feat(tools): use { input_schema, output_schema } for ToolDefinition

This commit is contained in:
Ashwin Bharambe 2025-09-30 19:13:15 -07:00
parent 42414a1a1b
commit 139320e19f
20 changed files with 1989 additions and 386 deletions

View file

@ -0,0 +1,369 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Integration tests for inference/chat completion with JSON Schema-based tools.
Tests that tools pass through correctly to various LLM providers.
"""
import json
import pytest
from llama_stack import LlamaStackAsLibraryClient
from llama_stack.models.llama.datatypes import ToolDefinition
from tests.common.mcp import make_mcp_server
AUTH_TOKEN = "test-token"
class TestChatCompletionWithTools:
"""Test chat completion with tools that have complex schemas."""
def test_simple_tool_call(self, llama_stack_client, text_model_id):
"""Test basic tool calling with simple input schema."""
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "What's the weather in San Francisco?"}],
tools=tools,
)
assert response is not None
def test_tool_with_complex_schema(self, llama_stack_client, text_model_id):
"""Test tool calling with complex schema including $ref and $defs."""
tools = [
{
"type": "function",
"function": {
"name": "book_flight",
"description": "Book a flight",
"parameters": {
"type": "object",
"properties": {
"flight": {"$ref": "#/$defs/FlightInfo"},
"passenger": {"$ref": "#/$defs/Passenger"},
},
"required": ["flight", "passenger"],
"$defs": {
"FlightInfo": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"date": {"type": "string", "format": "date"},
},
},
"Passenger": {
"type": "object",
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
},
},
},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Book a flight from SFO to JFK for John Doe"}],
tools=tools,
)
# The key test: No errors during schema processing
# The LLM received a valid, complete schema with $ref/$defs
assert response is not None
class TestOpenAICompatibility:
"""Test OpenAI-compatible endpoints with new schema format."""
def test_openai_chat_completion_with_tools(self, compat_client, text_model_id):
"""Test OpenAI-compatible chat completion with tools."""
from openai import OpenAI
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client required")
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather information",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string", "description": "City name"}},
"required": ["location"],
},
},
}
]
response = compat_client.chat.completions.create(
model=text_model_id, messages=[{"role": "user", "content": "What's the weather in Tokyo?"}], tools=tools
)
assert response is not None
assert response.choices is not None
def test_openai_format_preserves_complex_schemas(self, compat_client, text_model_id):
"""Test that complex schemas work through OpenAI-compatible API."""
from openai import OpenAI
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client required")
tools = [
{
"type": "function",
"function": {
"name": "process_data",
"description": "Process structured data",
"parameters": {
"type": "object",
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
"$defs": {
"DataObject": {
"type": "object",
"properties": {"values": {"type": "array", "items": {"type": "number"}}},
}
},
},
},
}
]
response = compat_client.chat.completions.create(
model=text_model_id, messages=[{"role": "user", "content": "Process this data"}], tools=tools
)
assert response is not None
class TestMCPToolsInChatCompletion:
"""Test using MCP tools in chat completion."""
@pytest.fixture
def mcp_with_schemas(self):
"""MCP server for chat completion tests."""
from mcp.server.fastmcp import Context
async def calculate(x: float, y: float, operation: str, ctx: Context) -> float:
ops = {"add": x + y, "sub": x - y, "mul": x * y, "div": x / y if y != 0 else None}
return ops.get(operation, 0)
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools={"calculate": calculate}) as server:
yield server
def test_mcp_tools_in_inference(self, llama_stack_client, text_model_id, mcp_with_schemas):
"""Test that MCP tools can be used in inference."""
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
pytest.skip("Library client required for local MCP server")
test_toolgroup_id = "mcp::calc"
uri = mcp_with_schemas["server_url"]
try:
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
