mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-08-01 16:24:44 +00:00
chore: Refactor OpenAIChatCompletion's to be loaded from yaml
Future tests can then re-use the content Signed-off-by: Derek Higgins <derekh@redhat.com>
This commit is contained in:
parent
fe5f5e530c
commit
1369b5858e
4 changed files with 114 additions and 63 deletions
|
@ -0,0 +1,74 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
|
||||
import yaml
|
||||
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
)
|
||||
|
||||
|
||||
def load_chat_completion_fixture(filename: str) -> OpenAIChatCompletion:
|
||||
"""
|
||||
Load a YAML fixture file and convert it to an OpenAIChatCompletion object.
|
||||
|
||||
Args:
|
||||
filename: Name of the YAML file (without path)
|
||||
|
||||
Returns:
|
||||
OpenAIChatCompletion object
|
||||
"""
|
||||
fixtures_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
fixture_path = os.path.join(fixtures_dir, filename)
|
||||
|
||||
with open(fixture_path) as f:
|
||||
data = yaml.safe_load(f)
|
||||
|
||||
choices = []
|
||||
for choice_data in data.get("choices", []):
|
||||
message_data = choice_data.get("message", {})
|
||||
|
||||
# Handle tool calls if present
|
||||
tool_calls = None
|
||||
if "tool_calls" in message_data:
|
||||
tool_calls = []
|
||||
for tool_call_data in message_data.get("tool_calls", []):
|
||||
function_data = tool_call_data.get("function", {})
|
||||
function = OpenAIChatCompletionToolCallFunction(
|
||||
name=function_data.get("name"),
|
||||
arguments=function_data.get("arguments"),
|
||||
)
|
||||
tool_call = OpenAIChatCompletionToolCall(
|
||||
id=tool_call_data.get("id"),
|
||||
type=tool_call_data.get("type"),
|
||||
function=function,
|
||||
)
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
message = OpenAIAssistantMessageParam(
|
||||
content=message_data.get("content"),
|
||||
tool_calls=tool_calls,
|
||||
)
|
||||
|
||||
choice = OpenAIChoice(
|
||||
message=message,
|
||||
finish_reason=choice_data.get("finish_reason"),
|
||||
index=choice_data.get("index", 0),
|
||||
)
|
||||
choices.append(choice)
|
||||
|
||||
return OpenAIChatCompletion(
|
||||
id=data.get("id"),
|
||||
choices=choices,
|
||||
created=data.get("created"),
|
||||
model=data.get("model"),
|
||||
)
|
|
@ -0,0 +1,8 @@
|
|||
id: chat-completion-123
|
||||
choices:
|
||||
- message:
|
||||
content: "Dublin"
|
||||
finish_reason: stop
|
||||
index: 0
|
||||
created: 1234567890
|
||||
model: meta-llama/Llama-3.1-8B-Instruct
|
|
@ -0,0 +1,13 @@
|
|||
id: chat-completion-123
|
||||
choices:
|
||||
- message:
|
||||
tool_calls:
|
||||
- id: tool_call_123
|
||||
type: function
|
||||
function:
|
||||
name: web_search
|
||||
arguments: '{"query":"What is the capital of Ireland?"}'
|
||||
finish_reason: stop
|
||||
index: 0
|
||||
created: 1234567890
|
||||
model: meta-llama/Llama-3.1-8B-Instruct
|
|
@ -13,11 +13,6 @@ from llama_stack.apis.agents.openai_responses import (
|
|||
OpenAIResponseOutputMessage,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import (
|
||||
OpenAIAssistantMessageParam,
|
||||
OpenAIChatCompletion,
|
||||
OpenAIChatCompletionToolCall,
|
||||
OpenAIChatCompletionToolCallFunction,
|
||||
OpenAIChoice,
|
||||
OpenAIUserMessageParam,
|
||||
)
|
||||
from llama_stack.apis.tools.tools import Tool, ToolGroups, ToolInvocationResult, ToolParameter, ToolRuntime
|
||||
|
@ -25,6 +20,7 @@ from llama_stack.providers.inline.agents.meta_reference.openai_responses import
|
|||
OpenAIResponsesImpl,
|
||||
)
|
||||
from llama_stack.providers.utils.kvstore import KVStore
|
||||
from tests.unit.providers.agents.meta_reference.fixtures import load_chat_completion_fixture
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -65,21 +61,11 @@ def openai_responses_impl(mock_kvstore, mock_inference_api, mock_tool_groups_api
|
|||
async def test_create_openai_response_with_string_input(openai_responses_impl, mock_inference_api):
|
||||
"""Test creating an OpenAI response with a simple string input."""
|
||||
# Setup
|
||||
input_text = "Hello, world!"
