mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-22 16:23:08 +00:00
chore(cleanup)!: kill vector_db references as far as possible (#3864)
There should not be "vector db" anywhere.
This commit is contained in:
parent
444f6c88f3
commit
122de785c4
46 changed files with 701 additions and 822 deletions
|
@ -21,7 +21,7 @@ async def test_single_provider_auto_selection():
|
|||
Mock(identifier="all-MiniLM-L6-v2", model_type="embedding", metadata={"embedding_dimension": 384})
|
||||
]
|
||||
)
|
||||
mock_routing_table.register_vector_db = AsyncMock(
|
||||
mock_routing_table.register_vector_store = AsyncMock(
|
||||
return_value=Mock(identifier="vs_123", provider_id="inline::faiss", provider_resource_id="vs_123")
|
||||
)
|
||||
mock_routing_table.get_provider_impl = AsyncMock(
|
||||
|
|
|
@ -10,8 +10,8 @@ from unittest.mock import AsyncMock, MagicMock, patch
|
|||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter
|
||||
|
@ -31,7 +31,7 @@ def vector_provider(request):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_db_id() -> str:
|
||||
def vector_store_id() -> str:
|
||||
return f"test-vector-db-{random.randint(1, 100)}"
|
||||
|
||||
|
||||
|
@ -149,8 +149,8 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf
|
|||
)
|
||||
collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}"
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
await adapter.register_vector_store(
|
||||
VectorStore(
|
||||
identifier=collection_id,
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
|
@ -186,8 +186,8 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding
|
|||
files_api=None,
|
||||
)
|
||||
await adapter.initialize()
|
||||
await adapter.register_vector_db(
|
||||
VectorDB(
|
||||
await adapter.register_vector_store(
|
||||
VectorStore(
|
||||
identifier=f"faiss_test_collection_{np.random.randint(1e6)}",
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
|
@ -215,7 +215,7 @@ def mock_psycopg2_connection():
|
|||
async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection):
|
||||
connection, cursor = mock_psycopg2_connection
|
||||
|
||||
vector_db = VectorDB(
|
||||
vector_store = VectorStore(
|
||||
identifier="test-vector-db",
|
||||
embedding_model="test-model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
|
@ -225,7 +225,7 @@ async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection):
|
|||
|
||||
with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.psycopg2"):
|
||||
with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.execute_values"):
|
||||
index = PGVectorIndex(vector_db, embedding_dimension, connection, distance_metric="COSINE")
|
||||
index = PGVectorIndex(vector_store, embedding_dimension, connection, distance_metric="COSINE")
|
||||
index._test_chunks = []
|
||||
original_add_chunks = index.add_chunks
|
||||
|
||||
|
@ -281,30 +281,30 @@ async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedd
|
|||
await adapter.initialize()
|
||||
adapter.conn = mock_conn
|
||||
|
||||
async def mock_insert_chunks(vector_db_id, chunks, ttl_seconds=None):
|
||||
index = await adapter._get_and_cache_vector_db_index(vector_db_id)
|
||||
async def mock_insert_chunks(vector_store_id, chunks, ttl_seconds=None):
|
||||
index = await adapter._get_and_cache_vector_store_index(vector_store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found")
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
adapter.insert_chunks = mock_insert_chunks
|
||||
|
||||
async def mock_query_chunks(vector_db_id, query, params=None):
|
||||
index = await adapter._get_and_cache_vector_db_index(vector_db_id)
|
||||
async def mock_query_chunks(vector_store_id, query, params=None):
|
||||
index = await adapter._get_and_cache_vector_store_index(vector_store_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_store_id} not found")
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
adapter.query_chunks = mock_query_chunks
|
||||
|
||||
test_vector_db = VectorDB(
|
||||
test_vector_store = VectorStore(
|
||||
identifier=f"pgvector_test_collection_{random.randint(1, 1_000_000)}",
|
||||
provider_id="test_provider",
|
||||
embedding_model="test_model",
|
||||
embedding_dimension=embedding_dimension,
|
||||
)
|
||||
await adapter.register_vector_db(test_vector_db)
|
||||
adapter.test_collection_id = test_vector_db.identifier
|
||||
await adapter.register_vector_store(test_vector_store)
|
||||
adapter.test_collection_id = test_vector_store.identifier
|
||||
|
||||
yield adapter
|
||||
await adapter.shutdown()
|
||||
|
|
|
@ -11,8 +11,8 @@ import numpy as np
|
|||
import pytest
|
||||
|
||||
from llama_stack.apis.files import Files
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.providers.datatypes import HealthStatus
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.faiss.faiss import (
|
||||
|
@ -43,8 +43,8 @@ def embedding_dimension():
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
def vector_db_id():
|
||||
return "test_vector_db"
|
||||
def vector_store_id():
|
||||
return "test_vector_store"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -61,12 +61,12 @@ def sample_embeddings(embedding_dimension):
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock:
|
||||
mock_vector_db = MagicMock(spec=VectorDB)
|
||||
mock_vector_db.embedding_model = "mock_embedding_model"
|
||||
mock_vector_db.identifier = vector_db_id
|
||||
mock_vector_db.embedding_dimension = embedding_dimension
|
||||
return mock_vector_db
|
||||
def mock_vector_store(vector_store_id, embedding_dimension) -> MagicMock:
|
||||
mock_vector_store = MagicMock(spec=VectorStore)
|
||||
mock_vector_store.embedding_model = "mock_embedding_model"
|
||||
mock_vector_store.identifier = vector_store_id
|
||||
mock_vector_store.embedding_dimension = embedding_dimension
|
||||
return mock_vector_store
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
|
@ -12,7 +12,6 @@ import numpy as np
|
|||
import pytest
|
||||
|
||||
from llama_stack.apis.common.errors import VectorStoreNotFoundError
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import (
|
||||
Chunk,
|
||||
OpenAICreateVectorStoreFileBatchRequestWithExtraBody,
|
||||
|
@ -21,6 +20,7 @@ from llama_stack.apis.vector_io import (
|
|||
VectorStoreChunkingStrategyAuto,
|
||||
VectorStoreFileObject,
|
||||
)
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import VECTOR_DBS_PREFIX
|
||||
|
||||
# This test is a unit test for the inline VectorIO providers. This should only contain
|
||||
|
@ -71,7 +71,7 @@ async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimensio
|
|||
|
||||
async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
|
||||
key = f"{VECTOR_DBS_PREFIX}db1"
|
||||
dummy = VectorDB(
|
||||
dummy = VectorStore(
|
||||
identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
|
||||
)
|
||||
await vector_io_adapter.kvstore.set(key=key, value=json.dumps(dummy.model_dump()))
|
||||
|
@ -81,10 +81,10 @@ async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter):
|
|||
|
||||
async def test_persistence_across_adapter_restarts(vector_io_adapter):
|
||||
await vector_io_adapter.initialize()
|
||||
dummy = VectorDB(
|
||||
dummy = VectorStore(
|
||||
identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
|
||||
)
|
||||
await vector_io_adapter.register_vector_db(dummy)
|
||||
await vector_io_adapter.register_vector_store(dummy)
|
||||
await vector_io_adapter.shutdown()
|
||||
|
||||
await vector_io_adapter.initialize()
|
||||
|
@ -92,15 +92,15 @@ async def test_persistence_across_adapter_restarts(vector_io_adapter):
|
|||
await vector_io_adapter.shutdown()
|
||||
|
||||
|
||||
async def test_register_and_unregister_vector_db(vector_io_adapter):
|
||||
async def test_register_and_unregister_vector_store(vector_io_adapter):
|
||||
unique_id = f"foo_db_{np.random.randint(1e6)}"
|
||||
dummy = VectorDB(
|
||||
dummy = VectorStore(
|
||||
identifier=unique_id, provider_id="test_provider", embedding_model="test_model", embedding_dimension=128
|
||||
)
|
||||
|
||||
await vector_io_adapter.register_vector_db(dummy)
|
||||
await vector_io_adapter.register_vector_store(dummy)
|
||||
assert dummy.identifier in vector_io_adapter.cache
|
||||
await vector_io_adapter.unregister_vector_db(dummy.identifier)
|
||||
await vector_io_adapter.unregister_vector_store(dummy.identifier)
|
||||
assert dummy.identifier not in vector_io_adapter.cache
|
||||
|
||||
|
||||
|
@ -121,7 +121,7 @@ async def test_insert_chunks_calls_underlying_index(vector_io_adapter):
|
|||
|
||||
|
||||
async def test_insert_chunks_missing_db_raises(vector_io_adapter):
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
|
||||
vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
await vector_io_adapter.insert_chunks("db_not_exist", [])
|
||||
|
@ -170,7 +170,7 @@ async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter
|
|||
|
||||
|
||||
async def test_query_chunks_missing_db_raises(vector_io_adapter):
|
||||
vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None)
|
||||
vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
await vector_io_adapter.query_chunks("db_missing", "q", None)
|
||||
|
@ -182,7 +182,7 @@ async def test_save_openai_vector_store(vector_io_adapter):
|
|||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"description": "A test OpenAI vector store",
|
||||
"vector_db_id": "test_db",
|
||||
"vector_store_id": "test_db",
|
||||
"embedding_model": "test_model",
|
||||
}
|
||||
|
||||
|
@ -198,7 +198,7 @@ async def test_update_openai_vector_store(vector_io_adapter):
|
|||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"description": "A test OpenAI vector store",
|
||||
"vector_db_id": "test_db",
|
||||
"vector_store_id": "test_db",
|
||||
"embedding_model": "test_model",
|
||||
}
|
||||
|
||||
|
@ -214,7 +214,7 @@ async def test_delete_openai_vector_store(vector_io_adapter):
|
|||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"description": "A test OpenAI vector store",
|
||||
"vector_db_id": "test_db",
|
||||
"vector_store_id": "test_db",
|
||||
"embedding_model": "test_model",
|
||||
}
|
||||
|
||||
|
@ -229,7 +229,7 @@ async def test_load_openai_vector_stores(vector_io_adapter):
|
|||
"id": store_id,
|
||||
"name": "Test Store",
|
||||
"description": "A test OpenAI vector store",
|
||||
"vector_db_id": "test_db",
|
||||
"vector_store_id": "test_db",
|
||||
"embedding_model": "test_model",
|
||||
}
|
||||
|
||||
|
@ -998,8 +998,8 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter):
|
|||
async def test_embedding_config_from_metadata(vector_io_adapter):
|
||||
"""Test that embedding configuration is correctly extracted from metadata."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
|
||||
|
@ -1015,9 +1015,9 @@ async def test_embedding_config_from_metadata(vector_io_adapter):
|
|||
|
||||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
# Verify VectorDB was registered with correct embedding config from metadata
|
||||
vector_io_adapter.register_vector_db.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
|
||||
# Verify VectorStore was registered with correct embedding config from metadata
|
||||
vector_io_adapter.register_vector_store.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
|
||||
assert call_args.embedding_model == "test-embedding-model"
|
||||
assert call_args.embedding_dimension == 512
|
||||
|
||||
|
@ -1025,8 +1025,8 @@ async def test_embedding_config_from_metadata(vector_io_adapter):
|
|||
async def test_embedding_config_from_extra_body(vector_io_adapter):
|
||||
"""Test that embedding configuration is correctly extracted from extra_body when metadata is empty."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
|
||||
|
@ -1042,9 +1042,9 @@ async def test_embedding_config_from_extra_body(vector_io_adapter):
|
|||
|
||||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
# Verify VectorDB was registered with correct embedding config from extra_body
|
||||
vector_io_adapter.register_vector_db.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
|
||||
# Verify VectorStore was registered with correct embedding config from extra_body
|
||||
vector_io_adapter.register_vector_store.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
|
||||
assert call_args.embedding_model == "extra-body-model"
|
||||
assert call_args.embedding_dimension == 1024
|
||||
|
||||
|
@ -1052,8 +1052,8 @@ async def test_embedding_config_from_extra_body(vector_io_adapter):
|
|||
async def test_embedding_config_consistency_check_passes(vector_io_adapter):
|
||||
"""Test that consistent embedding config in both metadata and extra_body passes validation."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
|
||||
|
@ -1073,8 +1073,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter):
|
|||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
# Should not raise any error and use metadata config
|
||||
vector_io_adapter.register_vector_db.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
|
||||
vector_io_adapter.register_vector_store.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
|
||||
assert call_args.embedding_model == "consistent-model"
|
||||
assert call_args.embedding_dimension == 768
|
||||
|
||||
|
@ -1082,8 +1082,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter):
|
|||
async def test_embedding_config_inconsistency_errors(vector_io_adapter):
|
||||
"""Test that inconsistent embedding config between metadata and extra_body raises errors."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
|
||||
|
@ -1104,7 +1104,7 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter):
|
|||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
# Reset mock for second test
|
||||
vector_io_adapter.register_vector_db.reset_mock()
|
||||
vector_io_adapter.register_vector_store.reset_mock()
|
||||
|
||||
# Test with inconsistent embedding dimension
|
||||
params = OpenAICreateVectorStoreRequestWithExtraBody(
|
||||
|
@ -1126,8 +1126,8 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter):
|
|||
async def test_embedding_config_defaults_when_missing(vector_io_adapter):
|
||||
"""Test that embedding dimension defaults to 768 when not provided."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
|
||||
|
@ -1143,8 +1143,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter):
|
|||
await vector_io_adapter.openai_create_vector_store(params)
|
||||
|
||||
# Should default to 768 dimensions
|
||||
vector_io_adapter.register_vector_db.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_db.call_args[0][0]
|
||||
vector_io_adapter.register_vector_store.assert_called_once()
|
||||
call_args = vector_io_adapter.register_vector_store.call_args[0][0]
|
||||
assert call_args.embedding_model == "model-without-dimension"
|
||||
assert call_args.embedding_dimension == 768
|
||||
|
||||
|
@ -1152,8 +1152,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter):
|
|||
async def test_embedding_config_required_model_missing(vector_io_adapter):
|
||||
"""Test that missing embedding model raises error."""
|
||||
|
||||
# Mock register_vector_db to avoid actual registration
|
||||
vector_io_adapter.register_vector_db = AsyncMock()
|
||||
# Mock register_vector_store to avoid actual registration
|
||||
vector_io_adapter.register_vector_store = AsyncMock()
|
||||
# Set provider_id attribute for the adapter
|
||||
vector_io_adapter.__provider_id__ = "test_provider"
|
||||
# Mock the default model lookup to return None (no default model available)
|
||||
|
|
|
@ -18,7 +18,7 @@ from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRunti
|
|||
|
||||
|
||||
class TestRagQuery:
|
||||
async def test_query_raises_on_empty_vector_db_ids(self):
|
||||
async def test_query_raises_on_empty_vector_store_ids(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock()
|
||||
)
|
||||
|
@ -82,7 +82,7 @@ class TestRagQuery:
|
|||
with pytest.raises(ValueError):
|
||||
RAGQueryConfig(mode="wrong_mode")
|
||||
|
||||
async def test_query_adds_vector_db_id_to_chunk_metadata(self):
|
||||
async def test_query_adds_vector_store_id_to_chunk_metadata(self):
|
||||
rag_tool = MemoryToolRuntimeImpl(
|
||||
config=MagicMock(),
|
||||
vector_io_api=MagicMock(),
|
||||
|
|
|
@ -21,7 +21,7 @@ from llama_stack.apis.tools import RAGDocument
|
|||
from llama_stack.apis.vector_io import Chunk
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
URL,
|
||||
VectorDBWithIndex,
|
||||
VectorStoreWithIndex,
|
||||
_validate_embedding,
|
||||
content_from_doc,
|
||||
make_overlapped_chunks,
|
||||
|
@ -206,15 +206,15 @@ class TestVectorStore:
|
|||
assert str(excinfo.value.__cause__) == "Cannot convert to string"
|
||||
|
||||
|
||||
class TestVectorDBWithIndex:
|
||||
class TestVectorStoreWithIndex:
|
||||
async def test_insert_chunks_without_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_model = "test-model without embeddings"
|
||||
mock_vector_store = MagicMock()
|
||||
mock_vector_store.embedding_model = "test-model without embeddings"
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
vector_store_with_index = VectorStoreWithIndex(
|
||||
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
chunks = [
|
||||
|
@ -227,7 +227,7 @@ class TestVectorDBWithIndex:
|
|||
OpenAIEmbeddingData(embedding=[0.4, 0.5, 0.6], index=1),
|
||||
]
|
||||
|
||||
await vector_db_with_index.insert_chunks(chunks)
|
||||
await vector_store_with_index.insert_chunks(chunks)
|
||||
|
||||
# Verify openai_embeddings was called with correct params
|
||||
mock_inference_api.openai_embeddings.assert_called_once()
|
||||
|
@ -243,14 +243,14 @@ class TestVectorDBWithIndex:
|
|||
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
|
||||
async def test_insert_chunks_with_valid_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_model = "test-model with embeddings"
|
||||
mock_vector_db.embedding_dimension = 3
|
||||
mock_vector_store = MagicMock()
|
||||
mock_vector_store.embedding_model = "test-model with embeddings"
|
||||
mock_vector_store.embedding_dimension = 3
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
vector_store_with_index = VectorStoreWithIndex(
|
||||
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
chunks = [
|
||||
|
@ -258,7 +258,7 @@ class TestVectorDBWithIndex:
|
|||
Chunk(content="Test 2", embedding=[0.4, 0.5, 0.6], metadata={}),
|
||||
]
|
||||
|
||||
await vector_db_with_index.insert_chunks(chunks)
|
||||
await vector_store_with_index.insert_chunks(chunks)
|
||||
|
||||
mock_inference_api.openai_embeddings.assert_not_called()
|
||||
mock_index.add_chunks.assert_called_once()
|
||||
|
@ -267,14 +267,14 @@ class TestVectorDBWithIndex:
|
|||
assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
|
||||
async def test_insert_chunks_with_invalid_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_dimension = 3
|
||||
mock_vector_db.embedding_model = "test-model with invalid embeddings"
|
||||
mock_vector_store = MagicMock()
|
||||
mock_vector_store.embedding_dimension = 3
|
||||
mock_vector_store.embedding_model = "test-model with invalid embeddings"
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
vector_store_with_index = VectorStoreWithIndex(
|
||||
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
# Verify Chunk raises ValueError for invalid embedding type
|
||||
|
@ -283,7 +283,7 @@ class TestVectorDBWithIndex:
|
|||
|
||||
# Verify Chunk raises ValueError for invalid embedding type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
|
||||
with pytest.raises(ValueError, match="Input should be a valid list"):
|
||||
await vector_db_with_index.insert_chunks(
|
||||
await vector_store_with_index.insert_chunks(
|
||||
[
|
||||
Chunk(content="Test 1", embedding=None, metadata={}),
|
||||
Chunk(content="Test 2", embedding="invalid_type", metadata={}),
|
||||
|
@ -292,7 +292,7 @@ class TestVectorDBWithIndex:
|
|||
|
||||
# Verify Chunk raises ValueError for invalid embedding element type in insert_chunks (i.e., Chunk errors before insert_chunks is called)
|
||||
with pytest.raises(ValueError, match=" Input should be a valid number, unable to parse string as a number "):
|
||||
await vector_db_with_index.insert_chunks(
|
||||
await vector_store_with_index.insert_chunks(
|
||||
Chunk(content="Test 1", embedding=[0.1, "string", 0.3], metadata={})
|
||||
)
|
||||
|
||||
|
@ -300,20 +300,20 @@ class TestVectorDBWithIndex:
|
|||
Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3, 0.4], metadata={}),
|
||||
]
|
||||
with pytest.raises(ValueError, match="has dimension 4, expected 3"):
|
||||
await vector_db_with_index.insert_chunks(chunks_wrong_dim)
|
||||
await vector_store_with_index.insert_chunks(chunks_wrong_dim)
|
||||
|
||||
mock_inference_api.openai_embeddings.assert_not_called()
|
||||
mock_index.add_chunks.assert_not_called()
|
||||
|
||||
async def test_insert_chunks_with_partially_precomputed_embeddings(self):
|
||||
mock_vector_db = MagicMock()
|
||||
mock_vector_db.embedding_model = "test-model with partial embeddings"
|
||||
mock_vector_db.embedding_dimension = 3
|
||||
mock_vector_store = MagicMock()
|
||||
mock_vector_store.embedding_model = "test-model with partial embeddings"
|
||||
mock_vector_store.embedding_dimension = 3
|
||||
mock_index = AsyncMock()
|
||||
mock_inference_api = AsyncMock()
|
||||
|
||||
vector_db_with_index = VectorDBWithIndex(
|
||||
vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api
|
||||
vector_store_with_index = VectorStoreWithIndex(
|
||||
vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api
|
||||
)
|
||||
|
||||
chunks = [
|
||||
|
@ -327,7 +327,7 @@ class TestVectorDBWithIndex:
|
|||
OpenAIEmbeddingData(embedding=[0.3, 0.3, 0.3], index=1),
|
||||
]
|
||||
|
||||
await vector_db_with_index.insert_chunks(chunks)
|
||||
await vector_store_with_index.insert_chunks(chunks)
|
||||
|
||||
# Verify openai_embeddings was called with correct params
|
||||
mock_inference_api.openai_embeddings.assert_called_once()
|
||||
|
|
|
@ -8,8 +8,8 @@
|
|||
import pytest
|
||||
|
||||
from llama_stack.apis.inference import Model
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.core.datatypes import VectorDBWithOwner
|
||||
from llama_stack.apis.vector_stores import VectorStore
|
||||
from llama_stack.core.datatypes import VectorStoreWithOwner
|
||||
from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig
|
||||
from llama_stack.core.store.registry import (
|
||||
KEY_FORMAT,
|
||||
|
@ -20,12 +20,12 @@ from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_b
|
|||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_vector_db():
|
||||
return VectorDB(
|
||||
identifier="test_vector_db",
|
||||
def sample_vector_store():
|
||||
return VectorStore(
|
||||
identifier="test_vector_store",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id="test_vector_db",
|
||||
provider_resource_id="test_vector_store",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
|
@ -45,17 +45,17 @@ async def test_registry_initialization(disk_dist_registry):
|
|||
assert result is None
|
||||
|
||||
|
||||
async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_model):
|
||||
print(f"Registering {sample_vector_db}")
|
||||
await disk_dist_registry.register(sample_vector_db)
|
||||
async def test_basic_registration(disk_dist_registry, sample_vector_store, sample_model):
|
||||
print(f"Registering {sample_vector_store}")
|
||||
await disk_dist_registry.register(sample_vector_store)
|
||||
print(f"Registering {sample_model}")
|
||||
await disk_dist_registry.register(sample_model)
|
||||
print("Getting vector_db")
|
||||
result_vector_db = await disk_dist_registry.get("vector_db", "test_vector_db")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == sample_vector_db.identifier
|
||||
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
||||
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
||||
print("Getting vector_store")
|
||||
result_vector_store = await disk_dist_registry.get("vector_store", "test_vector_store")
|
||||
assert result_vector_store is not None
|
||||
assert result_vector_store.identifier == sample_vector_store.identifier
|
||||
assert result_vector_store.embedding_model == sample_vector_store.embedding_model
|
||||
assert result_vector_store.provider_id == sample_vector_store.provider_id
|
||||
|
||||
result_model = await disk_dist_registry.get("model", "test_model")
|
||||
assert result_model is not None
|
||||
|
@ -63,11 +63,11 @@ async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_m
|
|||
assert result_model.provider_id == sample_model.provider_id
|
||||
|
||||
|
||||
async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, sample_model):
|
||||
async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_store, sample_model):
|
||||
# First populate the disk registry
|
||||
disk_registry = DiskDistributionRegistry(sqlite_kvstore)
|
||||
await disk_registry.initialize()
|
||||
await disk_registry.register(sample_vector_db)
|
||||
await disk_registry.register(sample_vector_store)
|
||||
await disk_registry.register(sample_model)
|
||||
|
||||
# Test cached version loads from disk
|
||||
|
@ -79,29 +79,29 @@ async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db,
|
|||
)
|
||||
await cached_registry.initialize()
|
||||
|
||||
result_vector_db = await cached_registry.get("vector_db", "test_vector_db")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == sample_vector_db.identifier
|
||||
assert result_vector_db.embedding_model == sample_vector_db.embedding_model
|
||||
assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension
|
||||
assert result_vector_db.provider_id == sample_vector_db.provider_id
|
||||
result_vector_store = await cached_registry.get("vector_store", "test_vector_store")
|
||||
assert result_vector_store is not None
|
||||
assert result_vector_store.identifier == sample_vector_store.identifier
|
||||
assert result_vector_store.embedding_model == sample_vector_store.embedding_model
|
||||
assert result_vector_store.embedding_dimension == sample_vector_store.embedding_dimension
|
||||
assert result_vector_store.provider_id == sample_vector_store.provider_id
|
||||
|
||||
|
||||
async def test_cached_registry_updates(cached_disk_dist_registry):
|
||||
new_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
new_vector_store = VectorStore(
|
||||
identifier="test_vector_store_2",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_resource_id="test_vector_store_2",
|
||||
provider_id="baz",
|
||||
)
|
||||
await cached_disk_dist_registry.register(new_vector_db)
|
||||
await cached_disk_dist_registry.register(new_vector_store)
|
||||
|
||||
# Verify in cache
|
||||
result_vector_db = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == new_vector_db.identifier
|
||||
assert result_vector_db.provider_id == new_vector_db.provider_id
|
||||
result_vector_store = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2")
|
||||
assert result_vector_store is not None
|
||||
assert result_vector_store.identifier == new_vector_store.identifier
|
||||
assert result_vector_store.provider_id == new_vector_store.provider_id
|
||||
|
||||
# Verify persisted to disk
|
||||
db_path = cached_disk_dist_registry.kvstore.db_path
|
||||
|
@ -111,87 +111,89 @@ async def test_cached_registry_updates(cached_disk_dist_registry):
|
|||
await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry"))
|
||||
)
|
||||
await new_registry.initialize()
|
||||
result_vector_db = await new_registry.get("vector_db", "test_vector_db_2")
|
||||
assert result_vector_db is not None
|
||||
assert result_vector_db.identifier == new_vector_db.identifier
|
||||
assert result_vector_db.provider_id == new_vector_db.provider_id
|
||||
result_vector_store = await new_registry.get("vector_store", "test_vector_store_2")
|
||||
assert result_vector_store is not None
|
||||
assert result_vector_store.identifier == new_vector_store.identifier
|
||||
assert result_vector_store.provider_id == new_vector_store.provider_id
|
||||
|
||||
|
||||
async def test_duplicate_provider_registration(cached_disk_dist_registry):
|
||||
original_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
original_vector_store = VectorStore(
|
||||
identifier="test_vector_store_2",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_resource_id="test_vector_store_2",
|
||||
provider_id="baz",
|
||||
)
|
||||
assert await cached_disk_dist_registry.register(original_vector_db)
|
||||
assert await cached_disk_dist_registry.register(original_vector_store)
|
||||
|
||||
duplicate_vector_db = VectorDB(
|
||||
identifier="test_vector_db_2",
|
||||
duplicate_vector_store = VectorStore(
|
||||
identifier="test_vector_store_2",
|
||||
embedding_model="different-model",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id="test_vector_db_2",
|
||||
provider_resource_id="test_vector_store_2",
|
||||
provider_id="baz", # Same provider_id
|
||||
)
|
||||
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db_2' already exists"):
|
||||
await cached_disk_dist_registry.register(duplicate_vector_db)
|
||||
with pytest.raises(
|
||||
ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store_2' already exists"
|
||||
):
|
||||
await cached_disk_dist_registry.register(duplicate_vector_store)
|
||||
|
||||
result = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2")
|
||||
result = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2")
|
||||
assert result is not None
|
||||
assert result.embedding_model == original_vector_db.embedding_model # Original values preserved
|
||||
assert result.embedding_model == original_vector_store.embedding_model # Original values preserved
|
||||
|
||||
|
||||
async def test_get_all_objects(cached_disk_dist_registry):
|
||||
# Create multiple test banks
|
||||
# Create multiple test banks
|
||||
test_vector_dbs = [
|
||||
VectorDB(
|
||||
identifier=f"test_vector_db_{i}",
|
||||
test_vector_stores = [
|
||||
VectorStore(
|
||||
identifier=f"test_vector_store_{i}",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id=f"test_vector_db_{i}",
|
||||
provider_resource_id=f"test_vector_store_{i}",
|
||||
provider_id=f"provider_{i}",
|
||||
)
|
||||
for i in range(3)
|
||||
]
|
||||
|
||||
# Register all vector_dbs
|
||||
for vector_db in test_vector_dbs:
|
||||
await cached_disk_dist_registry.register(vector_db)
|
||||
# Register all vector_stores
|
||||
for vector_store in test_vector_stores:
|
||||
await cached_disk_dist_registry.register(vector_store)
|
||||
|
||||
# Test get_all retrieval
|
||||
all_results = await cached_disk_dist_registry.get_all()
|
||||
assert len(all_results) == 3
|
||||
|
||||
# Verify each vector_db was stored correctly
|
||||
for original_vector_db in test_vector_dbs:
|
||||
matching_vector_dbs = [v for v in all_results if v.identifier == original_vector_db.identifier]
|
||||
assert len(matching_vector_dbs) == 1
|
||||
stored_vector_db = matching_vector_dbs[0]
|
||||
assert stored_vector_db.embedding_model == original_vector_db.embedding_model
|
||||
assert stored_vector_db.provider_id == original_vector_db.provider_id
|
||||
assert stored_vector_db.embedding_dimension == original_vector_db.embedding_dimension
|
||||
# Verify each vector_store was stored correctly
|
||||
for original_vector_store in test_vector_stores:
|
||||
matching_vector_stores = [v for v in all_results if v.identifier == original_vector_store.identifier]
|
||||
assert len(matching_vector_stores) == 1
|
||||
stored_vector_store = matching_vector_stores[0]
|
||||
assert stored_vector_store.embedding_model == original_vector_store.embedding_model
|
||||
assert stored_vector_store.provider_id == original_vector_store.provider_id
|
||||
assert stored_vector_store.embedding_dimension == original_vector_store.embedding_dimension
|
||||
|
||||
|
||||
async def test_parse_registry_values_error_handling(sqlite_kvstore):
|
||||
valid_db = VectorDB(
|
||||
identifier="valid_vector_db",
|
||||
valid_db = VectorStore(
|
||||
identifier="valid_vector_store",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
provider_resource_id="valid_vector_db",
|
||||
provider_resource_id="valid_vector_store",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
await sqlite_kvstore.set(
|
||||
KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"), valid_db.model_dump_json()
|
||||
KEY_FORMAT.format(type="vector_store", identifier="valid_vector_store"), valid_db.model_dump_json()
|
||||
)
|
||||
|
||||
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"), "{not valid json")
|
||||
await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_store", identifier="corrupted_json"), "{not valid json")
|
||||
|
||||
await sqlite_kvstore.set(
|
||||
KEY_FORMAT.format(type="vector_db", identifier="missing_fields"),
|
||||
'{"type": "vector_db", "identifier": "missing_fields"}',
|
||||
KEY_FORMAT.format(type="vector_store", identifier="missing_fields"),
|
||||
'{"type": "vector_store", "identifier": "missing_fields"}',
|
||||
)
|
||||
|
||||
test_registry = DiskDistributionRegistry(sqlite_kvstore)
|
||||
|
@ -202,18 +204,18 @@ async def test_parse_registry_values_error_handling(sqlite_kvstore):
|
|||
|
||||
# Should have filtered out the invalid entries
|
||||
assert len(all_objects) == 1
|
||||
assert all_objects[0].identifier == "valid_vector_db"
|
||||
assert all_objects[0].identifier == "valid_vector_store"
|
||||
|
||||
# Check that the get method also handles errors correctly
|
||||
invalid_obj = await test_registry.get("vector_db", "corrupted_json")
|
||||
invalid_obj = await test_registry.get("vector_store", "corrupted_json")
|
||||
assert invalid_obj is None
|
||||
|
||||
invalid_obj = await test_registry.get("vector_db", "missing_fields")
|
||||
invalid_obj = await test_registry.get("vector_store", "missing_fields")
|
||||
assert invalid_obj is None
|
||||
|
||||
|
||||
async def test_cached_registry_error_handling(sqlite_kvstore):
|
||||
valid_db = VectorDB(
|
||||
valid_db = VectorStore(
|
||||
identifier="valid_cached_db",
|
||||
embedding_model="nomic-embed-text-v1.5",
|
||||
embedding_dimension=768,
|
||||
|
@ -222,12 +224,12 @@ async def test_cached_registry_error_handling(sqlite_kvstore):
|
|||
)
|
||||
|
||||
await sqlite_kvstore.set(
|
||||
KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"), valid_db.model_dump_json()
|
||||
KEY_FORMAT.format(type="vector_store", identifier="valid_cached_db"), valid_db.model_dump_json()
|
||||
)
|
||||
|
||||
await sqlite_kvstore.set(
|
||||
KEY_FORMAT.format(type="vector_db", identifier="invalid_cached_db"),
|
||||
'{"type": "vector_db", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string
|
||||
KEY_FORMAT.format(type="vector_store", identifier="invalid_cached_db"),
|
||||
'{"type": "vector_store", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string
|
||||
)
|
||||
|
||||
cached_registry = CachedDiskDistributionRegistry(sqlite_kvstore)
|
||||
|
@ -237,63 +239,65 @@ async def test_cached_registry_error_handling(sqlite_kvstore):
|
|||
assert len(all_objects) == 1
|
||||
assert all_objects[0].identifier == "valid_cached_db"
|
||||
|
||||
invalid_obj = await cached_registry.get("vector_db", "invalid_cached_db")
|
||||
invalid_obj = await cached_registry.get("vector_store", "invalid_cached_db")
|
||||
assert invalid_obj is None
|
||||
|
||||
|
||||
async def test_double_registration_identical_objects(disk_dist_registry):
|
||||
"""Test that registering identical objects succeeds (idempotent)."""