except Exception:
pass
llama_stack_client.toolgroups.register(
toolgroup_id=test_toolgroup_id,
provider_id="model-context-protocol",
mcp_endpoint=dict(uri=uri),
)
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
auth_headers = {
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
}
# Get the tools from MCP
tools_response = llama_stack_client.tool_runtime.list_runtime_tools(
tool_group_id=test_toolgroup_id,
extra_headers=auth_headers,
)
# Convert to OpenAI format for inference
tools = []
for tool in tools_response.data:
tools.append(
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": tool.input_schema if hasattr(tool, "input_schema") else {},
},
}
)
# Use in chat completion
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Calculate 5 + 3"}],
tools=tools,
)
# Schema should have been passed through correctly
assert response is not None
class TestProviderSpecificBehavior:
"""Test provider-specific handling of schemas."""
def test_openai_provider_drops_output_schema(self, llama_stack_client, text_model_id):
"""Test that OpenAI provider doesn't send output_schema (API limitation)."""
# This is more of a documentation test
# OpenAI API doesn't support output schemas, so we drop them
_tool = ToolDefinition(
tool_name="test",
input_schema={"type": "object", "properties": {"x": {"type": "string"}}},
output_schema={"type": "object", "properties": {"y": {"type": "number"}}},
)
# When this tool is sent to OpenAI provider, output_schema is dropped
# But input_schema is preserved
# This test documents the expected behavior
# We can't easily test this without mocking, but the unit tests cover it
pass
def test_gemini_array_support(self):
"""Test that Gemini receives array schemas correctly (issue from commit 65f7b81e)."""
# This was the original bug that led to adding 'items' field
# Now with full JSON Schema pass-through, arrays should work
tool = ToolDefinition(
tool_name="tag_processor",
input_schema={
"type": "object",
"properties": {"tags": {"type": "array", "items": {"type": "string"}, "description": "List of tags"}},
},
)
# With new approach, the complete schema with items is preserved
assert tool.input_schema["properties"]["tags"]["type"] == "array"
assert tool.input_schema["properties"]["tags"]["items"]["type"] == "string"
class TestStreamingWithTools:
"""Test streaming chat completion with tools."""
def test_streaming_tool_calls(self, llama_stack_client, text_model_id):
"""Test that tool schemas work correctly in streaming mode."""
tools = [
{
"type": "function",
"function": {
"name": "get_time",
"description": "Get current time",
"parameters": {"type": "object", "properties": {"timezone": {"type": "string"}}},
},
}
]
response_stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "What time is it in UTC?"}],
tools=tools,
stream=True,
)
# Should be able to iterate through stream
chunks = []
for chunk in response_stream:
chunks.append(chunk)
# Should have received some chunks
assert len(chunks) >= 0
class TestEdgeCases:
"""Test edge cases in inference with tools."""
def test_tool_without_schema(self, llama_stack_client, text_model_id):
"""Test tool with no input_schema."""
tools = [
{
"type": "function",
"function": {
"name": "no_args_tool",
"description": "Tool with no arguments",
"parameters": {"type": "object", "properties": {}},
},
}
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Call the no args tool"}],
tools=tools,
)
assert response is not None
def test_multiple_tools_with_different_schemas(self, llama_stack_client, text_model_id):
"""Test multiple tools with different schema complexities."""
tools = [
{
"type": "function",
"function": {
"name": "simple",
"parameters": {"type": "object", "properties": {"x": {"type": "string"}}},
},
},
{
"type": "function",
"function": {
"name": "complex",
"parameters": {
"type": "object",
"properties": {"data": {"$ref": "#/$defs/Complex"}},
"$defs": {
"Complex": {
"type": "object",
"properties": {"nested": {"type": "array", "items": {"type": "number"}}},
}
},
},
},
},
{
"type": "function",
"function": {
"name": "with_output",
"parameters": {"type": "object", "properties": {"input": {"type": "string"}}},
},
},
]
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Use one of the available tools"}],
tools=tools,
)
# All tools should have been processed without errors
assert response is not None