|
||||
input_text = "What is the capital of Ireland?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
mock_chat_completion = OpenAIChatCompletion(
|
||||
id="chat-completion-123",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(content="Hello! How can I help you?"),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=1234567890,
|
||||
model=model,
|
||||
)
|
||||
# Load the chat completion fixture
|
||||
mock_chat_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
mock_inference_api.openai_chat_completion.return_value = mock_chat_completion
|
||||
|
||||
# Execute
|
||||
|
@ -92,7 +78,7 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
# Verify
|
||||
mock_inference_api.openai_chat_completion.assert_called_once_with(
|
||||
model=model,
|
||||
messages=[OpenAIUserMessageParam(role="user", content="Hello, world!", name=None)],
|
||||
messages=[OpenAIUserMessageParam(role="user", content="What is the capital of Ireland?", name=None)],
|
||||
tools=None,
|
||||
stream=False,
|
||||
temperature=0.1,
|
||||
|
@ -101,54 +87,24 @@ async def test_create_openai_response_with_string_input(openai_responses_impl, m
|
|||
assert result.model == model
|
||||
assert len(result.output) == 1
|
||||
assert isinstance(result.output[0], OpenAIResponseOutputMessage)
|
||||
assert result.output[0].content[0].text == "Hello! How can I help you?"
|
||||
assert result.output[0].content[0].text == "Dublin"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_openai_response_with_string_input_with_tools(openai_responses_impl, mock_inference_api):
|
||||
"""Test creating an OpenAI response with a simple string input and tools."""
|
||||
# Setup
|
||||
input_text = "What was the score of todays game?"
|
||||
input_text = "What is the capital of Ireland?"
|
||||
model = "meta-llama/Llama-3.1-8B-Instruct"
|
||||
|
||||
mock_chat_completions = [
|
||||
OpenAIChatCompletion(
|
||||
id="chat-completion-123",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(
|
||||
tool_calls=[
|
||||
OpenAIChatCompletionToolCall(
|
||||
id="tool_call_123",
|
||||
type="function",
|
||||
function=OpenAIChatCompletionToolCallFunction(
|
||||
name="web_search", arguments='{"query":"What was the score of todays game?"}'
|
||||
),
|
||||
)
|
||||
],
|
||||
),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=1234567890,
|
||||
model=model,
|
||||
),
|
||||
OpenAIChatCompletion(
|
||||
id="chat-completion-123",
|
||||
choices=[
|
||||
OpenAIChoice(
|
||||
message=OpenAIAssistantMessageParam(content="The score of todays game was 10-12"),
|
||||
finish_reason="stop",
|
||||
index=0,
|
||||
)
|
||||
],
|
||||
created=1234567890,
|
||||
model=model,
|
||||
),
|
||||
]
|
||||
# Load the chat completion fixtures
|
||||
tool_call_completion = load_chat_completion_fixture("tool_call_completion.yaml")
|
||||
tool_response_completion = load_chat_completion_fixture("simple_chat_completion.yaml")
|
||||
|
||||
mock_inference_api.openai_chat_completion.side_effect = mock_chat_completions
|
||||
mock_inference_api.openai_chat_completion.side_effect = [
|
||||
tool_call_completion,
|
||||
tool_response_completion,
|
||||
]
|
||||
|
||||
openai_responses_impl.tool_groups_api.get_tool.return_value = Tool(
|
||||
identifier="web_search",
|
||||
|
@ -163,7 +119,7 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
|
|||
|
||||
openai_responses_impl.tool_runtime_api.invoke_tool.return_value = ToolInvocationResult(
|
||||
status="completed",
|
||||
content="The score of todays game was 10-12",
|
||||
content="Dublin",
|
||||
)
|
||||
|
||||
# Execute
|
||||
|
@ -180,18 +136,18 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
|
|||
|
||||
# Verify
|
||||
first_call = mock_inference_api.openai_chat_completion.call_args_list[0]
|
||||
assert first_call.kwargs["messages"][0].content == "What was the score of todays game?"
|
||||
assert first_call.kwargs["messages"][0].content == "What is the capital of Ireland?"
|
||||
assert first_call.kwargs["tools"] is not None
|
||||
assert first_call.kwargs["temperature"] == 0.1
|
||||
|
||||
second_call = mock_inference_api.openai_chat_completion.call_args_list[1]
|
||||
assert second_call.kwargs["messages"][-1].content == "The score of todays game was 10-12"
|
||||
assert second_call.kwargs["messages"][-1].content == "Dublin"
|
||||
assert second_call.kwargs["temperature"] == 0.1
|
||||
|
||||
openai_responses_impl.tool_groups_api.get_tool.assert_called_once_with("web_search")
|
||||
openai_responses_impl.tool_runtime_api.invoke_tool.assert_called_once_with(
|
||||
tool_name="web_search",
|
||||
kwargs={"query": "What was the score of todays game?"},
|
||||
kwargs={"query": "What is the capital of Ireland?"},
|
||||
)
|
||||
|
||||
openai_responses_impl.persistence_store.set.assert_called_once()
|
||||
|
@ -199,4 +155,4 @@ async def test_create_openai_response_with_string_input_with_tools(openai_respon
|
|||
# Check that we got the content from our mocked tool execution result
|
||||
assert len(result.output) >= 1
|
||||
assert isinstance(result.output[1], OpenAIResponseOutputMessage)
|
||||
assert result.output[1].content[0].text == "The score of todays game was 10-12"
|
||||
assert result.output[1].content[0].text == "Dublin"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue