` | No | 60 | The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds. |
| `read_timeout` | `float \| None` | No | 60 | The time in seconds till a timeout exception is thrown when attempting to read from a connection.The default is 60 seconds. |
| `connect_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds. |
| `read_timeout` | `float \| None` | No | 60.0 | The time in seconds till a timeout exception is thrown when attempting to read from a connection.The default is 60 seconds. |
| `session_ttl` | `int \| None` | No | 3600 | The time in seconds till a session expires. The default is 3600 seconds (1 hour). |
## Sample Configuration

View file

@ -12,6 +12,60 @@ That means you'll get fast and efficient vector retrieval.
- Easy to use
- Fully integrated with Llama Stack
There are three implementations of search for PGVectoIndex available:
1. Vector Search:
- How it works:
- Uses PostgreSQL's vector extension (pgvector) to perform similarity search
- Compares query embeddings against stored embeddings using Cosine distance or other distance metrics
- Eg. SQL query: SELECT document, embedding <=> %s::vector AS distance FROM table ORDER BY distance
-Characteristics:
- Semantic understanding - finds documents similar in meaning even if they don't share keywords
- Works with high-dimensional vector embeddings (typically 768, 1024, or higher dimensions)
- Best for: Finding conceptually related content, handling synonyms, cross-language search
2. Keyword Search
- How it works:
- Uses PostgreSQL's full-text search capabilities with tsvector and ts_rank
- Converts text to searchable tokens using to_tsvector('english', text). Default language is English.
- Eg. SQL query: SELECT document, ts_rank(tokenized_content, plainto_tsquery('english', %s)) AS score
- Characteristics:
- Lexical matching - finds exact keyword matches and variations
- Uses GIN (Generalized Inverted Index) for fast text search performance
- Scoring: Uses PostgreSQL's ts_rank function for relevance scoring
- Best for: Exact term matching, proper names, technical terms, Boolean-style queries
3. Hybrid Search
- How it works:
- Combines both vector and keyword search results
- Runs both searches independently, then merges results using configurable reranking
- Two reranking strategies available:
- Reciprocal Rank Fusion (RRF) - (default: 60.0)
- Weighted Average - (default: 0.5)
- Characteristics:
- Best of both worlds: semantic understanding + exact matching
- Documents appearing in both searches get boosted scores
- Configurable balance between semantic and lexical matching
- Best for: General-purpose search where you want both precision and recall
4. Database Schema
The PGVector implementation stores data optimized for all three search types:
CREATE TABLE vector_store_xxx (
id TEXT PRIMARY KEY,
document JSONB, -- Original document
embedding vector(dimension), -- For vector search
content_text TEXT, -- Raw text content
tokenized_content TSVECTOR -- For keyword search
);
-- Indexes for performance
CREATE INDEX content_gin_idx ON table USING GIN(tokenized_content); -- Keyword search
-- Vector index created automatically by pgvector
## Usage
To use PGVector in your Llama Stack project, follow these steps:
@ -20,6 +74,25 @@ To use PGVector in your Llama Stack project, follow these steps:
2. Configure your Llama Stack project to use pgvector. (e.g. remote::pgvector).
3. Start storing and querying vectors.
## This is an example how you can set up your environment for using PGVector
1. Export env vars:
```bash
export ENABLE_PGVECTOR=true
export PGVECTOR_HOST=localhost
export PGVECTOR_PORT=5432
export PGVECTOR_DB=llamastack
export PGVECTOR_USER=llamastack
export PGVECTOR_PASSWORD=llamastack
```
2. Create DB:
```bash
psql -h localhost -U postgres -c "CREATE ROLE llamastack LOGIN PASSWORD 'llamastack';"
psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;"
psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;"
```
## Installation
You can install PGVector using docker:

View file

@ -17,6 +17,7 @@ Weaviate supports:
- Metadata filtering
- Multi-modal retrieval
## Usage
To use Weaviate in your Llama Stack project, follow these steps: