mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-09 13:14:39 +00:00
feat(tools): use { input_schema, output_schema } for ToolDefinition
This commit is contained in:
parent
42414a1a1b
commit
139320e19f
20 changed files with 1989 additions and 386 deletions
369
tests/integration/inference/test_tools_with_schemas.py
Normal file
369
tests/integration/inference/test_tools_with_schemas.py
Normal file
|
@ -0,0 +1,369 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Integration tests for inference/chat completion with JSON Schema-based tools.
|
||||
Tests that tools pass through correctly to various LLM providers.
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack import LlamaStackAsLibraryClient
|
||||
from llama_stack.models.llama.datatypes import ToolDefinition
|
||||
from tests.common.mcp import make_mcp_server
|
||||
|
||||
AUTH_TOKEN = "test-token"
|
||||
|
||||
|
||||
class TestChatCompletionWithTools:
|
||||
"""Test chat completion with tools that have complex schemas."""
|
||||
|
||||
def test_simple_tool_call(self, llama_stack_client, text_model_id):
|
||||
"""Test basic tool calling with simple input schema."""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get weather for a location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string", "description": "City name"}},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "What's the weather in San Francisco?"}],
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
|
||||
def test_tool_with_complex_schema(self, llama_stack_client, text_model_id):
|
||||
"""Test tool calling with complex schema including $ref and $defs."""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "book_flight",
|
||||
"description": "Book a flight",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"flight": {"$ref": "#/$defs/FlightInfo"},
|
||||
"passenger": {"$ref": "#/$defs/Passenger"},
|
||||
},
|
||||
"required": ["flight", "passenger"],
|
||||
"$defs": {
|
||||
"FlightInfo": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"from": {"type": "string"},
|
||||
"to": {"type": "string"},
|
||||
"date": {"type": "string", "format": "date"},
|
||||
},
|
||||
},
|
||||
"Passenger": {
|
||||
"type": "object",
|
||||
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Book a flight from SFO to JFK for John Doe"}],
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
# The key test: No errors during schema processing
|
||||
# The LLM received a valid, complete schema with $ref/$defs
|
||||
assert response is not None
|
||||
|
||||
|
||||
class TestOpenAICompatibility:
|
||||
"""Test OpenAI-compatible endpoints with new schema format."""
|
||||
|
||||
def test_openai_chat_completion_with_tools(self, compat_client, text_model_id):
|
||||
"""Test OpenAI-compatible chat completion with tools."""
|
||||
from openai import OpenAI
|
||||
|
||||
if not isinstance(compat_client, OpenAI):
|
||||
pytest.skip("OpenAI client required")
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get weather information",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string", "description": "City name"}},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = compat_client.chat.completions.create(
|
||||
model=text_model_id, messages=[{"role": "user", "content": "What's the weather in Tokyo?"}], tools=tools
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert response.choices is not None
|
||||
|
||||
def test_openai_format_preserves_complex_schemas(self, compat_client, text_model_id):
|
||||
"""Test that complex schemas work through OpenAI-compatible API."""
|
||||
from openai import OpenAI
|
||||
|
||||
if not isinstance(compat_client, OpenAI):
|
||||
pytest.skip("OpenAI client required")
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "process_data",
|
||||
"description": "Process structured data",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
|
||||
"$defs": {
|
||||
"DataObject": {
|
||||
"type": "object",
|
||||
"properties": {"values": {"type": "array", "items": {"type": "number"}}},
|
||||
}
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = compat_client.chat.completions.create(
|
||||
model=text_model_id, messages=[{"role": "user", "content": "Process this data"}], tools=tools
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
|
||||
|
||||
class TestMCPToolsInChatCompletion:
|
||||
"""Test using MCP tools in chat completion."""
|
||||
|
||||
@pytest.fixture
|
||||
def mcp_with_schemas(self):
|
||||
"""MCP server for chat completion tests."""
|
||||
from mcp.server.fastmcp import Context
|
||||
|
||||
async def calculate(x: float, y: float, operation: str, ctx: Context) -> float:
|
||||
ops = {"add": x + y, "sub": x - y, "mul": x * y, "div": x / y if y != 0 else None}
|
||||
return ops.get(operation, 0)
|
||||
|
||||
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools={"calculate": calculate}) as server:
|
||||
yield server
|
||||
|
||||
def test_mcp_tools_in_inference(self, llama_stack_client, text_model_id, mcp_with_schemas):
|
||||
"""Test that MCP tools can be used in inference."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::calc"
|
||||
uri = mcp_with_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Get the tools from MCP
|
||||
tools_response = llama_stack_client.tool_runtime.list_runtime_tools(
|
||||
tool_group_id=test_toolgroup_id,
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
# Convert to OpenAI format for inference
|
||||
tools = []
|
||||
for tool in tools_response.data:
|
||||
tools.append(
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.name,
|
||||
"description": tool.description,
|
||||
"parameters": tool.input_schema if hasattr(tool, "input_schema") else {},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
# Use in chat completion
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Calculate 5 + 3"}],
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
# Schema should have been passed through correctly
|
||||
assert response is not None
|
||||
|
||||
|
||||
class TestProviderSpecificBehavior:
|
||||
"""Test provider-specific handling of schemas."""
|
||||
|
||||
def test_openai_provider_drops_output_schema(self, llama_stack_client, text_model_id):
|
||||
"""Test that OpenAI provider doesn't send output_schema (API limitation)."""
|
||||
# This is more of a documentation test
|
||||
# OpenAI API doesn't support output schemas, so we drop them
|
||||
|
||||
_tool = ToolDefinition(
|
||||
tool_name="test",
|
||||
input_schema={"type": "object", "properties": {"x": {"type": "string"}}},
|
||||
output_schema={"type": "object", "properties": {"y": {"type": "number"}}},
|
||||
)
|
||||
|
||||
# When this tool is sent to OpenAI provider, output_schema is dropped
|
||||
# But input_schema is preserved
|
||||
# This test documents the expected behavior
|
||||
|
||||
# We can't easily test this without mocking, but the unit tests cover it
|
||||
pass
|
||||
|
||||
def test_gemini_array_support(self):
|
||||
"""Test that Gemini receives array schemas correctly (issue from commit 65f7b81e)."""
|
||||
# This was the original bug that led to adding 'items' field
|
||||
# Now with full JSON Schema pass-through, arrays should work
|
||||
|
||||
tool = ToolDefinition(
|
||||
tool_name="tag_processor",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"tags": {"type": "array", "items": {"type": "string"}, "description": "List of tags"}},
|
||||
},
|
||||
)
|
||||
|
||||
# With new approach, the complete schema with items is preserved
|
||||
assert tool.input_schema["properties"]["tags"]["type"] == "array"
|
||||
assert tool.input_schema["properties"]["tags"]["items"]["type"] == "string"
|
||||
|
||||
|
||||
class TestStreamingWithTools:
|
||||
"""Test streaming chat completion with tools."""
|
||||
|
||||
def test_streaming_tool_calls(self, llama_stack_client, text_model_id):
|
||||
"""Test that tool schemas work correctly in streaming mode."""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_time",
|
||||
"description": "Get current time",
|
||||
"parameters": {"type": "object", "properties": {"timezone": {"type": "string"}}},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response_stream = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "What time is it in UTC?"}],
|
||||
tools=tools,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Should be able to iterate through stream
|
||||
chunks = []
|
||||
for chunk in response_stream:
|
||||
chunks.append(chunk)
|
||||
|
||||
# Should have received some chunks
|
||||
assert len(chunks) >= 0
|
||||
|
||||
|
||||
class TestEdgeCases:
|
||||
"""Test edge cases in inference with tools."""
|
||||
|
||||
def test_tool_without_schema(self, llama_stack_client, text_model_id):
|
||||
"""Test tool with no input_schema."""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "no_args_tool",
|
||||
"description": "Tool with no arguments",
|
||||
"parameters": {"type": "object", "properties": {}},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Call the no args tool"}],
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
|
||||
def test_multiple_tools_with_different_schemas(self, llama_stack_client, text_model_id):
|
||||
"""Test multiple tools with different schema complexities."""
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "simple",
|
||||
"parameters": {"type": "object", "properties": {"x": {"type": "string"}}},
|
||||
},
|
||||
},
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "complex",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"data": {"$ref": "#/$defs/Complex"}},
|
||||
"$defs": {
|
||||
"Complex": {
|
||||
"type": "object",
|
||||
"properties": {"nested": {"type": "array", "items": {"type": "number"}}},
|
||||
}
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "with_output",
|
||||
"parameters": {"type": "object", "properties": {"input": {"type": "string"}}},
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
response = llama_stack_client.chat.completions.create(
|
||||
model=text_model_id,
|
||||
messages=[{"role": "user", "content": "Use one of the available tools"}],
|
||||
tools=tools,
|
||||
)
|
||||
|
||||
# All tools should have been processed without errors
|
||||
assert response is not None
|
478
tests/integration/tool_runtime/test_mcp_json_schema.py
Normal file
478
tests/integration/tool_runtime/test_mcp_json_schema.py
Normal file
|
@ -0,0 +1,478 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Integration tests for MCP tools with complex JSON Schema support.
|
||||
Tests $ref, $defs, and other JSON Schema features through MCP integration.
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
from llama_stack import LlamaStackAsLibraryClient
|
||||
from tests.common.mcp import make_mcp_server
|
||||
|
||||
AUTH_TOKEN = "test-token"
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def mcp_server_with_complex_schemas():
|
||||
"""MCP server with tools that have complex schemas including $ref and $defs."""
|
||||
from mcp.server.fastmcp import Context
|
||||
|
||||
async def book_flight(flight: dict, passengers: list[dict], payment: dict, ctx: Context) -> dict:
|
||||
"""
|
||||
Book a flight with passenger and payment information.
|
||||
|
||||
This tool uses JSON Schema $ref and $defs for type reuse.
|
||||
"""
|
||||
return {
|
||||
"booking_id": "BK12345",
|
||||
"flight": flight,
|
||||
"passengers": passengers,
|
||||
"payment": payment,
|
||||
"status": "confirmed",
|
||||
}
|
||||
|
||||
async def process_order(order_data: dict, ctx: Context) -> dict:
|
||||
"""
|
||||
Process an order with nested address information.
|
||||
|
||||
Uses nested objects and $ref.
|
||||
"""
|
||||
return {"order_id": "ORD789", "status": "processing", "data": order_data}
|
||||
|
||||
async def flexible_contact(contact_info: str, ctx: Context) -> dict:
|
||||
"""
|
||||
Accept flexible contact (email or phone).
|
||||
|
||||
Uses anyOf schema.
|
||||
"""
|
||||
if "@" in contact_info:
|
||||
return {"type": "email", "value": contact_info}
|
||||
else:
|
||||
return {"type": "phone", "value": contact_info}
|
||||
|
||||
# Manually attach complex schemas to the functions
|
||||
# (FastMCP might not support this by default, so this is test setup)
|
||||
|
||||
# For MCP, we need to set the schema via tool annotations
|
||||
# This is test infrastructure to force specific schemas
|
||||
|
||||
tools = {"book_flight": book_flight, "process_order": process_order, "flexible_contact": flexible_contact}
|
||||
|
||||
# Note: In real MCP implementation, we'd configure these schemas properly
|
||||
# For testing, we may need to mock or extend the MCP server setup
|
||||
|
||||
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools=tools) as server_info:
|
||||
yield server_info
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def mcp_server_with_output_schemas():
|
||||
"""MCP server with tools that have output schemas defined."""
|
||||
from mcp.server.fastmcp import Context
|
||||
|
||||
async def get_weather(location: str, ctx: Context) -> dict:
|
||||
"""
|
||||
Get weather with structured output.
|
||||
|
||||
Has both input and output schemas.
|
||||
"""
|
||||
return {"temperature": 72.5, "conditions": "Sunny", "humidity": 45, "wind_speed": 10.2}
|
||||
|
||||
async def calculate(x: float, y: float, operation: str, ctx: Context) -> dict:
|
||||
"""
|
||||
Perform calculation with validated output.
|
||||
"""
|
||||
operations = {"add": x + y, "subtract": x - y, "multiply": x * y, "divide": x / y if y != 0 else None}
|
||||
result = operations.get(operation)
|
||||
return {"result": result, "operation": operation}
|
||||
|
||||
tools = {"get_weather": get_weather, "calculate": calculate}
|
||||
|
||||
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools=tools) as server_info:
|
||||
yield server_info
|
||||
|
||||
|
||||
class TestMCPSchemaPreservation:
|
||||
"""Test that MCP tool schemas are preserved correctly."""
|
||||
|
||||
def test_mcp_tools_list_with_schemas(self, llama_stack_client, mcp_server_with_complex_schemas):
|
||||
"""Test listing MCP tools preserves input_schema."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
# Clean up any existing registration
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Register MCP toolgroup
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# List runtime tools
|
||||
response = llama_stack_client.tool_runtime.list_runtime_tools(
|
||||
tool_group_id=test_toolgroup_id,
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
tools = response.data
|
||||
assert len(tools) > 0
|
||||
|
||||
# Check each tool has input_schema
|
||||
for tool in tools:
|
||||
assert hasattr(tool, "input_schema")
|
||||
# Schema might be None or a dict depending on tool
|
||||
if tool.input_schema is not None:
|
||||
assert isinstance(tool.input_schema, dict)
|
||||
# Should have basic JSON Schema structure
|
||||
if "properties" in tool.input_schema:
|
||||
assert "type" in tool.input_schema
|
||||
|
||||
def test_mcp_schema_with_refs_preserved(self, llama_stack_client, mcp_server_with_complex_schemas):
|
||||
"""Test that $ref and $defs in MCP schemas are preserved."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
# Register
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# List tools
|
||||
response = llama_stack_client.tool_runtime.list_runtime_tools(
|
||||
tool_group_id=test_toolgroup_id,
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
# Find book_flight tool (which should have $ref/$defs)
|
||||
book_flight_tool = next((t for t in response.data if t.name == "book_flight"), None)
|
||||
|
||||
if book_flight_tool and book_flight_tool.input_schema:
|
||||
# If the MCP server provides $defs, they should be preserved
|
||||
# This is the KEY test for the bug fix
|
||||
schema = book_flight_tool.input_schema
|
||||
|
||||
# Check if schema has properties (might vary based on MCP implementation)
|
||||
if "properties" in schema:
|
||||
# Verify schema structure is preserved (exact structure depends on MCP server)
|
||||
assert isinstance(schema["properties"], dict)
|
||||
|
||||
# If $defs are present, verify they're preserved
|
||||
if "$defs" in schema:
|
||||
assert isinstance(schema["$defs"], dict)
|
||||
# Each definition should be a dict
|
||||
for _def_name, def_schema in schema["$defs"].items():
|
||||
assert isinstance(def_schema, dict)
|
||||
|
||||
def test_mcp_output_schema_preserved(self, llama_stack_client, mcp_server_with_output_schemas):
|
||||
"""Test that MCP outputSchema is preserved."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::with_output"
|
||||
uri = mcp_server_with_output_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
response = llama_stack_client.tool_runtime.list_runtime_tools(
|
||||
tool_group_id=test_toolgroup_id,
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
# Find get_weather tool
|
||||
weather_tool = next((t for t in response.data if t.name == "get_weather"), None)
|
||||
|
||||
if weather_tool:
|
||||
# Check if output_schema field exists and is preserved
|
||||
assert hasattr(weather_tool, "output_schema")
|
||||
|
||||
# If MCP server provides output schema, it should be preserved
|
||||
if weather_tool.output_schema is not None:
|
||||
assert isinstance(weather_tool.output_schema, dict)
|
||||
# Should have JSON Schema structure
|
||||
if "properties" in weather_tool.output_schema:
|
||||
assert "type" in weather_tool.output_schema
|
||||
|
||||
|
||||
class TestMCPToolInvocation:
|
||||
"""Test invoking MCP tools with complex schemas."""
|
||||
|
||||
def test_invoke_mcp_tool_with_nested_data(self, llama_stack_client, mcp_server_with_complex_schemas):
|
||||
"""Test invoking MCP tool that expects nested object structure."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Invoke tool with complex nested data
|
||||
result = llama_stack_client.tool_runtime.invoke_tool(
|
||||
tool_name="process_order",
|
||||
kwargs={
|
||||
"order_data": {
|
||||
"items": [{"name": "Widget", "quantity": 2}, {"name": "Gadget", "quantity": 1}],
|
||||
"shipping": {"address": {"street": "123 Main St", "city": "San Francisco", "zipcode": "94102"}},
|
||||
}
|
||||
},
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
# Should succeed without schema validation errors
|
||||
assert result.content is not None
|
||||
assert result.error_message is None
|
||||
|
||||
def test_invoke_with_flexible_schema(self, llama_stack_client, mcp_server_with_complex_schemas):
|
||||
"""Test invoking tool with anyOf schema (flexible input)."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Test with email format
|
||||
result_email = llama_stack_client.tool_runtime.invoke_tool(
|
||||
tool_name="flexible_contact",
|
||||
kwargs={"contact_info": "user@example.com"},
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
assert result_email.error_message is None
|
||||
|
||||
# Test with phone format
|
||||
result_phone = llama_stack_client.tool_runtime.invoke_tool(
|
||||
tool_name="flexible_contact",
|
||||
kwargs={"contact_info": "+15551234567"},
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
assert result_phone.error_message is None
|
||||
|
||||
|
||||
class TestAgentWithMCPTools:
|
||||
"""Test agents using MCP tools with complex schemas."""
|
||||
|
||||
def test_agent_with_complex_mcp_tool(self, llama_stack_client, text_model_id, mcp_server_with_complex_schemas):
|
||||
"""Test agent can use MCP tools with $ref/$defs schemas."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
from llama_stack_client import Agent
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Create agent with MCP tools
|
||||
agent = Agent(
|
||||
client=llama_stack_client,
|
||||
model=text_model_id,
|
||||
instructions="You are a helpful assistant that can process orders and book flights.",
|
||||
tools=[test_toolgroup_id],
|
||||
)
|
||||
|
||||
session_id = agent.create_session("test-session-complex")
|
||||
|
||||
# Ask agent to use a tool with complex schema
|
||||
response = agent.create_turn(
|
||||
session_id=session_id,
|
||||
messages=[
|
||||
{"role": "user", "content": "Process an order with 2 widgets going to 123 Main St, San Francisco"}
|
||||
],
|
||||
stream=False,
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
steps = response.steps
|
||||
|
||||
# Verify agent was able to call the tool
|
||||
# (The LLM should have been able to understand the schema and formulate a valid call)
|
||||
tool_execution_steps = [s for s in steps if s.step_type == "tool_execution"]
|
||||
|
||||
# Agent might or might not call the tool depending on the model
|
||||
# But if it does, there should be no errors
|
||||
for step in tool_execution_steps:
|
||||
if step.tool_responses:
|
||||
for tool_response in step.tool_responses:
|
||||
assert tool_response.content is not None
|
||||
|
||||
|
||||
class TestSchemaValidation:
|
||||
"""Test schema validation (future feature)."""
|
||||
|
||||
def test_invalid_input_rejected(self, llama_stack_client, mcp_server_with_complex_schemas):
|
||||
"""Test that invalid input is rejected (if validation is implemented)."""
|
||||
# This test documents expected behavior once we add input validation
|
||||
# For now, it may pass invalid data through
|
||||
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::complex"
|
||||
uri = mcp_server_with_complex_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Try to invoke with completely wrong data type
|
||||
# Once validation is added, this should raise an error
|
||||
try:
|
||||
llama_stack_client.tool_runtime.invoke_tool(
|
||||
tool_name="process_order",
|
||||
kwargs={"order_data": "this should be an object not a string"},
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
# For now, this might succeed (no validation)
|
||||
# After adding validation, we'd expect a ValidationError
|
||||
except Exception:
|
||||
# Expected once validation is implemented
|
||||
pass
|
||||
|
||||
|
||||
class TestOutputValidation:
|
||||
"""Test output schema validation (future feature)."""
|
||||
|
||||
def test_output_matches_schema(self, llama_stack_client, mcp_server_with_output_schemas):
|
||||
"""Test that tool output is validated against output_schema (if implemented)."""
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
pytest.skip("Library client required for local MCP server")
|
||||
|
||||
test_toolgroup_id = "mcp::with_output"
|
||||
uri = mcp_server_with_output_schemas["server_url"]
|
||||
|
||||
try:
|
||||
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
llama_stack_client.toolgroups.register(
|
||||
toolgroup_id=test_toolgroup_id,
|
||||
provider_id="model-context-protocol",
|
||||
mcp_endpoint=dict(uri=uri),
|
||||
)
|
||||
|
||||
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
||||
auth_headers = {
|
||||
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
||||
}
|
||||
|
||||
# Invoke tool
|
||||
result = llama_stack_client.tool_runtime.invoke_tool(
|
||||
tool_name="get_weather",
|
||||
kwargs={"location": "San Francisco"},
|
||||
extra_headers=auth_headers,
|
||||
)
|
||||
|
||||
# Tool should return valid output
|
||||
assert result.error_message is None
|
||||
assert result.content is not None
|
||||
|
||||
# Once output validation is implemented, the system would check
|
||||
# that result.content matches the tool's output_schema
|
|
@ -18,7 +18,6 @@ from llama_stack.apis.inference import (
|
|||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
ToolDefinition,
|
||||
ToolParamDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
|
@ -75,12 +74,15 @@ async def test_system_custom_only():
|
|||
ToolDefinition(
|
||||
tool_name="custom1",
|
||||
description="custom1 tool",
|
||||
parameters={
|
||||
"param1": ToolParamDefinition(
|
||||
param_type="str",
|
||||
description="param1 description",
|
||||
required=True,
|
||||
),
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"param1": {
|
||||
"type": "str",
|
||||
"description": "param1 description",
|
||||
},
|
||||
},
|
||||
"required": ["param1"],
|
||||
},
|
||||
)
|
||||
],
|
||||
|
@ -107,12 +109,15 @@ async def test_system_custom_and_builtin():
|
|||
ToolDefinition(
|
||||
tool_name="custom1",
|
||||
description="custom1 tool",
|
||||
parameters={
|
||||
"param1": ToolParamDefinition(
|
||||
param_type="str",
|
||||
description="param1 description",
|
||||
required=True,
|
||||
),
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"param1": {
|
||||
"type": "str",
|
||||
"description": "param1 description",
|
||||
},
|
||||
},
|
||||
"required": ["param1"],
|
||||
},
|
||||
),
|
||||
],
|
||||
|
@ -148,12 +153,15 @@ async def test_completion_message_encoding():
|
|||
ToolDefinition(
|
||||
tool_name="custom1",
|
||||
description="custom1 tool",
|
||||
parameters={
|
||||
"param1": ToolParamDefinition(
|
||||
param_type="str",
|
||||
description="param1 description",
|
||||
required=True,
|
||||
),
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"param1": {
|
||||
"type": "str",
|
||||
"description": "param1 description",
|
||||
},
|
||||
},
|
||||
"required": ["param1"],
|
||||
},
|
||||
),
|
||||
],
|
||||
|
@ -227,12 +235,15 @@ async def test_replace_system_message_behavior_custom_tools():
|
|||
ToolDefinition(
|
||||
tool_name="custom1",
|
||||
description="custom1 tool",
|
||||
parameters={
|
||||
"param1": ToolParamDefinition(
|
||||
param_type="str",
|
||||
description="param1 description",
|
||||
required=True,
|
||||
),
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"param1": {
|
||||
"type": "str",
|
||||
"description": "param1 description",
|
||||
},
|
||||
},
|
||||
"required": ["param1"],
|
||||
},
|
||||
),
|
||||
],
|
||||
|
@ -264,12 +275,15 @@ async def test_replace_system_message_behavior_custom_tools_with_template():
|
|||
ToolDefinition(
|
||||
tool_name="custom1",
|
||||
description="custom1 tool",
|
||||
parameters={
|
||||
"param1": ToolParamDefinition(
|
||||
param_type="str",
|
||||
description="param1 description",
|
||||
required=True,
|
||||
),
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"param1": {
|
||||
"type": "str",
|
||||
"description": "param1 description",
|
||||
},
|
||||
},
|
||||
"required": ["param1"],
|
||||
},
|
||||
),
|
||||
],
|
||||
|
|
381
tests/unit/providers/utils/test_openai_compat_conversion.py
Normal file
381
tests/unit/providers/utils/test_openai_compat_conversion.py
Normal file
|
@ -0,0 +1,381 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Unit tests for OpenAI compatibility tool conversion.
|
||||
Tests convert_tooldef_to_openai_tool with new JSON Schema approach.
|
||||
"""
|
||||
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, ToolDefinition
|
||||
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
|
||||
|
||||
|
||||
class TestSimpleSchemaConversion:
|
||||
"""Test basic schema conversions to OpenAI format."""
|
||||
|
||||
def test_simple_tool_conversion(self):
|
||||
"""Test conversion of simple tool with basic input schema."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="get_weather",
|
||||
description="Get weather information",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string", "description": "City name"}},
|
||||
"required": ["location"],
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# Check OpenAI structure
|
||||
assert result["type"] == "function"
|
||||
assert "function" in result
|
||||
|
||||
function = result["function"]
|
||||
assert function["name"] == "get_weather"
|
||||
assert function["description"] == "Get weather information"
|
||||
|
||||
# Check parameters are passed through
|
||||
assert "parameters" in function
|
||||
assert function["parameters"] == tool.input_schema
|
||||
assert function["parameters"]["type"] == "object"
|
||||
assert "location" in function["parameters"]["properties"]
|
||||
|
||||
def test_tool_without_description(self):
|
||||
"""Test tool conversion without description."""
|
||||
tool = ToolDefinition(tool_name="test_tool", input_schema={"type": "object", "properties": {}})
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
assert result["function"]["name"] == "test_tool"
|
||||
assert "description" not in result["function"]
|
||||
assert "parameters" in result["function"]
|
||||
|
||||
def test_builtin_tool_conversion(self):
|
||||
"""Test conversion of BuiltinTool enum."""
|
||||
tool = ToolDefinition(
|
||||
tool_name=BuiltinTool.code_interpreter,
|
||||
description="Run Python code",
|
||||
input_schema={"type": "object", "properties": {"code": {"type": "string"}}},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# BuiltinTool should be converted to its value
|
||||
assert result["function"]["name"] == "code_interpreter"
|
||||
|
||||
|
||||
class TestComplexSchemaConversion:
|
||||
"""Test conversion of complex JSON Schema features."""
|
||||
|
||||
def test_schema_with_refs_and_defs(self):
|
||||
"""Test that $ref and $defs are passed through to OpenAI."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="book_flight",
|
||||
description="Book a flight",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"flight": {"$ref": "#/$defs/FlightInfo"},
|
||||
"passengers": {"type": "array", "items": {"$ref": "#/$defs/Passenger"}},
|
||||
"payment": {"$ref": "#/$defs/Payment"},
|
||||
},
|
||||
"required": ["flight", "passengers", "payment"],
|
||||
"$defs": {
|
||||
"FlightInfo": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"from": {"type": "string", "description": "Departure airport"},
|
||||
"to": {"type": "string", "description": "Arrival airport"},
|
||||
"date": {"type": "string", "format": "date"},
|
||||
},
|
||||
"required": ["from", "to", "date"],
|
||||
},
|
||||
"Passenger": {
|
||||
"type": "object",
|
||||
"properties": {"name": {"type": "string"}, "age": {"type": "integer", "minimum": 0}},
|
||||
"required": ["name", "age"],
|
||||
},
|
||||
"Payment": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"method": {"type": "string", "enum": ["credit_card", "debit_card"]},
|
||||
"amount": {"type": "number", "minimum": 0},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
params = result["function"]["parameters"]
|
||||
|
||||
# Verify $defs are preserved
|
||||
assert "$defs" in params
|
||||
assert "FlightInfo" in params["$defs"]
|
||||
assert "Passenger" in params["$defs"]
|
||||
assert "Payment" in params["$defs"]
|
||||
|
||||
# Verify $ref are preserved
|
||||
assert params["properties"]["flight"]["$ref"] == "#/$defs/FlightInfo"
|
||||
assert params["properties"]["passengers"]["items"]["$ref"] == "#/$defs/Passenger"
|
||||
assert params["properties"]["payment"]["$ref"] == "#/$defs/Payment"
|
||||
|
||||
# Verify nested schema details are preserved
|
||||
assert params["$defs"]["FlightInfo"]["properties"]["date"]["format"] == "date"
|
||||
assert params["$defs"]["Passenger"]["properties"]["age"]["minimum"] == 0
|
||||
assert params["$defs"]["Payment"]["properties"]["method"]["enum"] == ["credit_card", "debit_card"]
|
||||
|
||||
def test_anyof_schema_conversion(self):
|
||||
"""Test conversion of anyOf schemas."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="flexible_input",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"contact": {
|
||||
"anyOf": [
|
||||
{"type": "string", "format": "email"},
|
||||
{"type": "string", "pattern": "^\\+?[0-9]{10,15}$"},
|
||||
],
|
||||
"description": "Email or phone number",
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
contact_schema = result["function"]["parameters"]["properties"]["contact"]
|
||||
assert "anyOf" in contact_schema
|
||||
assert len(contact_schema["anyOf"]) == 2
|
||||
assert contact_schema["anyOf"][0]["format"] == "email"
|
||||
assert "pattern" in contact_schema["anyOf"][1]
|
||||
|
||||
def test_nested_objects_conversion(self):
|
||||
"""Test conversion of deeply nested objects."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="nested_data",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"user": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"profile": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"settings": {
|
||||
"type": "object",
|
||||
"properties": {"theme": {"type": "string", "enum": ["light", "dark"]}},
|
||||
},
|
||||
},
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# Navigate deep structure
|
||||
user_schema = result["function"]["parameters"]["properties"]["user"]
|
||||
profile_schema = user_schema["properties"]["profile"]
|
||||
settings_schema = profile_schema["properties"]["settings"]
|
||||
theme_schema = settings_schema["properties"]["theme"]
|
||||
|
||||
assert theme_schema["enum"] == ["light", "dark"]
|
||||
|
||||
def test_array_schemas_with_constraints(self):
|
||||
"""Test conversion of array schemas with constraints."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="list_processor",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"items": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "object",
|
||||
"properties": {"id": {"type": "integer"}, "name": {"type": "string"}},
|
||||
"required": ["id"],
|
||||
},
|
||||
"minItems": 1,
|
||||
"maxItems": 100,
|
||||
"uniqueItems": True,
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
items_schema = result["function"]["parameters"]["properties"]["items"]
|
||||
assert items_schema["type"] == "array"
|
||||
assert items_schema["minItems"] == 1
|
||||
assert items_schema["maxItems"] == 100
|
||||
assert items_schema["uniqueItems"] is True
|
||||
assert items_schema["items"]["type"] == "object"
|
||||
|
||||
|
||||
class TestOutputSchemaHandling:
|
||||
"""Test that output_schema is correctly handled (or dropped) for OpenAI."""
|
||||
|
||||
def test_output_schema_is_dropped(self):
|
||||
"""Test that output_schema is NOT included in OpenAI format (API limitation)."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="calculator",
|
||||
description="Perform calculation",
|
||||
input_schema={"type": "object", "properties": {"x": {"type": "number"}, "y": {"type": "number"}}},
|
||||
output_schema={"type": "object", "properties": {"result": {"type": "number"}}, "required": ["result"]},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# OpenAI doesn't support output schema
|
||||
assert "outputSchema" not in result["function"]
|
||||
assert "responseSchema" not in result["function"]
|
||||
assert "output_schema" not in result["function"]
|
||||
|
||||
# But input schema should be present
|
||||
assert "parameters" in result["function"]
|
||||
assert result["function"]["parameters"] == tool.input_schema
|
||||
|
||||
def test_only_output_schema_no_input(self):
|
||||
"""Test tool with only output_schema (unusual but valid)."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="no_input_tool",
|
||||
description="Tool with no inputs",
|
||||
output_schema={"type": "object", "properties": {"timestamp": {"type": "string"}}},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# No parameters should be set if input_schema is None
|
||||
# (or we might set an empty object schema - implementation detail)
|
||||
assert "outputSchema" not in result["function"]
|
||||
|
||||
|
||||
class TestEdgeCases:
|
||||
"""Test edge cases and error conditions."""
|
||||
|
||||
def test_tool_with_no_schemas(self):
|
||||
"""Test tool with neither input nor output schema."""
|
||||
tool = ToolDefinition(tool_name="schemaless_tool", description="Tool without schemas")
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
assert result["function"]["name"] == "schemaless_tool"
|
||||
assert result["function"]["description"] == "Tool without schemas"
|
||||
# Implementation detail: might have no parameters or empty object
|
||||
|
||||
def test_empty_input_schema(self):
|
||||
"""Test tool with empty object schema."""
|
||||
tool = ToolDefinition(tool_name="no_params", input_schema={"type": "object", "properties": {}})
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
assert result["function"]["parameters"]["type"] == "object"
|
||||
assert result["function"]["parameters"]["properties"] == {}
|
||||
|
||||
def test_schema_with_additional_properties(self):
|
||||
"""Test that additionalProperties is preserved."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="flexible_tool",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"known_field": {"type": "string"}},
|
||||
"additionalProperties": True,
|
||||
},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
assert result["function"]["parameters"]["additionalProperties"] is True
|
||||
|
||||
def test_schema_with_pattern_properties(self):
|
||||
"""Test that patternProperties is preserved."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="pattern_tool",
|
||||
input_schema={"type": "object", "patternProperties": {"^[a-z]+$": {"type": "string"}}},
|
||||
)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
assert "patternProperties" in result["function"]["parameters"]
|
||||
|
||||
def test_schema_identity(self):
|
||||
"""Test that converted schema is identical to input (no lossy conversion)."""
|
||||
original_schema = {
|
||||
"type": "object",
|
||||
"properties": {"complex": {"$ref": "#/$defs/Complex"}},
|
||||
"$defs": {
|
||||
"Complex": {
|
||||
"type": "object",
|
||||
"properties": {"nested": {"anyOf": [{"type": "string"}, {"type": "number"}]}},
|
||||
}
|
||||
},
|
||||
"required": ["complex"],
|
||||
"additionalProperties": False,
|
||||
}
|
||||
|
||||
tool = ToolDefinition(tool_name="test", input_schema=original_schema)
|
||||
|
||||
result = convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# Converted parameters should be EXACTLY the same as input
|
||||
assert result["function"]["parameters"] == original_schema
|
||||
|
||||
|
||||
class TestConversionConsistency:
|
||||
"""Test consistency across multiple conversions."""
|
||||
|
||||
def test_multiple_tools_with_shared_defs(self):
|
||||
"""Test converting multiple tools that could share definitions."""
|
||||
tool1 = ToolDefinition(
|
||||
tool_name="tool1",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"data": {"$ref": "#/$defs/Data"}},
|
||||
"$defs": {"Data": {"type": "object", "properties": {"x": {"type": "number"}}}},
|
||||
},
|
||||
)
|
||||
|
||||
tool2 = ToolDefinition(
|
||||
tool_name="tool2",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"info": {"$ref": "#/$defs/Data"}},
|
||||
"$defs": {"Data": {"type": "object", "properties": {"y": {"type": "string"}}}},
|
||||
},
|
||||
)
|
||||
|
||||
result1 = convert_tooldef_to_openai_tool(tool1)
|
||||
result2 = convert_tooldef_to_openai_tool(tool2)
|
||||
|
||||
# Each tool maintains its own $defs independently
|
||||
assert result1["function"]["parameters"]["$defs"]["Data"]["properties"]["x"]["type"] == "number"
|
||||
assert result2["function"]["parameters"]["$defs"]["Data"]["properties"]["y"]["type"] == "string"
|
||||
|
||||
def test_conversion_is_pure(self):
|
||||
"""Test that conversion doesn't modify the original tool."""
|
||||
original_schema = {
|
||||
"type": "object",
|
||||
"properties": {"x": {"type": "string"}},
|
||||
"$defs": {"T": {"type": "number"}},
|
||||
}
|
||||
|
||||
tool = ToolDefinition(tool_name="test", input_schema=original_schema.copy())
|
||||
|
||||
# Convert
|
||||
convert_tooldef_to_openai_tool(tool)
|
||||
|
||||
# Original tool should be unchanged
|
||||
assert tool.input_schema == original_schema
|
||||
assert "$defs" in tool.input_schema
|
297
tests/unit/tools/test_tools_json_schema.py
Normal file
297
tests/unit/tools/test_tools_json_schema.py
Normal file
|
@ -0,0 +1,297 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
"""
|
||||
Unit tests for JSON Schema-based tool definitions.
|
||||
Tests the new input_schema and output_schema fields.
|
||||
"""
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from llama_stack.apis.tools import ToolDef
|
||||
from llama_stack.models.llama.datatypes import BuiltinTool, ToolDefinition
|
||||
|
||||
|
||||
class TestToolDefValidation:
|
||||
"""Test ToolDef validation with JSON Schema."""
|
||||
|
||||
def test_simple_input_schema(self):
|
||||
"""Test ToolDef with simple input schema."""
|
||||
tool = ToolDef(
|
||||
name="get_weather",
|
||||
description="Get weather information",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"location": {"type": "string", "description": "City name"}},
|
||||
"required": ["location"],
|
||||
},
|
||||
)
|
||||
|
||||
assert tool.name == "get_weather"
|
||||
assert tool.input_schema["type"] == "object"
|
||||
assert "location" in tool.input_schema["properties"]
|
||||
assert tool.output_schema is None
|
||||
|
||||
def test_input_and_output_schema(self):
|
||||
"""Test ToolDef with both input and output schemas."""
|
||||
tool = ToolDef(
|
||||
name="calculate",
|
||||
description="Perform calculation",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"x": {"type": "number"}, "y": {"type": "number"}},
|
||||
"required": ["x", "y"],
|
||||
},
|
||||
output_schema={"type": "object", "properties": {"result": {"type": "number"}}, "required": ["result"]},
|
||||
)
|
||||
|
||||
assert tool.input_schema is not None
|
||||
assert tool.output_schema is not None
|
||||
assert "result" in tool.output_schema["properties"]
|
||||
|
||||
def test_schema_with_refs_and_defs(self):
|
||||
"""Test that $ref and $defs are preserved in schemas."""
|
||||
tool = ToolDef(
|
||||
name="book_flight",
|
||||
description="Book a flight",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"flight": {"$ref": "#/$defs/FlightInfo"},
|
||||
"passengers": {"type": "array", "items": {"$ref": "#/$defs/Passenger"}},
|
||||
},
|
||||
"$defs": {
|
||||
"FlightInfo": {
|
||||
"type": "object",
|
||||
"properties": {"from": {"type": "string"}, "to": {"type": "string"}},
|
||||
},
|
||||
"Passenger": {
|
||||
"type": "object",
|
||||
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
# Verify $defs are preserved
|
||||
assert "$defs" in tool.input_schema
|
||||
assert "FlightInfo" in tool.input_schema["$defs"]
|
||||
assert "Passenger" in tool.input_schema["$defs"]
|
||||
|
||||
# Verify $ref are preserved
|
||||
assert tool.input_schema["properties"]["flight"]["$ref"] == "#/$defs/FlightInfo"
|
||||
assert tool.input_schema["properties"]["passengers"]["items"]["$ref"] == "#/$defs/Passenger"
|
||||
|
||||
def test_output_schema_with_refs(self):
|
||||
"""Test that output_schema also supports $ref and $defs."""
|
||||
tool = ToolDef(
|
||||
name="search",
|
||||
description="Search for items",
|
||||
input_schema={"type": "object", "properties": {"query": {"type": "string"}}},
|
||||
output_schema={
|
||||
"type": "object",
|
||||
"properties": {"results": {"type": "array", "items": {"$ref": "#/$defs/SearchResult"}}},
|
||||
"$defs": {
|
||||
"SearchResult": {
|
||||
"type": "object",
|
||||
"properties": {"title": {"type": "string"}, "score": {"type": "number"}},
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert "$defs" in tool.output_schema
|
||||
assert "SearchResult" in tool.output_schema["$defs"]
|
||||
|
||||
def test_complex_json_schema_features(self):
|
||||
"""Test various JSON Schema features are preserved."""
|
||||
tool = ToolDef(
|
||||
name="complex_tool",
|
||||
description="Tool with complex schema",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
# anyOf
|
||||
"contact": {
|
||||
"anyOf": [
|
||||
{"type": "string", "format": "email"},
|
||||
{"type": "string", "pattern": "^\\+?[0-9]{10,15}$"},
|
||||
]
|
||||
},
|
||||
# enum
|
||||
"status": {"type": "string", "enum": ["pending", "approved", "rejected"]},
|
||||
# nested objects
|
||||
"address": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"street": {"type": "string"},
|
||||
"city": {"type": "string"},
|
||||
"zipcode": {"type": "string", "pattern": "^[0-9]{5}$"},
|
||||
},
|
||||
"required": ["street", "city"],
|
||||
},
|
||||
# array with constraints
|
||||
"tags": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"},
|
||||
"minItems": 1,
|
||||
"maxItems": 10,
|
||||
"uniqueItems": True,
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
# Verify anyOf
|
||||
assert "anyOf" in tool.input_schema["properties"]["contact"]
|
||||
|
||||
# Verify enum
|
||||
assert tool.input_schema["properties"]["status"]["enum"] == ["pending", "approved", "rejected"]
|
||||
|
||||
# Verify nested object
|
||||
assert tool.input_schema["properties"]["address"]["type"] == "object"
|
||||
assert "zipcode" in tool.input_schema["properties"]["address"]["properties"]
|
||||
|
||||
# Verify array constraints
|
||||
tags_schema = tool.input_schema["properties"]["tags"]
|
||||
assert tags_schema["minItems"] == 1
|
||||
assert tags_schema["maxItems"] == 10
|
||||
assert tags_schema["uniqueItems"] is True
|
||||
|
||||
def test_invalid_json_schema_raises_error(self):
|
||||
"""Test that invalid JSON Schema raises validation error."""
|
||||
# TODO: This test will pass once we add schema validation
|
||||
# For now, Pydantic accepts any dict, so this is a placeholder
|
||||
|
||||
# This should eventually raise an error due to invalid schema
|
||||
try:
|
||||
ToolDef(
|
||||
name="bad_tool",
|
||||
input_schema={
|
||||
"type": "invalid_type", # Not a valid JSON Schema type
|
||||
"properties": "not_an_object", # Should be an object
|
||||
},
|
||||
)
|
||||
# For now this passes, but shouldn't after we add validation
|
||||
except ValidationError:
|
||||
pass # Expected once validation is added
|
||||
|
||||
|
||||
class TestToolDefinitionValidation:
|
||||
"""Test ToolDefinition (internal) validation with JSON Schema."""
|
||||
|
||||
def test_simple_tool_definition(self):
|
||||
"""Test ToolDefinition with simple schema."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="get_time",
|
||||
description="Get current time",
|
||||
input_schema={"type": "object", "properties": {"timezone": {"type": "string"}}},
|
||||
)
|
||||
|
||||
assert tool.tool_name == "get_time"
|
||||
assert tool.input_schema is not None
|
||||
|
||||
def test_builtin_tool_with_schema(self):
|
||||
"""Test ToolDefinition with BuiltinTool enum."""
|
||||
tool = ToolDefinition(
|
||||
tool_name=BuiltinTool.code_interpreter,
|
||||
description="Run Python code",
|
||||
input_schema={"type": "object", "properties": {"code": {"type": "string"}}, "required": ["code"]},
|
||||
output_schema={"type": "object", "properties": {"output": {"type": "string"}, "error": {"type": "string"}}},
|
||||
)
|
||||
|
||||
assert isinstance(tool.tool_name, BuiltinTool)
|
||||
assert tool.input_schema is not None
|
||||
assert tool.output_schema is not None
|
||||
|
||||
def test_tool_definition_with_refs(self):
|
||||
"""Test ToolDefinition preserves $ref/$defs."""
|
||||
tool = ToolDefinition(
|
||||
tool_name="process_data",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
|
||||
"$defs": {
|
||||
"DataObject": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"id": {"type": "integer"},
|
||||
"values": {"type": "array", "items": {"type": "number"}},
|
||||
},
|
||||
}
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert "$defs" in tool.input_schema
|
||||
assert tool.input_schema["properties"]["data"]["$ref"] == "#/$defs/DataObject"
|
||||
|
||||
|
||||
class TestSchemaEquivalence:
|
||||
"""Test that schemas remain unchanged through serialization."""
|
||||
|
||||
def test_schema_roundtrip(self):
|
||||
"""Test that schemas survive model_dump/model_validate roundtrip."""
|
||||
original = ToolDef(
|
||||
name="test",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"x": {"$ref": "#/$defs/X"}},
|
||||
"$defs": {"X": {"type": "string"}},
|
||||
},
|
||||
)
|
||||
|
||||
# Serialize and deserialize
|
||||
dumped = original.model_dump()
|
||||
restored = ToolDef(**dumped)
|
||||
|
||||
# Schemas should be identical
|
||||
assert restored.input_schema == original.input_schema
|
||||
assert "$defs" in restored.input_schema
|
||||
assert restored.input_schema["properties"]["x"]["$ref"] == "#/$defs/X"
|
||||
|
||||
def test_json_serialization(self):
|
||||
"""Test JSON serialization preserves schema."""
|
||||
import json
|
||||
|
||||
tool = ToolDef(
|
||||
name="test",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"a": {"type": "string"}},
|
||||
"$defs": {"T": {"type": "number"}},
|
||||
},
|
||||
output_schema={"type": "object", "properties": {"b": {"$ref": "#/$defs/T"}}},
|
||||
)
|
||||
|
||||
# Serialize to JSON and back
|
||||
json_str = tool.model_dump_json()
|
||||
parsed = json.loads(json_str)
|
||||
restored = ToolDef(**parsed)
|
||||
|
||||
assert restored.input_schema == tool.input_schema
|
||||
assert restored.output_schema == tool.output_schema
|
||||
assert "$defs" in restored.input_schema
|
||||
|
||||
|
||||
class TestBackwardsCompatibility:
|
||||
"""Test handling of legacy code patterns."""
|
||||
|
||||
def test_none_schemas(self):
|
||||
"""Test tools with no schemas (legacy case)."""
|
||||
tool = ToolDef(name="legacy_tool", description="Tool without schemas", input_schema=None, output_schema=None)
|
||||
|
||||
assert tool.input_schema is None
|
||||
assert tool.output_schema is None
|
||||
|
||||
def test_metadata_preserved(self):
|
||||
"""Test that metadata field still works."""
|
||||
tool = ToolDef(
|
||||
name="test", input_schema={"type": "object"}, metadata={"endpoint": "http://example.com", "version": "1.0"}
|
||||
)
|
||||
|
||||
assert tool.metadata["endpoint"] == "http://example.com"
|
||||
assert tool.metadata["version"] == "1.0"
|
Loading…
Add table
Add a link
Reference in a new issue