|
||||
vector_db = VectorDBWithOwner(
|
||||
identifier="test_vector_db",
|
||||
vector_store = VectorStoreWithOwner(
|
||||
identifier="test_vector_store",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db",
|
||||
provider_resource_id="test_vector_store",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
# First registration should succeed
|
||||
result1 = await disk_dist_registry.register(vector_db)
|
||||
result1 = await disk_dist_registry.register(vector_store)
|
||||
assert result1 is True
|
||||
|
||||
# Second registration of identical object should also succeed (idempotent)
|
||||
result2 = await disk_dist_registry.register(vector_db)
|
||||
result2 = await disk_dist_registry.register(vector_store)
|
||||
assert result2 is True
|
||||
|
||||
# Verify object exists and is unchanged
|
||||
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
|
||||
retrieved = await disk_dist_registry.get("vector_store", "test_vector_store")
|
||||
assert retrieved is not None
|
||||
assert retrieved.identifier == vector_db.identifier
|
||||
assert retrieved.embedding_model == vector_db.embedding_model
|
||||
assert retrieved.identifier == vector_store.identifier
|
||||
assert retrieved.embedding_model == vector_store.embedding_model
|
||||
|
||||
|
||||
async def test_double_registration_different_objects(disk_dist_registry):
|
||||
"""Test that registering different objects with same identifier fails."""
|
||||
vector_db1 = VectorDBWithOwner(
|
||||
identifier="test_vector_db",
|
||||
vector_store1 = VectorStoreWithOwner(
|
||||
identifier="test_vector_store",
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db",
|
||||
provider_resource_id="test_vector_store",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
vector_db2 = VectorDBWithOwner(
|
||||
identifier="test_vector_db", # Same identifier
|
||||
vector_store2 = VectorStoreWithOwner(
|
||||
identifier="test_vector_store", # Same identifier
|
||||
embedding_model="different-model", # Different embedding model
|
||||
embedding_dimension=384,
|
||||
provider_resource_id="test_vector_db",
|
||||
provider_resource_id="test_vector_store",
|
||||
provider_id="test-provider",
|
||||
)
|
||||
|
||||
# First registration should succeed
|
||||
result1 = await disk_dist_registry.register(vector_db1)
|
||||
result1 = await disk_dist_registry.register(vector_store1)
|
||||
assert result1 is True
|
||||
|
||||
# Second registration with different data should fail
|
||||
with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db' already exists"):
|
||||
await disk_dist_registry.register(vector_db2)
|
||||
with pytest.raises(
|
||||
ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store' already exists"
|
||||
):
|
||||
await disk_dist_registry.register(vector_store2)
|
||||
|
||||
# Verify original object is unchanged
|
||||
retrieved = await disk_dist_registry.get("vector_db", "test_vector_db")
|
||||
retrieved = await disk_dist_registry.get("vector_store", "test_vector_store")
|
||||
assert retrieved is not None
|
||||
assert retrieved.embedding_model == "all-MiniLM-L6-v2" # Original value
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ class TestTranslateException:
|
|||
self.identifier = identifier
|
||||
self.owner = owner
|
||||
|
||||
resource = MockResource("vector_db", "test-db")
|
||||
resource = MockResource("vector_store", "test-db")
|
||||
|
||||
exc = AccessDeniedError("create", resource, user)
|
||||
result = translate_exception(exc)
|
||||
|
@ -49,7 +49,7 @@ class TestTranslateException:
|
|||
assert isinstance(result, HTTPException)
|
||||
assert result.status_code == 403
|
||||
assert "test-user" in result.detail
|
||||
assert "vector_db::test-db" in result.detail
|
||||
assert "vector_store::test-db" in result.detail
|
||||
assert "create" in result.detail
|
||||
assert "roles=['user']" in result.detail
|
||||
assert "teams=['dev']" in result.detail
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue