chore: Refactor OpenAIChatCompletion's to be loaded from yaml

Future tests can then re-use the content

Signed-off-by: Derek Higgins <derekh@redhat.com>
This commit is contained in:
Derek Higgins 2025-05-02 11:07:58 +01:00 committed by Ben Browning
parent fe5f5e530c
commit 1369b5858e
4 changed files with 114 additions and 63 deletions

View file

@ -0,0 +1,74 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import yaml
from llama_stack.apis.inference.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionToolCall,
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
)
def load_chat_completion_fixture(filename: str) -> OpenAIChatCompletion:
"""
Load a YAML fixture file and convert it to an OpenAIChatCompletion object.
Args:
filename: Name of the YAML file (without path)
Returns:
OpenAIChatCompletion object
"""
fixtures_dir = os.path.dirname(os.path.abspath(__file__))
fixture_path = os.path.join(fixtures_dir, filename)
with open(fixture_path) as f:
data = yaml.safe_load(f)
choices = []
for choice_data in data.get("choices", []):
message_data = choice_data.get("message", {})
# Handle tool calls if present
tool_calls = None
if "tool_calls" in message_data:
tool_calls = []
for tool_call_data in message_data.get("tool_calls", []):
function_data = tool_call_data.get("function", {})
function = OpenAIChatCompletionToolCallFunction(
name=function_data.get("name"),
arguments=function_data.get("arguments"),
)
tool_call = OpenAIChatCompletionToolCall(
id=tool_call_data.get("id"),
type=tool_call_data.get("type"),
function=function,
)
tool_calls.append(tool_call)
message = OpenAIAssistantMessageParam(
content=message_data.get("content"),
tool_calls=tool_calls,
)
choice = OpenAIChoice(
message=message,
finish_reason=choice_data.get("finish_reason"),
index=choice_data.get("index", 0),
)
choices.append(choice)
return OpenAIChatCompletion(
id=data.get("id"),
choices=choices,
created=data.get("created"),
model=data.get("model"),
)

View file

@ -0,0 +1,8 @@
id: chat-completion-123
choices:
- message:
content: "Dublin"
finish_reason: stop
index: 0
created: 1234567890
model: meta-llama/Llama-3.1-8B-Instruct

View file

@ -0,0 +1,13 @@
id: chat-completion-123
choices:
- message:
tool_calls:
- id: tool_call_123
type: function
function:
name: web_search
arguments: '{"query":"What is the capital of Ireland?"}'
finish_reason: stop
index: 0
created: 1234567890
model: meta-llama/Llama-3.1-8B-Instruct

View file

@ -13,11 +13,6 @@ from llama_stack.apis.agents.openai_responses import (
OpenAIResponseOutputMessage,
)
from llama_stack.apis.inference.inference import (
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionToolCall,
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
@ -25,6 +20,7 @@ from llama_stack.providers.inline.agents.meta_reference.openai_responses import
OpenAIResponsesImpl,
)
from llama_stack.providers.utils.kvstore import KVStore
from tests.unit.providers.agents.meta_reference.fixtures import load_chat_completion_fixture
@pytest.fixture
@ -65,21 +61,11 @@ def openai_responses_impl(mock_kvstore, mock_inference_api, mock_tool_groups_api
async def test_create_openai_response_with_string_input(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with a simple string input."""
# Setup
input_text = "Hello, world!"
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
mock_chat_completion = OpenAIChatCompletion(
id="chat-completion-123",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(content="Hello! How can I help you?"),
finish_reason="stop",
index=0,
)
],
created=1234567890,
model=model,
)
# Load the chat completion fixture
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
# Execute
@ -92,7 +78,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
# Verify
mock_inference_api.openai_chat_completion.assert_called_once_with(
model=model,
messages=[OpenAIUserMessageParam(role="user", content="Hello, world!", name=None)],
messages=[OpenAIUserMessageParam(role="user", content="What is the capital of Ireland?", name=None)],
tools=None,
stream=False,
temperature=0.1,
@ -101,54 +87,24 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
assert result.model == model
assert len(result.output) == 1
assert isinstance(result.output[0], OpenAIResponseOutputMessage)
assert result.output[0].content[0].text == "Hello! How can I help you?"
assert result.output[0].content[0].text == "Dublin"
@pytest.mark.asyncio
async def test_create_openai_response_with_string_input_with_tools(openai_responses_impl, mock_inference_api):
"""Test creating an OpenAI response with a simple string input and tools."""
# Setup
input_text = "What was the score of todays game?"
input_text = "What is the capital of Ireland?"
model = "meta-llama/Llama-3.1-8B-Instruct"
mock_chat_completions = [
OpenAIChatCompletion(
id="chat-completion-123",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(
tool_calls=[
OpenAIChatCompletionToolCall(
id="tool_call_123",
type="function",
function=OpenAIChatCompletionToolCallFunction(
name="web_search", arguments='{"query":"What was the score of todays game?"}'
),
)
],
),
finish_reason="stop",
index=0,
)
],
created=1234567890,
model=model,
),
OpenAIChatCompletion(
id="chat-completion-123",
choices=[
OpenAIChoice(
message=OpenAIAssistantMessageParam(content="The score of todays game was 10-12"),
finish_reason="stop",
index=0,
)
],
created=1234567890,
model=model,
),
]
# Load the chat completion fixtures
tool_call_completion = load_chat_completion_fixture("tool_call_completion.yaml")
tool_response_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
mock_inference_api.openai_chat_completion.side_effect = mock_chat_completions
mock_inference_api.openai_chat_completion.side_effect = [
tool_call_completion,
tool_response_completion,
]
openai_responses_impl.tool_groups_api.get_tool.return_value = Tool(
identifier="web_search",
@ -163,7 +119,7 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
openai_responses_impl.tool_runtime_api.invoke_tool.return_value = ToolInvocationResult(
status="completed",
content="The score of todays game was 10-12",
content="Dublin",
)
# Execute
@ -180,18 +136,18 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
# Verify
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
assert first_call.kwargs["messages"][0].content == "What was the score of todays game?"
assert first_call.kwargs["messages"][0].content == "What is the capital of Ireland?"
assert first_call.kwargs["tools"] is not None
assert first_call.kwargs["temperature"] == 0.1
second_call = mock_inference_api.openai_chat_completion.call_args_list[1]
assert second_call.kwargs["messages"][-1].content == "The score of todays game was 10-12"
assert second_call.kwargs["messages"][-1].content == "Dublin"
assert second_call.kwargs["temperature"] == 0.1
openai_responses_impl.tool_groups_api.get_tool.assert_called_once_with("web_search")
openai_responses_impl.tool_runtime_api.invoke_tool.assert_called_once_with(
tool_name="web_search",
kwargs={"query": "What was the score of todays game?"},
kwargs={"query": "What is the capital of Ireland?"},
)
openai_responses_impl.persistence_store.set.assert_called_once()
@ -199,4 +155,4 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
# Check that we got the content from our mocked tool execution result
assert len(result.output) >= 1
assert isinstance(result.output[1], OpenAIResponseOutputMessage)
assert result.output[1].content[0].text == "The score of todays game was 10-12"
assert result.output[1].content[0].text == "Dublin"